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In this study, we present a free-boundary problem
for an active liquid crystal starting with the Beris–
Edwards theory that uses a tensorial order parameter
and includes active contributions to the stress tensor
and then derive from it the Eriksen model for an
active polar gel and scalar order parameter to analyse
the rich defect structure observed in applications
such as the adenosinetriphosphate-driven motion
of a thin film of an actin filament network. The
small aspect ratio of the film geometry allows for
an asymptotic approximation of the free-boundary
problem in the limit of weak elasticity of the network
and strong active terms. The new thin-film model
captures the defect dynamics in the bulk as well as
wall defects and thus presents a significant extension
of previous models based on the Leslie–Erickson–
Parodi theory. As an example we derive the explicit
solution for an active gel confined to a channel,
which has discontinuous director profile leading to
a bidirectional flow structure generated by the active
terms.

1. Introduction
Since the works by Simha & Ramaswamy [1] and Kruse
et al. [2] active liquid crystals have been used extensively
as a hydrodynamic theory to describe the ordered
motion of large numbers of self-propelled particles, such
as bacterial suspensions, fibroblast monolayers or the
adenosinetriphosphate (ATP)-driven actin network that
underlies the movement of the lamellopodium of a
crawling cell. The different levels of description, from the
microscopic to the continuum hydrodynamic theory of
this rapidly expanding research field has been reviewed
in Marchetti et al. [3].

In many studies, active matter extensions are based
on the Leslie–Ericksen–Parodi (LEP) theory [4–6] such
as in [7,8], where active polar gels were derived
from thermodynamic principles. The model in [7]
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and the simplified version in [9] are augmented by sources of energy due to ATP hydrolysis that
drives the system and makes the bulk of the cell an active (polar) gel. The bulk liquid i.e. the
gel is characterized mainly by the velocity and the director field, which describes the averaged
orientation of the actin filaments at a given point in space and time. The driving force is provided
in their models via the chemical potential difference of ATP and its hydrolysis products. This
hydrolysis of ATP fuels the molecular motors to generate forces along the actin network, and is
also used for the polymerization and depolymerization of the network filaments.

As in passive liquid crystals, defects are a common phenomenon and their dynamics is
strongly influenced by the fact that the system is out-of-equilibrium due to the energy source from
the active terms. Observations in in vitro experiments [10] show that they may directly depend on
strength of the activity, where it was demonstrated that the observed defects tend to disappear
again for sufficiently high levels of activity [11]. Based on the LEP theory, point defects such
as asters, vortices and spirals were described [2,7]. Furthermore, phase diagrams of unbounded
two-dimensional states [9] as well as flow transitions in confined films [12] were investigated. In
particular, it was found that spontaneous flow arises in a confined active polar gel (with no-slip
or free-slip conditions at the domain walls) above a critical layer thickness. This transition was
also described within a thin-film model with a free, capillary surface [13].

However, there are some inherent deficiencies to describe local defect structures basing on
the LEP theory, which is connected to the discontinuity of the director field and the infinite
associated local elastic energy at the defect points. This problem becomes even more critical for the
description of wall and line defects along which the elastic energy in the LEP theory is essentially
discontinuous and, in particular, standard energy renormalization techniques cannot be applied.
Moreover, when modelling the evolution of thin nematic films with moving contact lines using
LEP theory, related problems occur due to singularity of the director field at the contact line
[14–21]. Therefore, more general approaches such as the Beris–Edwards theory [22,23] of liquid
crystal hydrodynamics, that use a tensorial order parameter, the so-called Q-tensor, instead of a
director field, have been devised. Extensions of this theory by active terms go back to Marenduzzo
et al. [24,25] and have been extended in two and three dimensions to various problems involving
different geometries, such as spherical shells [26,27], and have been investigated in a number of
directions [28–33]. But even for the passive Beris–Edwards theory, the conditions at boundaries
and in particular, stress and anchoring conditions at free interfaces are less well studied within
this model. Important contributions to these issues can be found in [17,34,35]. In particular, it was
conjectured [36] that a Q-tensor-based approach might facilitate the resolution of nematic point
defects in the vicinity of moving film contact lines [37]. On the other hand, most biologically
active gels form polar (rather than nematic) liquid crystalline order, the fact which encourages for
derivation of an intermediate model, which, on one hand, operates with polar director field and,
on the other, is capable for smooth resolution of the observed defect structures. A good candidate
for such model is provided by the Ericksen model first suggested in [38].

The derivation of the corresponding thin-film model is the goal of this article. We begin
by formulating the active Beris–Edwards model (§2) including all the boundary conditions for
a two-dimensional cross section of a thin film. We emphasize that basic features of the two-
dimensional Beris–Edwards model resemble those of its three-dimensional version, but that
it also has independent interesting two-dimensional applications in biology [29,39], also on
curved surfaces for thin shells of active matter [26,27]. In this case, we are able to represent
the Q-tensor through a scalar order parameter q and the director field n and reduce the active
Beris–Edwards model to the corresponding active Ericksen model [38] that describes the coupled
evolution of q and n. Making use of the scale separation of the thin-film geometry, a leading-order
approximation is derived (§3) in the limit of weak elasticity and strong active terms to arrive at a
new thin-film model, both for the passive and active cases. We also show that our model formally
reduces to the one based on LEP theory, when the scalar order parameter q is homogeneous, and
coincides with one of [17] in the passive case.

Finally, in §4, we derive explicit solutions for special cases of flat constant films and small angle
mismatch between the anchoring conditions. They show that in the passive case solutions with
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Figure 1. Sketch of the geometry of a thin film together with variables involved in the Q-tensor system (2.4)–(2.6). (Online
version in colour.)

nonlinear nematic fields exist when certain compatibility relations between film thickness and
nematic boundary conditions are satisfied. In particular, in paragraph 4.2 we construct solutions
with the director field being discontinuous across the special isotropic line along which q = 0
(figure 2a,b). These solutions can be viewed as the limiting profiles as the elastic constant tends
to zero of the antisymmetric nematic field in the channel observed numerically in [40], cf. in
particular with the approximate formula (29) therein, see also [41]. In the presence of active
terms, some of the found passive solutions continue to exist and exhibit non-zero flow that can
be spontaneously initiated from zero, for example, by increasing the film thickness, similar to the
effect observed in [9,12]. In particular, the solution with initially discontinuous director profile
initiates a counter-flow (figure 2c) in the presence of small active terms with fluid moving into
opposite directions (prescribed by the director field) in the lower and upper half of the film.

A discussion of further extensions and applications concludes the paper (§5). In appendix A,
we present the rescaled Ericksen model under the thin-film approximation. In appendix B, we
derive the polar thin-film model based on the LEP system with active terms.

2. Formulations of active liquid crystal models

(a) Beris–Edwards model for an active gel
Instead of treating the active gel through a theory based on the LEP formulation for liquid crystals
[4–6], we include the corresponding terms into the Beris–Edwards theory that uses Q-tensors to
describe liquid crystals and is a popular field of research across the theoretical literature [23,42–
45], see also the recent overviews [46,47], as a more general alternative theory for liquid crystals.
In a subsequent step, we express the two-dimensional Q-tensor in terms of the director field and
an additional scalar order parameter to obtain an Ericksen-type model introduced in [38], for
which we then derive the thin-film model in §3. An active gel model in terms of Q-tensors and its
subsequent reformulation is also given in [25], but we additionally need to include appropriate
conditions at the free interface, which we base on [34,48].

We only consider two-dimensional models here and introduce a spatial domain Ω with
coordinates (x1, x3), while t represents time, (see figure 1 for a schematic sketch of the geometry
and variables involved). The Beris–Edwards model is associated with the standard Landau–de
Gennes energy in the form [49]

FLG[Q; Ω] =
∫
Ω

(fe(Q) + fb(Q)) dx, (2.1)
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where Q ∈ H1(Ω ,L0) takes on values in the space of the symmetric and traceless matrices, or
Q-tensors,

L0 := {Q ∈ R
2×2, Q = QT, tr(Q) = 0}.

In (2.1), the bulk contribution is given by

fb(Q) = − a2

2
tr(Q2) + c2

4
(tr(Q2))2, (2.2)

with constants a, c and

fe(Q) = L1

2
Qij,kQij,k (2.3)

is the elastic contribution, with an elastic constant L1 > 0. (We deliberately avoid further
complications by considering a model with only one elastic constant.) Here, and elsewhere (except
in appendix A), we use the usual convention that duplicate indices are summed over and indices
with commas indicate spatial derivatives, e.g. Qij,k is used for the derivative of Qij with respect to
xk for i, j, k = 1, 2, 3.

In the most general form, the active Beris–Edwards model can be written as (see [23,27,43,44]
and references therein)

0 = ∂ivi, (2.4)

0 = −∂ip + μ∂2
j vi + ∂j(τij + σij − ζ�χQij) (2.5)

Qt + (v · ∇)Q = Γ H + S(∇v, Q) + λ1�χ Q, (2.6)

where vi and p are the velocity components and the pressure, μ the isotropic viscosity and Γ a
collective rotational diffusion constant. The term

Sij = (ξeik + ωik)
(

Qkj + δkj

2

)
+
(

Qik + δik

2

)
(ξekj − ωkj) − 2ξ

(
Qij + δij

2

)
(Qmkuk,m), (2.7)

with
eij = 1

2 (∂jvi + ∂ivj), ωij = 1
2 (∂jvi − ∂ivj), Iij = δij, (2.8)

describes how the flow gradient rotates and stretches the order-parameter. The scalar parameter
ξ ∈ R appearing both in equations (2.5) and (2.6) depends on the molecular details of a given
liquid crystal. The active terms are associated with the activity parameters ζ and λ1 and have
been introduced in (2.5) and (2.6) as in [25,27]. As in [25], we have an active term in the
linear momentum equation (2.5) and another one contributing to the director field dynamics
(2.6). The former captures the stresses that are induced by the molecular motors and propel
fluid either inwards or outwards along the filaments if they are either contractile (ζ < 0) or
extensile stresses (ζ > 0), respectively, though experiments and microscopic approaches suggest
that actomyosin gels are typically contractile [50–53]. The contribution to the director field
dynamics either relaxes (λ1 < 0) or increases orientation (λ1 > 0) over time, the latter having
been observed for concentrated actomyosin gels, which show self-alignment effects [12,54]. Both
activity contributions depend on the difference �χ in chemical potential between ATP and its
hydrolysis products ADP and inorganic phosphate, as this provides the energy for the molecular
motors that induce the motion. These activity terms were introduced by Kruse et al. [7] based
on symmetry principles, and derived microscopically in [50–53] for active filaments. Similar
considerations for active suspensions of self-propelled particles can be found in [1,55].

The molecular field H in (2.6) is the first variation of the Landau–de Gennes energy (2.1) with
respect to Q,

Hij = − δFLG

δQij
= a2Qij − c2Qijtr(Q2) + λ(x)δij + L1∂

2
k Qij. (2.9)

The Lagrange multiplier λ(x) arises from the constraint tr Q = 0. We note that this constraint is
equivalent to the normalization condition of the director field, as can be seen by taking the trace
of the representation (2.19) for Q. However, taking the trace of equation (2.6), gives, after some
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algebra, that λ(x) = −2(ξ + 1)Qilωli = 0, where the last equality follows from Qil = Qli. We will
therefore drop the λ(x)I term from (2.9). The symmetric and antisymmetric parts of the stress
tensor σij and τij that appear in (2.5) are due to the director-flow interaction and have the form

σij = −ξ

(
Qik + δik

2

)
Hkj − ξHik

(
Qkj + δkj

2

)

+ 2ξ

(
Qij + δij

2

)
HkmQkm − L1∂jQkm∂iQkm (2.10)

τij = QikHkj − HikQkj. (2.11)

For future reference, we also introduce the total stress tensor T, which includes all contributions,
including those from the active term, that is

Tij = −pδij + 2μeij + τij + σij − ζ�χQij. (2.12)

We assume that the substrate is impermeable and that the no-slip condition holds for the
liquid, hence both components of the liquid vanish at x3 = 0,

v = 0. (2.13a)

We also impose strong anchoring, so that at x3 = 0, we have

Q = Q1 = q1(n1 ⊗ n1 − 1
2 I), (2.13b)

with a given constant q1 ∈ R and n1 = [sin(θ1), cos(θ1)] ∈ R
2 (see also [56]).

At the free surface, we use the isotropic surface energy from [48] (retaining only the first
constant term),

Fs(Q, ν) = g0, (2.14)

with ν(x1, t) denoting the unit normal to the free surface η(x1, t) and g0 surface tension, which
leads to the surface stress (with Is ≡ I − ν ⊗ ν)

Ts = FsIs (2.15)

that appears in the right-hand side of stress condition at the interface x3 = η(x1, t)

νiTij = (δik − νiνk)∂kTs
ij. (2.16)

In addition, we have the kinematic condition

ηt = v3 − v1η,1 (2.17)

at x3 = η(x1, t) and we impose the conical anchoring condition on Q, see also [47,57,58],

Q = q2(R(θ2)ν ⊗ R(θ2)ν − 1
2 I), (2.18)

with a given constant q2 ∈ R and θ2 ∈ [0, π ), where

R(θ ) =
[

cos θ sin θ

− sin θ cos θ

]

is the rotation by angle θ2. We note, however, that in the thin-film limit derived below in §3, the
normal to the free boundary is, to leading order, equal to the canonical unit vector e3, hence this
boundary condition reduces to a strong anchoring condition with a fixed angle θ2 with respect to
the x3-coordinate direction.

(b) Reduction to an active Ericksen model
In this and next sections subscript ,i means differentiation with respect to xi. The reduction of the
model (2.4)–(2.6) proceeds as follows: by definition the two eigenvalues of Q are ±q/2 for some
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scalar order parameter q ∈ R. Moreover, one can show that for each Q ∈L0 there exists a unit
vector n ∈ S1 (called director) such that representation

Q = q
[

n ⊗ n − I
2

]
, (2.19)

holds. From this, it also follows that each two-dimensional Q-tensor on a plane is completely
characterized by two degrees of freedom: the order parameter q and the director n. The
representation (2.19) does not distinguish between +n and −n. For definiteness, we fix the sign
at the free interface, and hence by continuity everywhere in the film, by requiring that n points
out of the liquid and the director field is continuous everywhere in the film bulk. In §§4 and 5,
we will describe situations when the reduction presented in this section can be extended without
changes to the case of singular director fields n having defects.

We note also that under representation (2.19) the bulk energy (2.2) reduces to

fb(Q) = fb(q) = − a2q2

4
+ c2q4

16
, (2.20)

which attains its global minima at qmin = ±√
2a/c.

Substituting (2.19) into (2.9) (and taking into account that λ = 0) one obtains

Hij =
(

a2q − c2q3

2

)[
ninj − δij

2

]
+ L1q,kk

[
ninj − δij

2

]

+ 2L1q,kni,knj + 2L1q,kninj,k + L1q[2ni,knj,k + ni,kknj + ninj,kk].

On the other hand, expressing of H from (2.6) gives

Γ Hij = q(njNi + niNj) + (qt + vkq,k)
[

ninj − δij

2

]
− S(∇v, Q) − λ1�χq

(
ninj − δij

2

)
, (2.21)

where we denote the rate of change of the director with respect to the background fluid

Ni = ṅi − ωijnj, ṅi = ∂tni + vj∂jni, (2.22)

and ṅi denotes the material derivative.
Calculating the variational quantity Γ (Hijnj + niHij) for both of the last two representations for

H and subsequently equating them one obtains the following equation:

L1Γ [2qni,kk−2q|ni,k|2ni + q,kkni + 4q,kni,k] + Γ

(
a2q − c2q3

2

)
ni

= 2qNi + (qt + vkq,k)ni − 2
3

(q + 2)ξejinj − λ1�χqni. (2.23)

Multiplying the last equation by ni, summing over i = 1, 3 and using relations Nini = n2
i − 1 = 0

one obtains an Allen–Cahn-type equation for the scalar order parameter

qt + vkq,k − 2
3

(q + 2)ξejinjni = L1Γ q,kk − 4qL1Γ |nj,k|2 + Γ

(
a2q − c2q3

2

)
+λ1�χq. (2.24)

Using (2.24), one can simplify (2.23) to a parabolic equation for the director field n(x):

L1Γ [2qni,kk + 4q,kni,k] = 2qNi − 2qL1Γ |nj,k|2ni − 2
3 (q + 2)ξ [ejinj − elknlnkni]. (2.25)

The expressions (2.11) and (2.10) for the antisymmetric and symmetric stresses become

Γ τij = q2(niNj − Ninj) − ξq(q + 2)
3

(ninkekj − eiknknj)
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Γ σij = −qξ
3

(q + 2)(njNi + niNj) + qξ2

3
(4 − q)(eiknknj + ninkekj)

+ 2ξ2

3
(q − 1)2eij − 8q2ξ2

3

(
3
4

+ q − q2
)

ξninjeiknlnk

+ ξq
2

ninj(qt + vkq,k) − Γ L1

(
3
4

q,iq,j + 2q2nk,ink,j

)

+ ξλ1�χ (1 − q2)q
(

ninj − δij

2

)
,

where the last term appears upon inserting expression (2.21) for Hij into (2.10). Finally, we also
have the explicit appearance of the active stress in (2.12), −ζ�χQij = −ζ�χq(ninj − δij/2), so that
the total stress tensor (2.12) becomes

Tij = −pδij + TE
ij + T̃ij, (2.26)

TE
ij = −L1

(
3
4

q,iq,j + 2q2nk,ink,j

)
(2.27)

T̃ij = α1nknpekpninj + α2Ninj + α3Njni + α4eij + α5eiknknj + α6ejknkni

+ ξq
2Γ

ninj(qt + vkq,k) +
[

ξλ1(1 − q2)
Γ

− ζ

]
�χq

(
ninj − δij

2

)
. (2.28)

The Leslie constants αi and the parameters of Beris–Edwards model are related by (see (2.10)–
(2.15) in [43])

α1(q) = −2
3

q2(3 + 4q − 4q2)ξ2

Γ
, α2(q) = {−(1/3)q(2 + q)ξ − q2}

Γ
,

α3(q) = {−(1/3)q(2 + q)ξ + q2}
Γ

, α4(q) = 4
9

(1 − q)2ξ2

Γ
+ 2μ,

α5(q) = {(1/3)q(4 − q)ξ2 + (1/3)q(2 + q)ξ}
Γ

, α6(q) = {(1/3)q(4 − q)ξ2 − (1/3)q(2 + q)ξ}
Γ

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.29)

We conclude that under representation (2.19) the model (2.4)–(2.6) turns into four equations

0 = ∂ivi, (2.30a)

0 = −∂ip − L1∂j

(
3
4

q,iq,j + 2q2nk,ink,j

)
+ ∂jT̃ij, (2.30b)

L1Γ [2qni,kk + 4q,kni,k] = 2qNi−2qL1Γ |nj,k|2ni − 2
3

(q + 2)ξ [ejinj − elknlnkni] (2.30c)

and qt + vkq,k = 2
3

(q + 2)ξejinjni + L1Γ q,kk−4qL1Γ |nj,k|2

+ Γ

(
a2q − c2q3

2

)
+ λ1�χq, (2.30d)

where T̃ij is given by (2.28). As a consistency check, we note that from multiplying (2.30c) by ni
and summing over i = 1, 3, one obtains that d(n2

i )/dt = 0 holds for all x and t.
Using (2.19) in (2.13a), the conditions at the substrate x3 = 0 become

v1 = 0, v3 = 0, n3 = cos θ1, q = q1. (2.31)

At the free interface x3 = η(x1, t), we obtain from (2.16)–(2.18) that

νiTijνj = −g0∂iνi, νiTijtj = 0, ηt = v3 − v1∂1η, n = R(θ2)ν, q = q2. (2.32)
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3. Derivation of the thin-filmmodels

(a) Thin-filmmodel for the active Erickson theory
We now non-dimensionalize this model using length scales L for x1 and εL for x3, where L denotes
the characteristic lateral extent of the cell and εL denote its height. Hence, ε is the ratio between
the two length scales and in a thin-film setting assumed to be small. We denote

x3 = εLx̄3, x1 = Lx̄1, η = εLη̄,

v1 = Uv̄1, v3 = εUv̄3, t =
(

L
U

)
t̄,

and p = p0 + Pp̄, h = E h̄,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

where E and P are defined as

E = L1

ε2L2 and P = μU
ε2L

. (3.2)

The order parameter q and the director field n are dimensionless and do not need to be scaled.
In the normal stress condition at the free surface, balancing the pressure with surface tension
requires P = ε g0/L. Together with the choice for P in (3.2) this means

ε3 = μU
g0

. (3.3)

Further scalings are

Ni = U
εL

N̄i, e11 = U
L

ē11, e13 = U
εL

ē13, e31 = U
εL

ē31, e33 = U
L

ē33,

ω13 = U
εL

ω̄13, ω31 = U
εL

ω̄31, αi = μᾱi Γ = Γ̄

μ
, a2 = E ā2, c2 = E c̄2,

T̃ij = μU
εL

¯̃Tij, [TE
11, TE

13, TE
31, TE

33] = μU
εL

[ε2TE
11, εTE

13, εTE
31, TE

33]

and L̄1 = L1

εμUL
, ζ̄�χ̄ = Γ L

U
ζ�χ , λ̄1�χ̄ = L

U
λ1�χ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Retaining only the leading-order terms in ε in the rescaled system (2.20), given in appendix A,
and assuming the weak elasticity limit, by which we mean that as we introduce the thin-film
approximation ε → 0, we assume L̄1 = O(1) and �χ̄ = O(ε−1), the leading-order system in the
bulk becomes (with (i, j) = (1, 3) and (i, j) = (3, 1) used below)

0 = v1,1 + v3,3, (3.5a)

0 = −p,1 + 1
2

(v1,3fA(n1, n3)),3

+ ε

Γ
�χ [(ξλ1(1 − q2) − ζ )qn1n3],3, (3.5b)

0 = −p,3, (3.5c)

qni,33 + 2q,3ni,3 = −q
v1,3nj

2L1Γ
− q(|n1,3|2 + |n3,3|2)ni

− v1,3

3L1Γ
(q + 2)ξ

[ni

2
− n2

i nj

]
(3.5d)

and − 2
3

(q + 2)ξv1,3n1n3 = −4qL1Γ (|n1,3|2 + |n3,3|2) + L1Γ q,33

+ Γ

(
a2q − c2q3

2

)
+ελ1�χq, (3.5e)
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where here and below for convenience we have skipped the overbars everywhere and in the
horizontal momentum equation we introduced the notation

fA(n1, n3) ≡ 2α1(n1n3)2 + (α5 − α2)n2
3 + (α3 + α6)n2

1 + α4. (3.6)

The leading-order system for the boundary conditions at z = 0 is given by

v1 = 0, v3 = 0, n3 = cos θ1, q = q1, (3.7)

and at the free surface, x3 = η(x1, t) by

ηt = v3 − v1∂1η,

−p = η,11,
1
2
v1,3fB(n1, n3) = − ε

Γ
�χ (ξλ1(1 − q2) − ζ )qn3n1

and n3 = cos θ2, q = q2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.8)

with a given function q2(x, t), and where we define

fB(n1, n3) ≡ 2α1(n1n3)2 + (α6 − α3)n2
3 + (α2 + α5)n2

1 + α4. (3.9)

Next, similar to [17] we rewrite equations ((3.5a)–e) in the bulk in terms of the director angle θ

using the representation n1 = sin θ , n3 = cos θ . For that, we multiply (3.5d) for (i, j) = (1, 3) by −n3
and for (i, j) = (3, 1) by n1 and then sum the resulting equations up. With the definitions

γ1 = α3 − α2, γ2 = α2 + α3 = α6 − α5 (3.10)

and (2.29) we thus obtain for ((3.5a)–e)

0 = v1,1 + v3,3, (3.11)

0 = −p,1 + 1
2

(v1,3fA(q, θ )),3

+ ε

2Γ
�χ [(ξλ1(1 − q2) − ζ )q sin(2θ )],3, (3.12)

0 = −p,3, (3.13)

(q2θ,3),3 = −v1,3

4L1
[γ1 − γ2 cos(2θ )] (3.14)

and − 1
3

(q + 2)ξv1,3 sin(2θ ) = −4qL1Γ |θ,3|2 + L1Γ q,33 + Γ

(
a2q − c2q3

2

)
+ελ1�χq, (3.15)

where we have defined

fA(q, θ ) =
(α1

2

)
sin2(2θ ) + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + α4. (3.16)

The leading-order system for the boundary conditions at z = 0 is given by

v1 = 0, v3 = 0, θ = θ1, q = q1, (3.17)

and at the free surface, x3 = η(x1, t) by

−p = η,11,
1
2
v1,3fB(q, θ ) = − ε

2Γ
�χ (ξλ1(1 − q2) − ζ )q sin(2θ )

and ηt = v3 − v1∂1η, θ = θ2, q = q2,

⎫⎪⎬
⎪⎭ (3.18)

where we define

fB(q, θ ) =
(α1

2

)
sin2(2θ ) + (α6 − α3) cos2 θ + (α2 + α5) sin2 θ + α4. (3.19)
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We now integrate these equations. From (3.12) and (3.13), and the stress boundary conditions in
(3.18), we get p = −η,11 and

fA(q, θ )v1,3 = 2η,111(η − x3) − ε

Γ
�χ (ξλ1(1 − q2) − ζ )q sin(2θ )

+ ε

Γ
�χ

γ1 − γ2 cos(2θ2)
fB(q2, θ2)

(ξλ1(1 − q2
2) − ζ )q2 sin(2θ2), (3.20)

provided fB(q2, θ2) �= 0. Together with the integrated mass conservation equation (which we note
is exact, i.e. valid also for the full governing equations) that we obtain by combining (3.11) and
the kinematic equation in (3.18) we arrive at the lubrication system

ηt(x1, t) = −∂1

∫ η

0
v1(x1, x3, t) dx3, (3.21a)

v1,3 = 2η,111

fA(q, θ )
(η − x3) − ε�χ

Γ fA(q, θ )

[
(ξλ1(1 − q2) − ζ )q sin(2θ )

−γ1 − γ2 cos(2θ2)
fB(q2, θ2)

(ξλ1(1 − q2
2) − ζ )q2 sin(2θ2)

]
, (3.21b)

(q2θ,3),3 = − 1
4L1

(γ1 − γ2 cos(2θ ))v1,3 (3.21c)

and q,33 = 4q(θ,3)2 − ξ (q + 2)
3L1Γ

sin(2θ )v1,3 − q
L1

(
a2 − c2q2

2

)
− ελ1�χ

L1Γ
q. (3.21d)

Note that if fA(q, θ ) �= 0 for all x1, x3 and t, we can substitute (3.21b) into (3.21c) and (3.21d) to
eliminate v1,3, thus decoupling the system for θ and q from the velocity field. We have not done
this here for clarity. The system is complemented by the following boundary conditions:

v1 = 0, θ = θ1, q = q1, at x3 = 0

and θ = θ2, q = q2, at x3 = η.

}
(3.21e)

(b) Thin-filmmodel for the active Leslie–Erickson–Parodi theory
If we use the Leslie–Erickson–Parodi theory with corresponding active terms as a model for the
active liquid crystal [7,8,12,13] and non-dimensionalize as before we derive in appendix B the
following coupled system for the leading-order thin-film approximation

∂tη = −∂1

∫ η

0
v1 dx3, (3.22a)

0 = η,111(x3 − η) + 1
2
v1,3fA(θ ) + ζ ∗�χ∗

2
fA(θ2)
fB(θ2)

sin(2θ2)

+ ζ ∗�χ∗

2
(sin(2θ ) − sin(2θ2)) (3.22b)

and 2Kθ,33 = −(γ1 − γ2 cos(2θ ))v1,3, (3.22c)

with the boundary conditions

v1 = 0, θ = θ1 at x3 = 0

and θ = θ2 at x3 = η(x1, t).

}
(3.23)

Formal comparison of (3.22) with equations ((3.21a)–c) considered with q = q1 = q2 = const.
provides the following relations between the active and elastic parameters in the Eriksen–Leslie–
Parodi and Ericksen thin-film models:

λ∗
1 = λ1, ζ ∗ = (ζ − ξλ1(1 − q2))q, K = 2L1q2, �χ∗ = ε

Γ
�χ . (3.24)
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Though λ∗
1 does not appear in the reduced thin-film model (3.22), it is important to highlight

its relation to λ1, because the latter does appear in the q-equation (3.21d) of the extended model
(3.21). At the same time, in the absence of the active terms �χ∗ = 0 our model (3.22) can be shown
to coincide with the (passive) thin-film model derived in [17] for the weak elasticity regime, cf.
system (A17)–(A20) therein. Note that the special anchoring boundary conditions θ1 = π/2 and
θ2 = 0 were considered in Lin et al. [17].

4. Impact of activity terms
At this point, further reductions of the thin-film models (3.21) or (3.22) are not, in general, possible
without additional assumptions, since the remaining equations cannot be easily integrated with
respect to x3. We will instead look at two special cases of the more general Q-tensor system (3.21):
one, where the interface is flat (η = 1) and the other where the misalignment of the director at the
substrate and the interface is small, |θ2 − θ1| 
 1.

(a) Flat film
We first consider the passive case, where also η = const. is any positive constant. This yields v1 = 0
and

q2θ,3 = c1, q,33 = 4q(θ,3)2 − 1
L1

(
a2q − c2q3

2

)
. (4.1)

Under the additional assumption that q1 = q2 ≡ q0 and that q remains constant, we obtain the
solution

θ = (θ2 − θ1)
x3

η
+ θ1, q = q0 =

[
2a2

c2 − 8L1

c2 (θ2 − θ1)2

]1/2

. (4.2)

We note that a similar solution for the director angle θ and for q has been found for the case of
channel flow in [40].

Alternatively, one can also combine the equations in (4.1) to obtain one ODE for q, which, after
multiplying with q,3 and integrating once reads

1
2

q2
,3 = −2c2

1
q2 − 1

L1

(
a2

2
q2 − c2q4

8

)
+ c2, (4.3)

where we have assumed that q �= const. and c2 is an integration constant. The last ODE is separable
and can be integrated as

x3 =
∫ q

q1

ds√
−4c2

1/s2 − (1/L1)(a2s2 − c2s4/4) + 2c2

, (4.4)

where we have assumed that q2 > q1. Correspondingly, using the first equation in (4.1) one gets

θ (x3) − θ1 = c1

∫ q

q1

ds

s2
√

−4c2
1/s2 − (1/L1)(a2s2 − c2s4/4) + 2c2

. (4.5)

The constants c1 and c2 are determined by the boundary condition for θ at x3 = η = const.:

θ2 − θ1 =
∫ q2

q1

(c1/s2) ds√
−4c2

1/s2 − (1/L1)(a2s2 − c2s4/4) + 2c2

and η =
∫ q2

q1

ds√
−4c2

1/s2 − (1/L1)(a2s2 − c2s4/4) + 2c2

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.6)

Two nonlinear compatibility conditions (4.6) may have multiple solutions or do not have ones at
all depending on the given set of four parameters q1, q2, θ1 − θ2 and η. In the latter case, there exists
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only one trivial solution (4.2) to system (4.1). We aim to investigate existence and multiplicity
parameter regions for solutions to (4.6) in a subsequent study.

For an active flat film the compatibility condition of η(x1, x3, t) = η = const. with (3.21a) implies
that v1, q, θ are functions of x3 only. By that, system ((3.21b)–d) reduces to

v1,3 = − ε�χ

Γ fA(q, θ )

[
(ξλ1(1 − q2) − ζ )q sin(2θ )

−γ1 − γ2 cos(2θ2)
fB(q2, θ2)

(ξλ1(1 − q2
2) − ζ )q2 sin(2θ2)

]
(4.7a)

(q2θ,3),3 = − 1
4L1

(γ1 − γ2 cos(2θ ))v1,3 (4.7b)

and q,33 = 4q(θ,3)2 − ξ (q + 2)
3L1Γ

sin(2θ )v1,3 − q
L1

(
a2 − c2q2

2

)
− ελ1�χ

L1Γ
q, (4.7c)

which further reduce to two coupled ODEs for θ (x3) and q(x3) by eliminating v1,3. The latter ODEs
can be effectively integrated numerically.

Note, that in the absence of the active terms (λ1 = 0 or ζ = 0) the non-trivial solution to
the system (4.7) is given by (4.4) and (4.5) combined with v1 = 0 and it exists only when the
compatibility conditions (4.6) for the boundary data (3.21e) are satisfied. Given q2 > q1, such
that the square root in the denominator of (4.4) is real for all q ∈ (q1, q2), by taking η and θ2 − θ1
sufficiently large, one can realize this passive solution. Moreover, also for small active terms with
�χ 
 1 this non-homogeneous solution to the system (4.7) continuously persists and by (4.7a)
exhibits the non-homogeneous flow v1(x3) with |v1| 
 1. This effect of inducing a non-zero flow
in a channel geometry, when the thickness of the latter η becomes sufficiently large, has been
observed in [9,12] for the polar LEP-based models.

Finally, note that when active terms are present in (4.7) there is no analogous solution to (4.2),
i.e. having constant q(x3) = q0. In this case, three equations ((4.7a)–b) are not compatible, unless
the trivial isotropic case q0 = 0 holds. By contrast, the passive solution (4.2) to LEP model (3.22)
having initially the linear director profile can be continued also in the presence active terms. These
solutions can be found numerically or analytically as ones to the corresponding active stationary
system:

0 = 1
2
v1,3fA(θ ) + ζ ∗�χ∗

2
fA(θ2)
fB(θ2)

sin(2θ2) + ζ ∗�χ∗

2
(sin(2θ ) − sin(2θ2)) (4.8a)

and 2Kθ,33 = −(γ1 − γ2 cos(2θ ))v1,3, (4.8b)

considered with boundary conditions (3.23).

(b) Film with small angle change in the director boundary condition
Another special case, where it is possible to discuss analytical solutions is obtained if the
difference in the director angle is small.

We first consider the passive case. Assuming |θ2 − θ1| 
 1, then to leading order θ = θ2 = θ1 is
constant and (3.21c) implies v1,3 = v1 = 0 and η = const. As a result, the whole dynamics reduces
to (3.21d), which can be further reduced to (4.3) with c1 = 0. Then the corresponding solution is
given by

x3 = −
∫ q(x3)

q1

ds√
−(1/L1)(a2s2 − c2s4/4) + 2c2

for x3 ∈ (0, η). (4.9)

The compatibility conditions (4.6) reduce to

η = −
∫ q2

q1

ds√
−(1/L1)(a2s2 − c2s4/4) + 2c2

. (4.10)
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Figure 2. Director angle profile (a) and q-profile (b) for the solution (4.9), (4.11) with θ1 = −π/6, θ2 = π/6, a= 1, c = 1,
η = 1, L1 = 0.04 and c2 = 12.507 calculated numerically. (c) leading-order velocity profile (4.12) (normalized by ε�χ 
 1)
corresponding to the continued solution (4.9), (4.11) in the active case with ζ = Γ = μ = 1 and ξ = 0.

As an important illustration of the difference between Ericksen (3.21) and LEP (3.22) models, we
point out that the new solution (4.9) can be used as a building block for construction of admissible
solutions with discontinuous director field θ (x3). Namely, let us consider the particular case q1 =
−qmin = √

2a/c < q2 = 0, in (4.9) and (4.10). Then it is easy to show existence of a unique c2(η)
satisfying (4.6). We can extend (4.9) by a reflection around x3 = 0 as

θ (x3) = −θ1, x3 = −
∫ q(x3)

0

ds√
−(1/L1)(a2s2 − c2s4/4) + 2c2

for x3 ∈ (−η, 0), (4.11)

now with q1 = qmin = √
2a/c > q2 = 0. The resulting combined solution (4.9), (4.11) (figure 2a,b)

is a suitably defined weak solution to stationary system (4.1) considered in the interval (−η, η).
Accordingly, the defect line x3 = 0 is isotropic with q(0) = 0 and across it the director jumps by
value 2θ1. Additionally, we note that the constructed solution (4.9), (4.11) corresponds to the
limiting profile as the elastic constant tends to zero of the antisymmetric nematic field in the
channel observed numerically in [40], cf. in particular with approximate formula (29) therein.

The solution (4.9), (4.11) occurs also as a solution to the system (4.7) in the presence of small
active terms, i.e. when 0 < ε�χ 
 1. In this case, a non-zero flow is generated, such that the fluid
moves in the bottom and upper half of the channel but in opposite directions prescribed by the
director field (figure 2c). Indeed, if we consider for simplicity the case ξ = 0, then (4.7a) reduces to

v1,3 = εζ�χ

q2 + 2Γ μ
q sin(2θ ). (4.12)

Substituting (4.9) and (4.11) into the right-hand side of (4.12) and applying no-slip boundary
conditions at x = ±η one obtains (4.12) as the explicit leading order outer solution for v1(x3) for
ε�χ , which is an odd function of x3 (figure 2c). We conjecture that there exist material parameter
regimes for which (4.12) can be smoothly matched to an inner solution at x3 = 0. Together with
(4.9), (4.11), this results in a solution of the active system (4.7). Note that the jump singularity of
the θ -profile (figure 2a) is also expected to be smoothed out in the vicinity of x3 = 0.

Another way to initiate a non-trivial dynamics in the case θ = θ2 = θ1 = const. is to assume

γ1 − γ2 cos(2θ ) = 0. (4.13)

This would imply that (3.21c) is satisfied and q = q1 = q2 = const. Furthermore, (3.21b) can be
integrated and introduced into (3.21a) yields a new modified thin-film equation

ηt = − 2
3fA(q1, θ1)

∂1(η3η,111) + C(q1, θ1)∂1(η2). (4.14)

Note that in this case, besides the trivial isotropic solution q1 = 0, only special values of q1 and θ1
are allowed. These have to be compatible with both, equation (4.13) and the algebraic relation

0 =
(

a2 − c2q2

2

)
+ ελ1�χ

Γ
. (4.15)

which arises from (3.21d).
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(a) (b)

Figure 3. Examples of defects of rotational degree 1 at the contact line (a) and awall defect (b), which is described by the point
defect of degree−1 located at the intersection of the wall (depicted by dashed line) and the substrate. The director field in
the defect neighbourhood is shown by arrows. Magnitude of scalar order parameter q is represented by arrow sizes. Lubrication
model (3.21) smoothly resolves such defects through reduction to q= 0 in their vicinity. (Online version in colour.)

For given activity λ1�χ ∈ R , solutions for q1 and θ1 can be obtained from (4.13) and (4.15) as

cos(2θ ) = − 3
ξ

+ 6
(2 + q)ξ

and q2 = 2a2

c2 + 2ελ1�χ

c2Γ
. (4.16)

Finally, note that solution (4.16) to system (3.21) does not always exists. In particular, it does not
exists for ξ = 0, i.e. when liquid crystal molecules align perfectly with the hydrodynamic flow.
In the absence of active terms (λ1 = 0 or ζ = 0), one has C(q1, θ1) = 0 in (4.14), and therefore the
hydrodynamic flow decouples from the nematics via the rescaling of time by fA(q1, θ1).

5. Discussion and outlook
In this article, we presented a systematic asymptotic derivation of the thin-film model given by the
system (3.21) from the free-boundary problem for the Beris–Edwards model (2.4)–(2.6) to describe
the evolution and flow structure of an active nematic liquid crystal. We also showed that the new
thin-film model formally reduces to the polar one (3.22) based on LEP theory, when the scalar
order parameter q is homogeneous, which in the passive case coincides with the model derived
previously in [17]. In the active case, the steady-state solution to (3.21) considered in §4a exhibits
non-zero flow that can be spontaneously initiated from the homogeneous one by increasing the
film thickness, as previously observed in [9,12].

Additionally, we were able to construct a passive steady state with discontinuous director
field in §4 and figure 2. In the Ericksen theory, the defects are defined as singular points where the
scalar order parameter q = 0 [23]. We note, that besides the singularities of the director field the
solutions to (3.21) may exhibit singular lines along which q = 0 but n is still continuous. These lines
have special physical meaning, because the Q-tensor in (2.19) is zero and, therefore, the nematic
field is isotropic along them. A typical example of such a line is given by the middle line of the
channel at the right embedded Q-tensor plot in fig. 2 of [40]. Our discontinuous solution can be
considered as the limiting profile for that one of [40] as the elastic constant tends to zero.

In summary, both passive and active solutions derived in §4 for nematic (3.21) and polar
(3.22) thin-film models can potentially find important applications to design and development
of microfluidic devices (cf. review [59]).

We now point to some further applications as well as extensions of our results. The derivation
of the coupled model (3.21) starting from the Ericksen-type model (2.20) considered with
boundary conditions (2.31) and (2.32) has been conveyed under the assumption of continuity of
the director field n in the film bulk and at the free surface. We note that these models are capable
to describe solutions having point defects of integer rotational degree k with k ∈ Z. Two typical
examples of defects with degree −1 in the film bulk and of degree 1 at the film contact line are
presented in figure 3. One observes that when approaching the defect points the magnitude of
the scalar order parameter q goes to zero and by that preserves the continuity of the full Q-tensor
field (2.19). We should also point out that, being derived in the weak elasticity regime (cf. scaling
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for L1 in (3.4)) and under the large pressure scaling P in (3.2), the model (3.21a), (3.21) allows for
O(1) variation of the director field n along the vertical x3-direction of the film. This is the case, for
example, in the wall defect of degree −1 in a confined flat film presented in figure 3b, where the
director angle θ changes from 0 to π/2 along the vertical film direction. Such wall defects were
observed before in experiments on thin passive nematic films [60].

However, the Ericksen model may not always resolve defects of rational degree k + 1/2, k ∈
Z , because the latter exhibit special disclination curves along which n changes to −n [49,61,62].
Nevertheless, such defects can be described by the lubrication model (3.21) if the special condition

lim
(x1,x3)→(x∗

1,x∗
3)

|
√

q(x1, x3)∇n(x1, x3)| < ∞, (5.1)

is fulfilled, where (x∗
1, x∗

3) is an instant defect location. It is easy to check that (5.1) ensures then that
the associated local Ericksen elastic energy [38] and the corresponding terms involving director
gradients in (3.21c, d) are kept finite.

Even a spreading of droplet of a passive liquid crystal can exhibit defects that cannot be
resolved by a thin-film theory based on Leslie–Ericksen theory [18], and a tensorial theory is
required. This is a fortiori true for droplets of active matter [63]. Singularities occur generically
at the contact-line, where the anchoring conditions usually clash, or we may have defects in
the bulk of the droplet, for example, horizontally aligned vortices, asters or half-defects, which
may be tested against experiments with suspensions of active particles (see [63] and references
therein). Note that these defects also play an important role in the in vitro experiments with actin
filaments mentioned earlier [10,11]. The thin-film model developed here based on the Ericksen
theory with an additional order parameter for the degree or anisotropy represents the basis to
reliably capture these situations and the defects. It will need to be extended to three dimensions,
so that horizontally aligned defects can be treated. Other parameter regimes, such as the case of
moderate elasticity, where the director field decouples from the flow [17] will be of interest.

Finally, we note that by imposing the constant scalar order parameter q = q2 in (2.18) we
neglected possible Marangoni effects at the free surface in the second condition in (2.32). This
was motivated by the fact that under the balance (3.3) that keeps the surface tension term at
leading order in the normal stress condition (that is, the first equation in (2.32)), the equation
for the Marangoni force (e.g. formula (8) in [48]) necessarily implies that q should be constant at
the film free surface. Nevertheless, by relaxing condition (3.3) and neglecting surface tension one
would be able to derive a model analogous to (3.21) for pure Marangoni driven active nematic
thin films.
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Appendix A. Scaled equations for the active Ericksen system
In this section, we use the convention that (i, j) = (1, 3) or (i, j) = 3, 1 and do not use the Einstein’s
summation convention. Moreover, εi = ε and 1 if i = 1 and i = 3, respectively. After application
of the scalings (3.1)–(3.4) and dropping the overbars, the bulk equations (2.20) for the Ericksen
system take the form

0 = v1,1 + v3,3,

0 = −p,i − ε3TE
i1,1 − εTE

i3,3 + εT̃i1,1 + T̃i3,3,
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L1Γ (2ε2qni,11 + 2qni,33 + 4ε2q,1ni,1 + 4q,3ni,3)

= 2qNi − 2qL1Γ (ε2|n1,1|2 + |n1,3|2 + ε2|n3,1|2 + |n3,3|2)ni

− 2
3

(q + 2)ξ (εie1in1 + εje3in3 − (εe11n1n1 + e13n1n3 + e31n3n1 + εe33n3n3)ni),

ε(qt + vkq,k) − 2
3

(q + 2)ξ (εe11n1n1 + e13n1n3 + e31n3n1 + εe33n3n3)

= −4qL1Γ (ε2|n1,1|2 + |n1,3|2 + ε2|n3,1|2 + |n3,3|2)

+ L1Γ (ε2q,11 + q,33) + L1Γ

(
a2q − c2q3

2

)
+ ελ1�χq,

where

TE
ii = L1

[
3
4
|q,i|2 + 2q2(|n1,i|2 + |n3,i|2)

]
, TE

ij = L1

[
3
4

q,1q,3 + 2q2(n1,1n1,3 + n3,1n3,3)
]

,

T̃ii = α1(εn1n1e11 + n1n3e13 + n3n1e31 + εn3n3e33)nini + α2Nini + α3Nini + α4εeii

+ α5(εiei1n1ni + εjei3n3ni) + α6(εiei1n1ni + εjei3n3ni)

+ ε

Γ

ξq
2

nini(qt + v1q,1 + v3q,3) + ε

Γ
[ξλi(1 − q2) − ζ ]�χq

(
nini − 1

2

)
,

T̃ij = α1(εn1n1e11 + n1n3e13 + n3n1e31 + εn3n3e33)n1n3 + α2Ninj + α3Njni + α4eij

+ α5(εiei1n1nj + εjei3n3nj) + α6(εjej1n1ni + εiej3n3ni)

+ ε

Γ

ξq
2

n1n3(qt + v1q,1 + v3q,3) + ε

Γ
[ξλ1(1 − q2) − ζ ]�χqn1n3,

eii = ∂ivi, eij = 1
2

(∂3v1 + ε2∂1v3), ωii = 0, ω13 = 1
2

(∂3v1 − ε2∂1v3) = −ω31,

Ni = ε∂tni + εvi∂1ni + εv3∂3ni − ε2
j

1
2
∂jvinj + ε2

i
1
2
∂ivjnj.

At the substrate x3 = 0, the non-dimensional boundary conditions are

v1 = 0, v3 = 0, n3 = cos θ1, q = q1,

and at the free surface, x3 = η(x1, t), they are

ηt = v3 − v1∂1η,

− p + ε

(1 + ε2η2
1,1)

[(ε2TE
11 + T̃11)η2

1,1 − (εTE
13 + T̃13)η1,1 − (εTE

31 + T̃31)η1,1

+ (TE
33 + T̃33)] = η,11

(1 + ε2η2
1,1)3/2

,

− εη1,1(ε2TE
11 + T̃11) − ε2η2

1,1(εTE
13 + T̃13) + (εTE

31 + T̃31) + εη1,1(TE
33 + T̃33) = 0,

−εη1,1n1 + n3

(1 + ε2η2
1,1)1/2

= cos θ2, q = q2.

Appendix B. Derivation of the active thin-film Eriksen–Leslie–Parodi model
In this appendix, we give a brief account of the derivation of the thin-film model for the Eriksen–
Leslie–Parodi theory augmented by activity terms. Conventions and notations carry over from
the main text. The conservation of mass, linear and angular momentum balance equations are
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given by

0 = ∂ivi, (B 1)

0 = −∂ip − ∂j(∂∂jnk W∂ink) + ∂jT̃ij (B 2)

and 0 = hi − γ1Ni − γ2eijnj + λ∗
1�χ∗ni, (B 3)

As in the nematic system (2.4)–(2.6), we introduce two active terms with parameters λ∗
1 and ζ ∗,

seen above and, for the latter, in the definition of the extra stress tensor T̃ further below. The bulk
free energy density W is given by

2W = K1(∇ · n)2 + K2(n · curl n)2 + K3(n × curl n)2 + (K2 + K4)(tr(∇n)2 − (∇ · n)2).

The parameters K1, K2 and K3 are the splay, twist and bend elastic moduli [64], and K2 + K4
is the saddle-splay constant. Note that in the case of strong anchoring, the final term does not
contribute to the governing equations [17], and that in two dimensions, there is also no twist term.
Again, we will assume that all the K1 = K2 = K3 ≡ K and K4 = 0. This assumption is discussed for
liquid crystals in section 3.1.3.2 of [64]), and we use it here for simplification. Note that under this
assumption the elastic energy is reduced to the Dirichlet energy 2W = K|∂kni|2 (see also eqn (4) in
[17]). The rate of change of the director with respect to the background fluid Ni is defined as in
(2.22). The molecular field is given by

hi = γ ni − δW
δni

, (B 4)

where γ appears as a Lagrange multiplier in the variational formulation to satisfy the condition
nini = 1 and may in general depend on xi and t. The total stress tensor, the Eriksen–Leslie tensor
and the extra stress are given by, respectively,

Tij = −pδij + TE
ij + T̃ij, TE

ij = −∂∂ink W∂jnk,

T̃ij = α1nknpekpninj + α2Ninj + α3Njni + α4eij + α5eiknknj

+ α6ejknkni + ζ ∗�χ∗ninj.

We remark that in some of the literature (e.g. [34]) Tij includes an additional term −Wδij, which,
however, amounts to a redefinition of the pressure [17]. The strong anchoring conditions at the
substrate x3 = 0 and the free interface x3 = η(x,t) read

n = sin θ1e1 + cos θ1e3 and n = cos θ2ν + sin θ2t,

respectively, where e1 and e3 are the canonical unit vectors. For the boundary conditions of the
flow field, we impose no-slip and impermeability at the substrate (first line), and the kinematic
and stress boundary conditions at the interface (second line),

v1 = 0, v3 = 0,

∂tη = v3 − v1∂1η, νiTij = −g0∂iνiνj.

To derive the thin-film approximation, we use the same ansatz for the scalings as before in (3.1),
and in addition let W = EW̄, where E = K/(ε2L2). We also introduce the dimensionless parameters

ᾱi = αi

μ
, γ̄i = γi

μ
, �χ̄∗ = εL

μU
�χ∗, ζ̄ ∗ = ζ ∗

μ
, λ̄∗

1 = λ∗
1,

where μ is the kinematic viscosity. The non-dimensional bulk free energy and the components of
the molecular field (i = 1, 3) become

2W̄ = (∂3n3)2 + (∂3n1)2 + O(ε2), h̄i = ni + ∂2
3 ni + O(ε2).

For (B 3), we obtain to leading order

K
εμUL

h̄1 − ᾱ2n3∂3v̄1 + λ̄∗
1�χ̄∗n1 = 0,

K
εμUL

h̄3 − ᾱ3n1∂3v̄1 + λ̄∗
1�χ̄∗n3 = 0.



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A474:20170828

...........................................................

If K/εμUL � 1, the flow field decouples from the director field in these equations, we therefore
require weak elasticity K/εμUL = O(1) and keep all terms in the preceding pair of equations.

The scale P for the pressure is obtained, as before, by balancing it with the dominant viscous
contributions in the horizontal momentum equation (B 2) (that is, for i = 1). We drop the overbars
from this point onwards and introduce θ as before. The leading-order bulk equations then are

0 = v1,1 + v3,3,

0 = −p,1 + 1
2 (v1,3fA(θ )),3 + ζ ∗�χ∗(sin(2θ )),3, 0 = −p,3,

0 = γ sin θ + K(sin θ ),33 + 1
2 (γ1 − γ2)v1,3 cos θ + λ∗

1�χ∗ sin θ ,

0 = γ cos θ + K(cos θ ),33 − 1
2 (γ1 + γ2)v1,3 sin θ + λ∗

1�χ∗ cos θ ,

with the Lagrange parameter γ and

fA(θ ) =
(α1

2

)
sin2(2θ ) + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + α4.

Note that in the equations above all terms in ∂j(∂∂jnk W∂1nk) are of order ε or smaller and hence do
not contribute. At x3 = 0 (first line) and at x3 = η(x1, t) (second line) we have, to leading order,

v1 = 0, v3 = 0, θ = θ1,

−p = η,11, v1,3fB(θ2) = −ζ ∗�χ∗ sin(2θ2), ηt = v3 − v1∂1η, θ = θ2,

with
fB(θ ) =

(α1

2

)
sin2(2θ ) + (α6 − α3) cos2 θ + (α2 + α5) sin2 θ + α4.

Similarly as it was done in [17] for its passive counterpart, this system can integrated to yield
the active thin-film model (3.22) based on the Leslie–Erickson–Parodi theory. We note that the
director equation (3.22c) automatically implies relation |n| = sin2 θ + cos2 θ = 1 and, therefore,
Lagrange multiplier γ does not appear in the reduced model (3.22). Also the activity parameter
λ∗

1 does not enter model (3.22), which is consistent with the absence of the activity parameter in
θ -equation (3.21c) of the extended model (3.21), see also relations (3.24).
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