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Modeling Gel Fiber Formation
in an Emerging Coaxial Flow
From a Nozzle
It is important to understand the operational aspects which affect the continuous fabrica-
tion of alginate gel fibers. These can be formed from a cross-linking reaction of an algi-
nate precursor injected into a coaxial annular pipe flow with a calcium chloride solution.
This is an example of an emerging solid interface that interacts with the flow in its neigh-
borhood. We advance on earlier works by relaxing assumptions of a fixed spatial domain
to explore and observe mechanisms controlling gel radius. We use two different models.
The first one represents the gel layer as a capillary interface between two immiscible
liquids and captures the effect of surface tension. A second model is introduced to treat
the cross-linking chemical reaction and its effect on the viscosity as the alginate gel
forms. Through numerical simulations and analytical approximations of the downstream
behavior, we determine the shape of the fiber in the pipe flow and its impact on the flow
velocity as well as on the total production of gel. [DOI: 10.1115/1.4040833]

1 Introduction

The formation of solid like polymeric gel in a flowing liquid is
an interesting physical phenomenon. A chemical reaction taking
place at the interface between the two flowing liquids produces a
solid like gel. The application of such polymeric gel has large
scope in biomedics, oil and gas extraction, water treatment, sen-
sors, and other chemomechanical systems. However, continuous
production of the gel formation is different to melt-spinning [1,2]
because of the emerging interface, but has peripheral analogies
with chemical gardens where solid is formed from liquids [3]. In
forming these gel fibers, two key questions are: what influences
the radius of the fibers and the amount of gel formed?

A widely used cross-linked polymer gel is sodium alginate
which is derived from naturally occurring brown seaweeds. One
of the special properties of sodium alginate polymer is that when
it comes in contact with a divalent cationic solution, the divalent
metal ion replaces the sodium ions and acts as a bridge in cross
linking several alginate polymer chains together. Typically, cal-
cium chloride solution is used as the binding agent. The chemistry
of the cross-linking is described by an irreversible and nearly
instantaneous chemical reaction

2Ncalgþ NcCa2þ!
k�r

-½alg � Ca2þ � alg-�Nc

Here, alg is the single chain alginate polymer, Nc represents the
degree of cross-linking (the egg-box coefficient), and k�r is the
forward reaction rate constant. So, when the polymer comes in
contact with the calcium solution, the positively charged calcium
ions diffuse into the polymer solution and bind to the negatively
charged polymer, causing the near-instantaneous formation of cal-
cium alginate gel. This gel is solid and can support tensile
stresses. The reaction takes place as the two flowing fluids meet

with the alginate at the nozzle and the calcium solution in the
annular space, forming typically hollow fibers. Mikkelsen and
Elgsaeter [4] looked at the one-dimensional (1D) transient solu-
tion in planar, axisymmetric, and spherical geometries. They pri-
marily characterized the behavior as a function of reaction rates
and initial concentrations. Braschler et al. [5] used the Mikkelsen
and Elgsaeter model with experiments to investigate the reaction-
front structure by looking for traveling-wave solutions. Models
for the gel macroscale structure are described by Kohler and
coworkers [6–8]. More recent experimental studies including Sec-
chi et al. [9] and Wu et al. [10] reach different conclusions about
reaction front propagating in time, either linearly or classically
diffusive, i.e., �t1=2; but neither of these works combine experi-
ments and modeling as described by Braschler et al. [5].

There have been several reports on the hydrodynamic interac-
tion of two liquids, such as two immiscible fluids at a nozzle [11]
or instabilities of immiscible viscously stratified flows [12]. How-
ever, the reaction of two fluids forming an emerging solid, a
third material, is a challenging problem because the stresses in the
new phase need to be spatially resolved in a region of initially
zero dimension. In continuous flowing systems, Shin et al. [13]
observed that during cross-linked alginate formation, increasing
the annular flow reduces the radius of the gel-fiber. A first model
with experiments is described by Bonhomme et al. [14], who
solve a model for the chemical reaction with a prescribed velocity
field. They present a detailed experimental study to characterize
the fiber formation conditions and used their model to estimate
the density of the gel (cross-linked density of the fiber). In this
model, they have focused on the relative velocities of flowing salt
and alginate solution as key parameters to control the fiber forma-
tion morphology. Using an X-junction with alginate injected into
the core and salt solution in two feeder inlets, they investigate the
continuous production of fiber. More recent simulations used the
reverse configuration of alginate annular flows with the cross
linker (CaCl2) in the core [15,16]. However, in both of these
works, the chemistry was not coupled to the hydrodynamics and
they did not solve for the flow around the nozzle.

Core-annular flows away from the nozzles are well studied, but
with minimal attention to flow near nozzles with liquids having
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high viscosity contrast [12]. A recent study of core-annular fluid
flow used a finite volume scheme to study the case of large viscos-
ity contrast has been investigated [11] and examines the develop-
ment of the downstream core flow radius as a function of the
viscosity ratio, entry flow mean velocity, and Bond and capillary
number. Key observations from the model are the Newtonian core
fluid expansion near the nozzle and the plug flow at the core.
Although the model used in Ref. [11] does not capture the species
transport and interface formation, it appears to provide a close
analog to the problem we wish to solve. From a different perspec-
tive, there is an analogy with the work on chemical gardens [3],
where a dissolving metal-salt seed releases metal ions that
precipitate with anions in a solution to form a gelatinous colloidal
membrane. However, that work is predominantly related to
experiments with little attention to modeling. On the other hand,
Ref. [1] is a visco-elastic skin model of fiber spinning which does
not address the formation of the skin nor the flow near a nozzle. It
appears that the generic problem of solid fibers forming from a
liquid has not been explored extensively in the past but is impor-
tant where we need to understand what controls the formation of
the emerging interface.

Summarizing, we can say that first, previous works couple
(one-way) the fluid mechanics to the chemistry, but do not include
feedback from the chemistry to the fluid mechanics; second, solu-
tions are always presented on fixed spatial domains; third, there
appears to be very little work on how best to model emerging
interfaces. Therefore, from the perspective of an engineering
application, the key questions are what controls the mass of gel
and its radius. Hence, we find two specific scientific questions to
address: (i) How and when does the chemistry interact with the
hydrodynamics? and (ii) What is the role of stress in the cross-
linked gel?

The aim of this paper is twofold: first, to contrast an immiscible
surface-tension (two-phase) model with a miscible chemistry-
driven viscous (single-phase) model of this coupled coaxial nozzle
emerging interface flow. Second, to investigate what controls the
diameter, velocity, and mass of the gel fiber near the nozzle. We
therefore use two different models, first the immiscible model,
where the gel is represented by a fluid interface with surface ten-
sion, and second, as a substitute for gel tension the miscible
model, where the viscosity is a function of species concentration
so that the chemistry affects the hydrodynamics. This will serve
as a basis of a future model which could incorporate both the
mechanisms. For both the immiscible and miscible models, we
separately present steady-state numerical solutions across a range
of parameters that are broadly representative of the studies in
Bonhomme et al. [14]. We then compare these simulation results
with the solution for the analytical fully developed steady flow
condition.

2 Model

The present problem is addressed by three different approaches.
First, considering a two-phase immiscible model with a sharp
fluid–fluid interface (the gel), which includes the impact of the
interfacial tension (representing the gel) in the momentum
exchange equations. Second, using a single-phase miscible model,
which considers a chemical reaction at the contact of the two flu-
ids (alginate and salt solution). Here, the viscosity of the fluid is a
continuous function of the diffusing species concentration
through the three regimes (alginate, gel, and the salt solution) hav-
ing advection, diffusion, and reaction. Finally, we present the
steady-state fully developed (far-field) flow conditions for the
core-annular flow and the scaling relationship describing the gel
thickness as a function of the operating conditions.

The fluid mechanics model is common to all three approaches,
presented in Sec. 2.1. For the immiscible model, the interface
stress conditions and the fluid continuity are described in Sec. 2.2.
In the miscible model, we couple the hydrodynamics (two-way)
with the advection, diffusion, and reaction, described in Sec. 2.3.

The steady-state fully developed analytical solutions are presented
as a special case to the miscible model.

Let us define an axisymmetric coordinate system r*, z* with
time t*, as shown in Fig. 1. The velocity field is
u� ¼ u�ðr�; z�; t�Þer þ w�ðr�; z�; t�Þez, with u* being the outward
radial velocity and w* is the axial velocity component.

We adopt the notation that all dimensional variables have an
asterisk superscript. The subscript 1 denotes the property of the
fluid injected through the nozzle (core), and the subscript 2
denotes the property of the fluid in the annulus. The flow rate of
fluid in the nozzle is defined as Q�1 ¼ A�1v�be, and likewise, the
annular inflow rate Q�2 ¼ A�2v�b, where v�b is the mean annular
inflow velocity and

e ¼
Q�1=A�1
� �
Q�2=A�2
� � (1)

is the ratio of the mean nozzle and annular inflow velocities, with

nozzle inflow area A�1 ¼ pðR�0Þ
2
, annulus inflow area A�2 ¼

pððR�Þ2 � ðR�1Þ
2Þ, nozzle inner wall at r� ¼ R�0, and nozzle outer

wall at r� ¼ R�1; and outer pipe wall at r� ¼ R�. Hereinafter, we
define e> 1 as the fast core regime, and e< 1 as the slow core
regime. Key dimensional variables are R� ¼ 0:233 mm; fluid density

q*¼ 1000 kgm�3; viscosity of salt solution l�2 ¼ 0:001 kgm�1s�1;

and mean inflow velocity v�b ¼ 0:0125 ms�1. From these variables,

we can define axial velocity scale w�s ¼ Q�2=ðR�Þ
2 ¼ A�2v�b=ðR�Þ

2

�3:5� 10�2 ms�1 (Note: two velocity variables); time-scale

R�=w�s � 6� 10�3 s; viscosity scale l�2; surface tension scale r�12;
flow rate scale Q�2; shear-rate scale w�s=R�; and body-force scale

l�2w�s=R�2. Balancing the axial pressure gradient to the lateral vis-
cous stresses, we have pressure scale w�s l

�
2=R�.

For each parameter combination, the transient fluid model is
time-stepped from a given initial condition to the steady-state
solution. Hereinafter, all equations are given in nondimensional
variables, which are denoted without an asterisk superscript,
unless otherwise stated. This description reflects our use of two
different commercial modeling packages. For the miscible model,
we prefer the finite-element based COMSOL

VR

v5 for its adaptability
in handling multiphysics problems. For the immiscible model, we
select the finite volume based FLUENT v16 for its efficiency in han-
dling fluid–fluid interface problems.

2.1 Fluid Motion. The fluid flow field is modeled with the
incompressible Navier–Stokes equations

Re
@u

@t
þ u � ru

� �
¼ r � Tþ F;

r � u ¼ 0

(2)

where Re is the Reynolds number defined by Re ¼ q�Q�2=ðR�l�2Þ;
p ¼ pðr; z; tÞ is the pressure; T is the total stress tensor in the fluid
given by

Fig. 1 Schematic of the geometry of the coaxial domain using
nondimensional variables with contours of axial velocity (from
Fig. 3): The alginate solution enters through the nozzle (top
arrow) and calcium chloride solution (bottom arrow) enters
through the annular pipe, where r 5 0 is the line of symmetry.
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T ¼ �pIþ l _c (3)

_c ¼ ruþ ðruÞT (4)

such that T denotes the transpose, I is the identity matrix, _c is the
rate of strain tensor, and l is the viscosity of the fluid. From this,
the magnitude of the shear rate is defined by

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_c : _cð Þ

r
(5)

Based on this, we can define the Carreau–Yasuda law

l ¼ 1þ ðlp � 1Þ½1þ ðk _cÞ2�ðm�1Þ=2 (6)

where _c is the shear rate, k is the shear-rate parameter, and the
shear-rate dependence is described by the Carreau–Yasuda law.
As an example, and for clarification purposes, we note here that l,
lp, k, and _c are nondimensional variables; these are connected to
their dimensional counter parts via l ¼ l�=l�2; lp ¼ l�p=l

�
2; k ¼

k�w�s=R�; _c ¼ _c�R�=w�s ; such that k� has units of s and _c� has units
s�1. The dimensionless parameter m> 1 specifies the fluid is shear
thinning. The zero shear viscosity (lp) is a function of the species
concentration as described in the miscible model (Sec. 2.3,
Eq. (15)), but is constant for the case of immiscible model
(Sec. 2.2).

At the nozzle inlet, we have a prescribed laminar inflow rate
Q1> 0, and at inlet 2, we have the flow rate Q2¼ 1 as a result of
the nondimensionalization. Thus

Q1 ¼ 2p
ðR0

0

wr dr; Q2 ¼ 2p
ðR

R1

wr dr ¼ 1 (7)

At the outlet, for the flow, we specify the normal component of
the stress

T � n ¼ �p0n; p0 � 0 (8)

where n is the normal vector pointing outward from the domain.
We do not impose a constraint on the tangential component of the
stress. On the geometric walls for the fluid, we impose no-slip and
no-penetration boundary conditions

u ¼ ðu;wÞ ¼ 0 (9)

The initial condition is given by

uðr; z; 0Þ ¼ wðr; z; 0Þ ¼ 0 (10)

2.2 Immiscible Model. The present situation is a classical
case of modeling the interface between two immiscible fluids
[17]. The jump in the stress continuum across the interface is bal-
anced by the surface tension forces. The continuity of the velocity
field and the stress (both tangential and normal) at the fluid–fluid
interface (on contact of the alginate with salt solution) is

u1 ¼ u2 (11)

n1 � T1 � n2 � T2 ¼
Re

We
rt � n1ð Þn1 (12)

where We ¼ qw�2s R�=r�12 is the Weber number. Here, the subscript
i¼ 1 and 2 denotes the core (alginate) and annulus (salt solution),
respectively. The fluid velocity field for the respective domain is
already described in Eq. (2) and viscosity relation is Eq. (6). The
zero-shear viscosity (lp) is related to the constant alginate concen-
tration C2 (in domain 1) as lp ¼ 1þ bdC2, and for the salt solution
(domain 2), lp¼ 1. The present set of equations is solved in the

three-dimensional domain using a continuous surface force method
(CSF) as described in Appendix C, together with the volume of
fluid (VOF) scheme considering it as a two phase flow. However,
this model does not capture the effects of the gel formation and its
growth downstream. This is modeled (using a different approach)
with the change in viscosity (where the gel is considered to effec-
tively have infinite viscosity) as a function of the diffusing species
across the interface, described in detail in Sec. 2.3.

2.3 Miscible Model. In the miscible model, we solve the
advection-diffusion-reaction equation for the concentration of the
three species C�i ¼ C�i ðr�; z�; t�Þ: Alginate concentration C�1; Salt
concentration C�2; and cross-linked alginate gel concentration C�3.
Here, we assume that the three species have constant diffusivities
D�i ¼ ðD�2=10;D�2; 0Þ; these diffusivities are discussed in further
detail at the start of Sec. 4, excepting the gel which is solid and
assumed to be nondiffusive. We also assume that a reaction source
term S�i ¼ S�i ðC�i Þ is the rate of production (positive) or consump-
tion (negative) of each species, where the rate of reaction is j�r , as
defined in Sec. 1. Here, we choose the reaction chemistry to fol-
low the model identified by Mikkelsen and Elgsaeter [4], except
we have constant diffusion. Here, we scale the species concentra-
tions with the initial salt concentration C�20; diffusivity with the
salt diffusivity, D�2; and the reaction source term with j�r C�20

3. We
then represent the time-dependent advection-diffusion-reaction
equation in the corresponding nondimensional variables for the
evolution of the species as

@Ci

@t
þ u � rCi ¼

Di

Pe
r2Ci þ brSi (13)

where Peclet number Pe ¼ w�s R�=D�2, nondimensional diffusivity
Di ¼ ð0:1; 1; 0Þ, and reaction scale br ¼ j�r R�C�20

2=w�s are the
nondimensional parameters. The three components of the reaction
rate vector Si are

Si ¼ ð�g;�Ncg; gÞ g ¼ C2C1ðC1 þ C3Þ (14)

where Nc 	 Oð1Þ is the dimensionless stoichiometric coefficient,
as described in Sec. 1. The function g is greater than zero only
when both the salt C2> 0 and the alginate C1> 0. One can note
that the reaction is second order in alginate concentration and first
order in gel concentration C3.

Next, the fluid viscosity (l) is coupled to the species concentra-
tion via the zero shear viscosity (lp) in Eq. (6)

lp ¼ 1þ bdðC1 þ aC3Þ 0 � C1 and 0 � C3 (15)

where bd ¼ b�dC�20=l
�
2, and constant b�d � 3:077 Pa � s=M indicates

the rate of change of viscosity with alginate concentration. The
dimensionless parameter a governs the impact of the cross-linking
on gel-fiber viscosity. The dependence of lp on gel concentration
(in Eq. (15)) is the simplest model to hypothesize how cross-
linking increases viscosity. This is a first step toward understand-
ing how the flow field is affected by the reaction (a future model
might include visco-elastic responses).

The partial differential equation in Eq. (13) is solved subjected
to the following boundary conditions. At inlet 1, the concentration
of alginate is fixed as C10, and the concentration of salt C20 is
fixed at inlet 2

C2ðR1 � r � R; 0; tÞ ¼ C20 C1ð0 � r � R0; 0; tÞ ¼ C10 (16)

At the outlet, we impose a Neumann boundary condition

n � DirCi ¼ 0 (17)

while at the no-slip wall boundary, the effective zero species flux
condition is satisfied
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n � ðuCi � DirCiÞ ¼ 0 (18)

The following initial conditions are used to solve Eq. (13):

C2ðRm � r � 1; z; 0Þ ¼ C20 C1ð0 � r � Rm; z; 0Þ ¼ C10

C3ðr; z; 0Þ ¼ 0 (19)

where Rm ¼ ðR0 þ R1Þ=2, with constants C10 and C20 specified
later. Note that several different types of initial conditions were
explored; however, to expedite attaining a steady-state numerical
solution, the above conditions are found to be best.

2.3.1 One-Dimensional Steady-State Far-Field Co-Annular
Analytical Models. In this section, we present a simplified
model from the force balance on the fiber and the far-field (far
downstream of the nozzle) velocity profiles where u! 0 and
z!1. At the fiber interface r¼Rg, the two flow regions are
divided, such that in 0 � r � Rg we have only the gel moving
with velocity w1 ¼ w1ðrÞ and C1 ¼ 0; C2 > 0; C3 > 0, k¼ 0, so
l ¼ l1 ¼ 1þ bdaC3.

While for the region Rg < r < 1, with w ¼ w2ðrÞ, we have only
salt solution C1 ¼ 0; C2 > 0; C3 ¼ 0, k¼ 0, having l ¼ l2 ¼ 1.
We solve the 1D steady-state Stokes equation (dropping the iner-
tial terms in Eq. (2) as they reduce to zero in the far-field fully
developed limit) using the following boundary conditions:

(i) symmetry at r¼ 0, dw1=dr ¼ 0;
(ii) no-slip on r¼ 1, w2¼ 0;

(iii) velocity continuity on r¼Rg, w1¼w2 and
(iv) continuity of the shear-stress (without any surface tension

in Eq. (12)).

This combination of the boundary conditions balances the tan-
gential and normal stress on the core flow, hence it represents a no
net-force equilibrium solution. Maintaining the same pressure gra-
dient across both flows and matching shear stress at r¼Rg, we
recover

dp

dz
¼ � 8

p R2
g � 1

� �2
(20)

The prediction for the pressure gradient differs from the prediction
of Bonhomme et al. [14] (Eq. (11) therein) by a factor of
ð1� R2

gÞ
�1

. This factor, absent in Bonhomme’s prediction, is
required for the integral of the fluid flux over the annulus to be
equal to the mass flow rate. The fiber radius Rg is given by the
(smaller root) solution of

1� 1

2l1

þ Q1

2

� �
R4

g � 1þ Q1ð ÞR2
g þ

Q1

2
¼ 0 (21)

In the limit l1 !1, we can compute the alginate plug-velocity
and fiber radius to be

w1 r ¼ Rgð Þ ¼
2þ Q1

p
Rg ¼

Q1

2þ Q1

� �1=2

(22)

2.3.2 Gel Mass Scaling Law in a Fully Developed Flow Field.
Let us define the cross-sectional mass integral Miðz; tÞ for each of
the species as

Miðz; tÞ ¼ 2p
ð1

0

rCiðr; z; tÞ dr (23)

An estimate for the rate at which the mass of gel (M3) changes
downstream can be obtained in the region where the flow is fully
developed with an ongoing reaction. Note gel mass M3ðz; tÞ is
related to the link density defined by Bonhomme (Eq. (19)

therein). The complexity of the problem is significantly reduced
with the assumptions that the cross-linking reaction time-scale is
much faster than the salt diffusion timescale and the diffusivity of
the alginate is much less than that of the salt. With these assump-
tions, the rate of change of the gel mass in the axial direction is
approximately

@M3

@z
� Rg

Ncw1Pe

@C2 Rg; zð Þ
@r

(24)

where M3 is the mass of gel, Pe is the Peclet number of the salt,
w1 is the fully developed alginate velocity (Eq. (22)), and Rg is the
radius of the gel sleeve (Eq. (21)). The full derivation of Eq. (24)
and the equations to follow can be found in Appendix B. More-
over, we can approximate the flux @C2=@r � ðC20 � 0Þ=2d, where
d corresponds to the length-scale of the salt depleted region sur-
rounding the alginate/gel core. Due to the large P�eclet numbers
associated with typical gel fiber experiments, this depleted region
will be within some boundary layer with length inversely related
to the P�eclet number. With this species flux approximation,
@M3=@z in Eq. (24) is simplified to

@M3

@z
� RgC20

2Ncw1dPe
(25)

We expect d to be approximately constant as long as Pe does not
change by much; the specific value of d used is detailed later in
the discussion of Fig. 2(d).

3 Computational Details

3.1 Immiscible Two Phase Surface Tension Model. The
system of equations is solved using a commercial fluid dynamics
solver—FLUENT v16, based on finite volume discretization, follow-
ing the CSF method as described in Appendix C, together with the
VOF scheme representing it as a two phase flow. It may be men-
tioned here that the solution domain in this case is the full three-
dimensional geometry. The momentum equation is discretized
using the quadratic upstream interpolation for convective kine-
matics (popularly known as QUICK) scheme [18], a higher-order
differencing scheme based on the weighted average of second-
order-upwind and central interpolations of the variable. First-
order explicit transient solver is used to solve the system, together
with the Geo-Reconstruct scheme [19] for interpolation of the
phase variables at the interface, to avoid numerical interfacial dif-
fusion. The geometric reconstruction scheme represents the inter-
face between fluids using a piecewise-linear approach and uses

Fig. 2 Profile of the fiber radius along the axial length of the
device with the velocity ratio (with respect to the core and annu-
lar flows) as a parameter
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this linear shape for calculation of the advection of fluid through
the cell faces. This scheme is the most accurate, robust, and is
applicable for general unstructured meshes. Since the flow in the
present case is dominated by body forces rather than pressure gra-
dients, a body-forced weighted scheme with “pressure implicit
with splitting of operators” (PISO) algorithm is used for pressure
correction [20], which is an extension of the SIMPLE algorithm
[21] used for solution of the Navier–Stokes equation. The PISO
algorithm shifts the repeated calculations required by SIMPLE
and SIMPLEC inside the solution stage of the pressure-correction
equation [20]. After one or more additional PISO loops, the cor-
rected velocities satisfy the continuity and momentum equations
more closely. The algorithm is slightly more CPU intensive, but
dramatically reduces the number of iterations required for conver-
gence, especially in transient problems. Simulations were initiated
with very small time steps and these were increased gradually for
later times with no resultant spurious numerical oscillations in the
solution. The solution was assumed to have reached a steady-state

when the root-mean-square error between the interface profiles for
successive time steps was found to be <10�4.

The computational domain was meshed using unstructured hexag-
onal mesh elements with more refinement along the inner–outer fluid
contact boundary. Grid independence was tested at various mesh
sizes starting from 0.00013 to 0.0095, as evidenced in Fig. 3. It was
observed that the interface and fully developed core radius were
unchanged for dimensionless mesh sizes less than 0.0021. Hence,
the mesh size of 0.0021 was considered adequate for the current
numerical simulations. The core liquid region including the interface
has a dimensionless minimum and maximum mesh size of
0.00045–0.0021, with an average skewness of 0.7860.13. Similarly,
the remaining geometry has minimum to maximum mesh size range
of 0.0013–0.0061, with the average skewness of 0.7360.19. The
simulations were run on a Linux IBM machine with 36 cores (2� 18
Core Intel with hyperthreading) (using only eight cores), with a clock
speed of 2.3 GHz utilizing up to 24 GB of the available 768 GB of
RAM. Total computational time is effectively around 1.1 h.

Fig. 3 At steady-state, for a 5 100 and e 5 0.25, the contour profiles of (a) alginate
concentration—C1, (b) gel concentration—C3, and (c) axial velocity—w. Separate shading
scales for each image. In (d), we show a radial slice through these and other properties at
z 5 4; note, each data set is scaled differently, corresponding to its maximum value to make
their variation apparent on the same axis scale.
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3.2 Single Phase Miscible Species Transport Model. The
governing equations for this model have been solved in the two-
dimensional axisymmetric system using the commercial finite ele-
ment method package COMSOL v5. Two modules have been used in
solving the governing equations: The “Laminar Flow Module”
and the “Transport of Dilute Species Module.” Below, we discuss
some key features of the modules and solver settings that have
been used to solve the miscible model.

The Navier–Stokes equations were solved using a projection
method. A second-order backward difference formula was used
for all temporal integration. The linear basis functions were used
to discretize both the velocity and pressure variables in the
Navier–Stokes equations. Linear basis functions were also used to
discretize the species transport equations. The viscosity model
used was the inbuilt Carreau model, with the zero shear-rate vis-
cosity parameter computed based on the species concentration.
The time-stepping used streamline and cross-wind diffusion to
stabilize the solution. The default tolerances were used with abso-
lute precision of 5� 10�4 and relative precision of 10�2. The full
set of equations was solved using a fully coupled method, which
used the PARDISO solver, with the Jacobian updated every time-
step, and termination based on tolerance. Two additional helper
ordinary differential equations (ODEs) were used in the imple-
mentation of the inflow boundary conditions. The solutions were
all computed on a free triangular mesh. We used a relatively
coarse mesh of two sizes: in the gelled region, we used a maxi-
mum element size of 0.0125, and away from the gelled region, we
used a maximum element size of 0.05. These choices imply we
under-resolve the Peclet number boundary layer, but they
adequately capture the qualitative nature of the flow. The mesh
refinement study presented in Appendix A demonstrates this
point. The simulations for the six parameter combinations pre-
sented in Fig. 4 were run using 4 of 8 cores on a 3 GHz Core i7-
493 DELL Precision M4800 running Windows 7 utilizing up to 2
GB of the available 32 GB of RAM in a total of 4 h; each simula-
tion with a¼ 100 typically takes about twice the time of an a¼ 1
simulation.

4 Results and Discussion

Here, we present the result for the three models. First, we
describe in detail the behavior observed in the immiscible fluid

model; second, we describe the observations in the immiscible
model; third, we compare the two models with results from the
far-field analytical model. Here, we choose to look at the behavior
of the system in a parameter regime similar to that used by
Bonhomme et al. [14,22]. We now comment on the main con-
stants in the models:

(i) Salt diffusivity D�2 and properties. For Ca2þ ions in water
values of D�2 used by previous authors range between
2.5� 10�9 m2 s�1 in Ref. [22] and 8.3� 10�10 m2 s�1

in Ref. [5]. As a lower bound, we choose

D�2 ¼ 10�10 m2 s�1. For 1% w/v salt solution, we use a
mass of 110.98 g/M CaCl2 which at concentration C�20 ¼
1%w=v gives C20¼ 0.09M.

(ii) Alginate diffusivity D�1 and properties. Values quoted by

the previous authors range from D�1 ¼ 1� 10�12 m2 s�1 in

Ref. [4] to D�1 ¼ 2:5� 10�12 m2 s�1 in Ref. [14]. From
these works and others, D�1 is commonly discussed to be
an order of magnitude smaller than the salt diffusivity, this
motivates our statement at the start of Sec. 2.3, to assume
D�1 ¼ D�2=10. We also choose for 1% w/v 200 g/M alginate
a zero-shear rate viscosity of l�p ¼ 153 cp, m¼ 0.4, and

k� ¼ 0:1 s, which gives C10 ¼ 0:555 and bd � 277.
(iii) Reaction rate j�r . The work by Mikkelsen and Elgsaeter

[4] notes the value to be very uncertain but they choose
j�r ¼ 0:02 M�2s�1. We follow the more recent work of
Braschler et al. [5] and choose j�r ¼ 5300 M�2s�1.

(iv) Stoichiometric coefficient Nc. Previous authors [5,14],
respectively, offer values of Nc ¼ 3:42 and Nc ¼ 3:33; we
choose Nc ¼ 3:4.

Based on the above choices for our system, we have Reynolds
number Re � 8.1, Peclet number Pe � 8.1� 104, and reaction
scale br � 0.28.

Looking at Eq. (1), we recall that since the annulus flow rate Q�2
is held fixed, the core flow rate Q�1 increases with e and vice versa.
In both the immiscible and miscible model results presented here,
we vary the core flow rates for e¼ 4, 1, and 0.25.

4.1 Immiscible Model Results. The effect of surface tension
on the interface curvature without any interfacial chemical reac-
tion or mass transfer is illustrated in Fig. 5. The effect of the

Fig. 4 Here, we show the impact of varying a 5 1 and 100 and e 5 0.25, 1 and 4 on the axial velocity along (a) w(0, z) and (b)
w(r, z 5 4); figure (b) also shows the corresponding gel concentrations C3 on the same axis multiplied by five for easy view-
ing. Across both figures, solid lines are solutions for a 5 100 and dotted lines solutions for a 5 1. Within these two catego-
ries, we use the same line shading for each value of e.
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surface tension is defined through the magnitude of We, which in
this case is 0.2 and 10. The Weber number defines the relative
magnitude of the inertia to surface forces. It is evident from Fig. 5
that increasing the surface tension suppresses the impact of the
core flow on the interface near the nozzle. As described previ-
ously, when e increases, the core fluid flux increases; this results
in an enlargement of the cross section occupied by the core fluid.
We checked that in the case m¼ 1 in Eq. (6), the present result is
similar to the result of Vempati et al. [11] (note that in both of
these works, the range of parameters chosen are different). The
key differences are as follows: (i) the core fluid considered in this
case is shear thinning, which possibly explains the reason for the
apparent large difference of the expansion of the core fluid (for
e> 1) which is less apparent in the work of Vempati et al. [11];
(ii) the effect of different values of surface tension is shown,
whereas the work of Vempati presents the results with only one
surface tension; and finally, (iii) the effect of hoop stress (circum-
ferential stress) due to surface tension [23] is not considered in the
work by Vempati et al. [11]. The far stream condition satisfies the
result of the simplified 1D model, which shows that surface ten-
sion has no effect there. Details of the quantitative comparison of
the results with the other models are described in Sec. 4.3.

4.2 Miscible Model Results. To illustrate the impact of reac-
tion on the flow, we choose two different cases, a¼ 1 and 100;
here, the viscosity depends on the alginate and gel concentration,
and a, as seen in Eq. (15). Unless otherwise noted, we show
results at a time t¼ 40, when the system has reached steady-state.

Initially, we will show some specific results for the slow core
regime case e¼ 0.25 and a strong effect of the alginate concentra-
tion on viscosity for a¼ 100. These features are representative of
the typical system behavior, except in certain cases which we will
identify. In Figs. 6(a)–6(c), we show the contour profiles of the
axial velocity, alginate, and gel concentration. The qualitative fea-
tures we observe at a fixed z downstream of the nozzle are (i) radi-
ally constant alginate concentration in the core region, and
radially constant salt concentration in the annular region; (ii)
between the core alginate and outer salt solution, we see the crea-
tion of a gel region, which becomes thicker in the downstream;
(iii) a radially constant plug velocity profile in the core region;
and (iv) a rapid contraction of the alginate fiber radius at the noz-
zle outlet. We attribute (iii) to the high inlet core alginate

viscosity. The core region axial velocity changes rapidly from
exiting the nozzle and evolves toward the annular flow velocity
profile through momentum exchange.

We shall now look at more specific features. In Fig. 6(a), in this
specific case of e¼ 0.25, the velocity of the alginate increases as z
increases. We observe correspondingly in Fig. 6(b) that as the
core flow is accelerated, the region of near-constant alginate con-
centration decreases in width, this is due to alginate mass conser-
vation. In Fig. 6(c), the mean velocity of the annular flow will
decrease as the area it occupies increases. We also note that the
alginate concentration stays almost constant near r¼ 0. At the
nozzle exit, the edge of the alginate forms from the inside corner
of the nozzle; this is because the annular velocity is higher than
core alginate and transfers momentum to it. In Fig. 6(b), we see
that the gel begins to form as soon as the alginate and salt solu-
tions meet. Since the simulations under-resolve the Peclet number
boundary layer, we only interpret gel concentration as seen in
Fig. 6(b) qualitatively; grid refinement simulations demonstrate
qualitative accuracy (Appendix A).

Fig. 5 The pressure p(r, z) along the centerline r 5 0 for the
wall six combinations of a and �

Fig. 6 In (a), the cross section mass of gel M3(z). In (b), the
effective fiber radius Rg(z).
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In Fig. 6(d), we show a radial slice far downstream of the noz-
zle illustrating axial velocity, species concentrations, and the total
viscosity, all rescaled by their different maximum values. Consist-
ent with the two-dimensional plots we have shown in Figs.
6(a)–6(c), we see that we have plug flow velocity where the algi-
nate or gel concentration is much bigger than zero. We also
observe that on increasing the gel concentration, the fluid viscos-
ity is correspondingly much bigger, with both variables peaking at
the same radial value far downstream of the nozzle. Although not
shown here, inspection of the radial component of velocity shows
that it is about 1% of the value of the axial component, i.e., the
solution is still slowly evolving in the axial direction.

4.2.1 Impact of Inflow Ratio e and Reaction a on Velocity
Profile. The characteristics of the axial and radial velocity pro-
files, gel mass and radius for different parameter regimes are illus-
trated in Fig. 4.

In Fig. 4(a), for a¼ 1 we notice that, away from the nozzle, the
centerline velocity w(0, z) always decreases immediately on exit-
ing the nozzle. There are two reasons for this.

First, inside the nozzle, we have a quasi-parabolic velocity pro-
file which is zero on the nozzle wall, however, once outside the
nozzle, we rapidly move to a plug velocity profile; hence, the
same volume flux gives a lower axial velocity on r¼ 0. This rapid
change in velocity profile happens because the axial pressure gra-
dient inside the nozzle is much larger than the axial pressure gra-
dient in the annulus (due to large alginate viscosity compared to
the salt solution). This can be seen in Fig. 7 where we show the

pressure on the centerline (r¼ 1) for the six combinations of e and
a. As z! 0, the pressure gradient has a large constant value
which is representative of the higher viscosity fluid moving in the
narrower nozzle. As z! 5, the pressure gradient has a much
lower value which represents the axial motion of the alginate-gel
lubricated by the much lower annular viscosity salt solution. In
between these two regimes, we see a transition where the evolving
pressure gradient is consistent with work done in the relative
expansion or contraction of the alginate gel. This change in pres-
sures near the nozzle is consistent with the changes in fiber radius
as discussed further in Sec. 4.2.2.

Second (and in combination), the influence of the annular flow
either accelerating the core when e< 1 or decelerating the core
when e> 1. While the center velocity-profile equilibrates within a
few nozzle diameters, the axial momentum exchange between the
fiber and the annular salt continues downstream of the nozzle over
a much longer length scale (we address this question more specifi-
cally in Sec. 4.4.3, where we compare different models). For small
e sufficiently downstream of the nozzle, the core flow begins to
accelerate resulting in radial contraction of the alginate-gel. Con-
versely, for larger e, we have radial expansion and axial decelera-
tion. Further, as we increase a (from 1 to 100), the axial velocity
approaches equilibrium faster for small values of z. As the reaction
proceeds (a> 1), it generates a skin of higher viscosity gel, which
further resists deformation by the (faster or slower) annular flow.

In Fig. 4(b), we show two different quantities: the radial varia-
tion of the axial velocity w(r, 4) and the gel concentration 5C3(r,
4) profiles far downstream of the nozzle. Here, the gel

Fig. 7 Comparison of the (a) fiber radius; (b) axial velocity profile at the centerline (r 5 0) using two different model
approaches—single phase miscible species reaction model (a 5 100) and the two-phase immiscible surface tension
model corresponding to We 5 0.2; (c) comparison of the radial velocity profile downstream (z 5 4R) for all the three different
models; and (d) spatial gradient of the gel mass with z (Eq. (25)) using the simplified 1D analytical steady-state model and the
miscible species reaction model. Across these four graphs, the same line shade is used for each data set.
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concentration is multiplied by five so it is visible on the same y-
axis scale as w(r, 4). We can see here the spatial transition of the
core flow to the annular flow, which identifies the edge of the core
flow. For given e, increasing a permits the gel layer to support a
greater change in shear stress from the core to the annulus. This
reconfirms the perspective we see in Fig. 4(a): that increasing the
gel viscosity slows down the axial development of the flow. We
see that the edge of the gel matches the edge of the core flow
region. We demonstrate in Appendix A that under grid refinement,
the center of gelled region converges and that the edge of the gel
is consistent with the edge of the core flow. The above suggests
that on a finite domain, we can have independent flows on either
side of the gel, which will more slowly equilibrate and which may
ultimately support different pressure gradients. This is consistent
with the broader transition of the viscous–viscous fluid toward a
viscous-solid fluid regime. In Appendix E, we present scaled spe-
cies flux data to demonstrate that far away from the nozzle, the
flows are dominantly axial.

4.2.2 Impact of Inflow Ratio e and Reaction a on Mass and
Radius. Here, we can begin to look at the impact of the chemistry
on the flow. In Fig. 8(a), for small e, we see that the total mass of
gel M3(z) close to the nozzle reduces on increasing a; this is
because increasing a leads to fiber acceleration and a reduction in
its radius. Hence, there is a smaller alginate surface area, and con-
sequently, less influx of salt and so less gel. However, once suffi-
ciently downstream from the nozzle, we also observe that
increasing a slows down the core flow, and hence, increases the
total mass of alginate and gel as seen in the cases e¼ 0.25, 1.
Whereas for e¼ 4, increasing a reduces the mass of gel, as the
increased gel viscosity inhibits the expansion of the alginate asso-
ciated with the axial flow compression. The conclusion is that in
extensional flows (i.e., slow core, e< 1), the mass of gel increases
with a by slowing the core flow and increasing the cross-sectional
area of alginate and gel. Conversely in flows such as e¼ 4,
increasing a reduces gel production. The caveat to these results is
that the process may not be monotonic because of flow adjustment
at the nozzle. Therefore, in order to maximize the mass of gel
(which might also strengthen the fiber mechanically), we need to
minimize a and maximize e.

Since the concentration of alginate is nearly radially constant at
a fixed z (as the mass transfer boundary layer thickness of alginate
is much smaller compared to the salt), we can use the cross-
sectional species mass to estimate the outer diameter of the com-
bined alginate and gelled region (the fiber) using

Rg z; tð Þ ¼
M1 z; tð Þ þM3 z; tð Þ

pC10

� �1=2

(26)

In Fig. 8(b), we present the radii computed by Eq. (26) for each of
the e and a values. For comparison, we also plot the nozzle inner
radius, r¼R0. We see here that, in the fast core regime (e¼ 0.25),
the fiber radius reaches an equilibrium value closer to the nozzle
than the slow core regime (e¼ 4). We also see that increasing a
leads to a larger gel radius Rg; this is also observed in Fig. 4(b)
looking at the center of the gel maximum.

4.3 Comparison of Immiscible, Miscible, and Analytical
Results. Previous works [14–16] have commonly treated the gel
as fixed width, moving with fixed velocity, or offered no insight
into what controls the radius; therefore, let us examine through
Fig. 2(a) factors which influence the gel radius. For the immisci-
ble model, we have selected the high surface tension solution
(We¼ 0.2). The most important observation here is that both
models have the same trend for radius as a function of relative
flow rates (e). This demonstrates that the global momentum trans-
fer is very similar in both models. Some key differences can be
seen though.

First, in Fig. 2(a), the transition toward the final equilibrium
radius happens rapidly at small z in the miscible model compared
to a slower transition in the immiscible model (Note: the dotted
lines in Fig. 2(a) are the solid lines in Fig. 8(b)). In particular
for the case of e¼ 4, the change in the radius using miscible
model is very rapid, reaching a fully developed feature by
z� 0.75, whereas for the immiscible model, the radius gradually
approaches a constant value toward the end of the computational
domain. For e¼ 0.25, the transition toward a constant radius fol-
lows a similar trend for both the miscible and immiscible models,
occurring, respectively, by z � 1.5 and z � 4. Moreover, for the
miscible model, the radius changes almost monotonically as z
increases, whereas for the immiscible model, the radius has a
more complicated evolution, featuring a maximum value (at
z¼ 2.8) in the case of e¼ 4; this is probably due to the combined
effect of the azimuthal and radial components of surface tension.

In Fig. 2(b), looking at the axial velocity along r¼ 0, we show
results consistent with the changes in alginate-gel radius. In par-
ticular, looking at the relative difference between the miscible and
immiscible models for e¼ 4, we see that using the immiscible
model the velocity as z! 5 is smaller, which is consistent with
larger fiber radius as seen in Fig. 2(a).

Similar behavior is observed for the case e¼ 0.25. In the nozzle
region, we see the transition from shear pipe flow to core plug
flow begins inside the nozzle, at z � 0.5 for both models. Con-
trasting Figs. 2(a) and 2(b), the differences between the immisci-
ble and miscible models persist as we approach the end of the
computational domain (z¼ 5).

From the above observations, an interesting question concerns
whether the flow becomes fully developed. To establish this, we
compare with the steady-state model described in Sec. 2.3.1. In
Fig. 2(c), we show a comparison of the axial velocity plotted as a
function of radius at z¼ 4 from all three models. The most important
observation is that for e¼ 4, there is general agreement between all
three models. Comparing this to the results with e¼ 0.25 (where
results from both the miscible and immiscible models agree), but the
steady-state model does not. Solving on a longer axial domain to
allow for convergence to the fully developed flow profile for
e¼ 0.25 results in a flow profile which is in a much better agreement
with the analytic solution for the velocity, as seen in Fig. 10 in
Appendix D. In contrast, for e¼ 4, the flow approaches the fully
developed state rapidly compared to the length scale used for these
simulations, but not for small e. This is because the core flow is
being compressed axially and not stretched.

We note at this point that the immiscible model includes a sur-
face tension which contributes additional hydrodynamic pressure
due to the azimuthal curvature, which is one of the reasons behind
the discrepancy. We can conclude here that for the fast core
regime e
 1, the far-field analytical approximation can provide
reasonably accurate estimation.

Fig. 8 For the immiscible model, a study illustrating the impact
of mesh size on the fiber radius Rg at three downstream loca-
tions z 5 1, 2, and 3
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In thinking about the transition to a fully developed state, we
look back at Fig. 4(b) and note that when e is small, the impact of
increasing a is to exert a larger stress on the gel region, and hence,
reduce the gradient of axial velocity in the core. This says that for
the slow core regime, the flow development length increases with
the reaction strength a.

In Fig. 2(d), we show the axial dependence of the mass of gel
and compare it to the value predicted by the simplified analytical
model (Eq. (25)); note the dotted lines in Fig. 2(d) are the solid
lines in Fig. 8(a). Here, d in Eq. (25) is determined by matching to
the miscible model case of e¼ 4 to be d � 16.5/Pe. This value is
then used for the other two comparisons on the graph. The main
trend is that more gel is produced by increasing the core flow rela-
tive to the annular flow. However, in the slow core regime, we see
from Fig. 8(b) that increasing a also produces more gel by axially
slowing the flow and increasing its area. In contrast with the fast
core regime, the impact of a is less significant.

5 Discussion

Herein, we have presented a fluid mechanics-based modeling
study of the emerging cross-linking formation of solid calcium-
alginate fiber from two miscible liquids. There are many other
works on fiber formation; for example, those related to melt-
spinning [1,2]; however, these works do not appear to involve the
creation of an emerging interface which represents the fiber.

In the previous investigation of Bonhomme et al. [14], experi-
mental observation of the fiber state (Table 1 and Fig. 3 in Ref.
[14]) was tied to an estimate of shear stress based on the differ-
ence in mean flow rates re (Eq. (20) therein). In the limit of large
difference, we can link e< 1 in our model to re< 0 in their model,
and similarly, we link e> 1 to re> 0. Additionally, as noted in
Sec. 2.3.2, their gel link density qlink(z) (Eq. (19) therein) is our
gel mass M3(z, t) normalized by the cross section area of gel and
alginate (not gel). We present a significant step forward from
Bonhomme by contrasting methods which can be used for
computing the shear stress on the forming gel. Specifically, we
have four general advancements. Primarily, as captured in
Figs. 6(a)–6(c), our analysis is applicable to arbitrarily shaped
nozzles and junctions of which there are a diverse range in earlier
works, this will aid more direct comparison with experiments
(including Bonhomme and others investigators in this field).
Then, subsequently as captured by Figs. 2(a), 5, and 8(b), the gel
is not of fixed shape; the gel width is affected by gelation; finally,
we have outlined how observations of gel shape might be related
to whether the gel behaves as a surface-tension or a viscous effect.

From an alternative perspective, our advancements are that we
do not fix the velocity field (assumed by Bonhomme et al. [14]
and Li et al. [16]) and that we have two-way coupled the hydrody-
namics to the chemistry [15,16]. Additionally, none of these pre-
vious works examined the detailed flow field around the nozzle.
By modeling the fluid motion around the nozzle, prior to the fluids
meeting, we are able to consider the impact of the hydrodynamics
on the alginate formation as it exits the nozzle. Also, we treat the
emerging interface as an outcome of the chemical reaction in the
miscible model; this eliminates the need to prescribe where it
begins. Assuming the no-slip law fully applies for the polymer
alginate solution (discussed later), we have a rapid transition from
shear-flow to plug-flow at the nozzle, which drives rapid changes
in alginate shape. In the nozzle, the alginate is sheared, while out-
side the nozzle, it is in plug flow, and lubricated by the annular
flow. Herein, we have presented two numerical models which
fully couple the representation of the gel to fluid motion, in addi-
tion to contrasting with fully developed flow conditions. Although
in the miscible model we have under-resolved the fiber thickness,
the results we present are qualitatively correct.

In comparison of the miscible and immiscible models with the
fully developed analytical flow model, we observed good agree-
ment in the fast core flow, this is because the more mobile annular
flow rapidly adjusts to the fully developed state. However, in the

slow core flow, the axial flow develops much more slowly; for an
experiment, the axial length and outflow conditions will be impor-
tant conditions to determine the velocity profile observed (as dis-
cussed in Appendix D).

In the recent work, Li et al. [16] (Fig. 5(i), therein) investigated
the formation of calcium alginate fibers with calcium solution in
the nozzle and alginate in the annulus. Using higher viscosity algi-
nate (3% w/v), they observe the rapid expansion of the alginate at
the nozzle exit, which they ascribe purely to the formation of the
gel. Based on our results here, we propose that this behavior is
due to the pressure gradient in the strongly sheared alginate being
much greater than that in their core calcium solution.

In our work, we have assumed that the motion of the alginate in
the nozzle obeys the no-slip condition, whereas in certain instan-
ces polymer solutions can exhibit slip at a wall [24,25]. If this
happens here, it would reduce the pressure gradients in the nozzle,
consequently impacting changes to the fiber radius. Furthermore,
we should note that imposing symmetry prevents us from explor-
ing symmetry breaking modes, where the alginate fiber may
buckle as external pressure on the fiber exceeds internal pressure,
or wrinkle, which is beyond the scope of our present study, but
also noted as an important factor in Ref. [14].

Once an application is defined, it would be important to under-
stand common environmental factors such as the impact of pres-
sure, temperature, and external chemistries. The work presented
herein has been considered at standard temperature and pressure,
and without the presence of other chemistries. A change in the
chemical environment could reverse the cross-linking reaction
effectively dissolving the fibers. In addition to impacting the
cross-linking reaction, the mechanical and thermal stability of the
formed fibers would be important variables to understand.

In this work, the cross-linked fiber has been treated as a very
viscous liquid; we note experimental measurements by Cuadros
et al. [26] detail the elastic properties of the formed calcium-
alginate fibers; thus, depending on the application a model which
captures the viscous and elastic regimes may be relevant. Future
studies of this problem might focus on the use of a more sophisti-
cated approach to resolve the fiber interface near the nozzle along
the lines of the immiscible model and the dynamics with higher
concentration solutions.

6 Conclusion

Alginate fibers are formed by the cross-linking reaction of
aqueous polymer chains with a salt solution; in a flowing system,
continuous gel fibers may be formed. We have presented two
alternative models of flowing gel fiber formation; these are signifi-
cant advancements on previous works [14–16] for several reasons.
First, as per Figs. 2(a), 5, and 8(b), we compute the gel fiber radius
rather than assuming it as a fixed value. We observe significant
changes in the fiber radius. Second, we two-way couple the chem-
istry to the hydrodynamics, this allows us to investigate how the
chemistry controls the hydrodynamics. We observe that chemistry
changes gel stresses, and hence, the gel radius and mass (as shown
in Fig. 8(b)). Third, we contrast the representations of the emerg-
ing gel fiber as a surface-tension or chemistry-driven-viscous
effect. This demonstrates the need for observations at the nozzle
to confirm the gel shape. Fourth, we provide a characterized
framework for future works to examine alternative gel representa-
tion, and explore the precise role of elongational stress and sym-
metry identified in Ref. [14]. In our two models, the fiber radius
and the morphology of the forming gel and their governing mech-
anisms have been thoroughly explored. Our results present signifi-
cant improvements on the fixed-domain one-way coupled models
in the previous literature works. Our work is an important step
toward understanding factors which influence the fabrication of
the flowing cross-linked gel in particular the mass and radius.

A key objective of the work was to explore the two-way cou-
pling between the hydrodynamics and the chemistry using the
miscible fluid model which captures the gel by making the
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viscosity of the solution depend on the gel concentration. A
regime in which this coupling is particularly important is the slow
core flow, which is accelerated by the outer annular flow. Here,
the formation of the gel causes the core flow to slowdown relative
to the situation where the viscosity is unaffected by the species
concentration. This accounts for the cross-sectional expansion of
the core and increase in the mass of gel produced. Features of this
solution to be explored in future work include the impact of azi-
muthal gel strength versus axial gel strength and the likelihood of
nonaxisymmetric buckling in the gel structure. In the fast core
regime, where the core flow is faster than the annular flow, the
alginate-fiber is compressed, and the cross-linking has a smaller
impact on the hydrodynamics; this may be due to the role of azi-
muthal stresses. In solving the miscible model, we did not fully
resolve the Peclet number boundary layer, but qualitative behavior
of the systems appears to be independent of this.

When we represent the gel as an interface using the stress bal-
anced by the surface-tension in the immiscible fluid model, we
observe a shape near the co-axial nozzle that is different from
results obtained by the miscible model where the gel layer has the
viscous effect without any surface tension. The interface shape
changed more slowly compared to the viscous model. Neither of
these conclusions could be examined with earlier models in the
literature. However, far downstream of the nozzle, both the misci-
ble and immiscible models lead to the same trend in the fiber
radius as a function of e.

The work presented here has provided an intermediate step in
how to model an emerging interface which changes from mobile
fluid to a nearly immobile solid at a junction. In particular, we
have demonstrated methods which could be used for evaluating
the stress field near the gel formation. This approach can be
generalized to other geometrical setups. Next steps could include
combining the viscous and surface-tension phenomena; the use
of a concentration dependent shear-thinning rheology with a
visco-elastic model; understanding the azimuthal physics and
importance of symmetry as noted by Bonhomme. Additionally,
we should explore behavior in higher concentration alginate, typi-
cally used in experiments.
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Nomenclature

A1 ¼ nondimensional nozzle cross-sectional area
A2 ¼ nondimensional annulus cross-sectional area
bd ¼ nondimensional coefficient for the alginate viscosity

function of concentration
Ci ¼ nondimensional concentration of species i¼ 1 (alginate),

2 (salt), and 3 (gel)
C�10 ¼ alginate concentration at nozzle inlet and initial

condition
C�20 ¼ salt concentration at annulus inlet and initial condition
Ca ¼ capillary number

D�i ¼ diffusion coefficient of species i
er ¼ radial basis vector
ez ¼ axial basis vector
F ¼ axisymmetric body force per unit volume
G ¼ total axial flux of gel
I ¼ identity tensor

m ¼ nondimensional parameter in Carreau–Yasuda law
Mi ¼ cross-sectional mass of species i
n ¼ outward normal vector

Nc ¼ nondimensional stoichiometric coefficient for
cross-linking

Nphase ¼ number of phases
p ¼ nondimensional pressure

Pe ¼ Peclet number
Q1 ¼ nondimensional volumetric flow rate into nozzle
Q2 ¼ nondimensional volumetric flow rate into annulus

r ¼ nondimensional radial distance
Rg ¼ fiber gel radius
Rm ¼ intermediate variable in initial conditions
R0 ¼ nondimensional radial distance to nozzle inner wall
R1 ¼ nondimensional radial distance to nozzle outer wall
R* ¼ dimensional outer pipe radius
Re ¼ Reynolds number
S�i ¼ reaction rate of species i

t ¼ nondimensional time
T ¼ nondimensional total stress tensor in the fluid
u ¼ nondimensional radial component of velocity
u ¼ axisymmetric velocity vector
w ¼ nondimensional axial component of velocity

w1 ¼ core fluid velocity
w2 ¼ annular fluid velocity
w�s ¼ axial velocity scale

We ¼ Weber number
z ¼ nondimensional axial distance

z0 ¼ axial distance downstream
bi ¼ phase volume fraction
br ¼ reaction scale
_c ¼ nondimensional shear-rate
_c ¼ Rate of strain tensor
d ¼ length-scale of salt depleted region surrounding alginate/

gel core
e ¼ ratio of mean nozzle and annular inflow velocities
g ¼ intermediate variable in computation of reaction rate

Hi ¼ scaled diffusivity
ji ¼ interface curvature
j�r ¼ dimensional rate coefficient of formation of alginate

dimer
k ¼ nondimensional parameter in Carreau–Yasuda law
l ¼ nondimensional dynamic fluid viscosity

lp ¼ nondimensional zero shear-rate viscosity
l1 ¼ core fluid viscosity
l2 ¼ annular fluid viscosity
l�2 ¼ dimensional viscosity of salt solution (viscosity scale)
v�b ¼ dimensional mean inflow velocity
q� ¼ dimensional fluid density

r�12 ¼ surface tension scale (surface tensions between fluids 1
and 2)

Appendix A: Grid Refinement

For the miscible model, in Fig. 9, we show how the solutions
behave under adaptive grid refinement for the case a¼ 0 and
e¼ 1. We annotate solutions by the number of successive level of
refinement, which were computed based on the gradient of gel
concentration. At each level of refinement, the number of ele-
ments on the domain is increased by about 70%. Level 0 is the
default resolution as detailed in Sec. 3.2, used for all other misci-
ble model simulations presented in this paper. In Fig. 9(c), we see
that the width of the gelled region appears to converge, whereas
the maximum value of the gel concentration does not converge.
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However, while the gel concentration suffers convergence issues, the
qualitative nature of the axial flow field does not change. Figures
9(b) and 9(d) demonstrate respectfully that the pressure field con-
verges very well as does the alginate concentration. The solutions
shown here are from a z¼ 2 slice and were computed on a smaller
computational domain of length z¼ 2.5, half that used in the results
presented in the rest of the paper. The conclusion is that while we
under-resolve the Peclet number boundary layer, the qualitative fea-
tures of the flow are correctly captured. Ultimately, achieving con-
vergence may require a more flexible solver than that used herein.

Appendix B: Estimating Rate of Gel Formation

To understand the rate of gel formation, let us assume no radial
flow and look at the mass transfer of each chemical species as
described by the quasi-steady advection-diffusion-reaction equa-
tion in dimensionless form

wi
@Ci

@z
¼ Hir2Ci þ Si (B1)

where Hi ¼ f0:1=Pe; 1=Pe; 0g for the alginate, salt, and gel,
respectively, and wi is the average fluid velocity for the respective
species. Integrating the advection-diffusion-reaction equation for
the salt over the radius of the pipe gives

ð1

0

w2

@C2

@z
rdr ¼

ð1

0

H2r2C2 þ S2

� �
rdr (B2)

The salt sink (S2) depends on the concentration of all three spe-
cies. If the diffusivity of alginate is taken as approximately zero
(it is an order of magnitude smaller than that of the salt), the

alginate is localized to the fluid streak lines. Now we are left to
consider the diffusion of calcium into some alginate/fiber of
radius, say, Rg (where RgR� is the dimensional gel fiber radius).
Outside the fiber, the sink term will be zero, and on the inside, the
sink term will be large, i.e., we assume

8r < Rg; S2 
 H2r2C2 (B3)

8r > Rg; S2 � H2r2C2 (B4)

so the integral on the right-hand side of Eq. (B2) can be split into
two parts asð1

0

w2

@C2

@z
rdr �

ðRg

0

S2ð Þrdr þ
ð1

Rg

H2r2C2

� �
rdr (B5)

We are not interested in the contributions of diffusion in the z
direction due to the lubrication approximation as the flow has a
large aspect ratio. The rate of salt consumption can be replaced by
the rate of gel production using the stoichiometry relations given
in Eq. (14). Incorporating these insights leads us to

�w2

@

@z

ð1

0

C2rdr �
ðRg

0

�NcS3rdr þ
ð1

Rg

H2

@

@r
r
@C2

@r

� �
dr (B6)

�w2

@M2

@z
�
ðRg

0

�Ncw1

@C3

@z

� �
rdr þ H2r

@C2

@r

	 
1

Rg

(B7)

�w2

@M2

@z
� �w1Nc

@

@z

ðRg

0

C3rdr �H2Rg
@C2 Rg; zð Þ

@r
(B8)

Fig. 9 For the miscible model, graphs of adaptively refined mesh solutions with e 5 1, a 5 0. The number in the key refers to
the number of levels of refinement based on resolving the concentration gradient adequately.
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�w2

@M2

@z
� �w1Nc

@M3

@z
�H2Rg

@C2 Rg; zð Þ
@r

(B9)

where Mi is the total mass of species i at some downstream dis-
tance z, and we have specified no flux at the pipe wall (18). If we
have a lot of salt in the annular solution such that M2 
 M3, we
must satisfy

w2

@M2

@z
� 0 (B10)

which implies that the mass of gel term balances with the flux of
salt term

w1Nc
@M3

@z
� �H2Rg

@C2 Rg; zð Þ
@r

(B11)

So, the mass of gel in a cross-sectional region of the pipe changes
in the downstream as

@M3

@z
� �RgH2

Ncw1

@C2 Rg; zð Þ
@r

(B12)

The flux (Q) across the surface of cylinder of radius r can be
described by Ficks first law of diffusion as

Q ¼ �r
@C2 r; zð Þ

@r
(B13)

So, integrating Eq. (B13) between (Rg � d; Rg þ d) for H� d�
1 leads to

ðRgþd

Rg�d

Q

r
dr ¼ �

ðC2 Rgþdð Þ

C2 Rg�dð Þ
dC2 (B14)

Q log
Rg þ d
Rg � d

 !
¼ C2 Rg � d

� �
� C2 Rg þ d

� �
(B15)

Considering the Taylor series expansion of the logarithmic term
in Eq. (B15)

log
Rg þ d
Rg � d

 !
� Rg þ d

Rg � d
� 1

 !
þO Rg þ d

Rg � d
� 1

 !2
0
@

1
A (B16)

� 2d
Rg
þO 2d

Rg

� �2
 !

(B17)

We also know that inside the alginate/gel layer, the calcium con-
centration is small (as it is consumed so rapidly), and outside the
alginate/gel layer, it is approximately unchanged (as H2 is small).
This leads to the approximation that d is constant for a particular
setup; it can be determined by fitting one set of data, providing a
good approximation for other flow rates used in this setup. There-
fore, the right-hand side of Eq. (B15) can approximated by the ini-
tial (bulk) concentration of salt in the annular fluid (C20). The flux
of calcium into the alginate/gel sleeve is then represented by

Q � C20Rg

2d
(B18)

which, when included in Eq. (B12), gives

@M3

@z
� RgH2C20

2Ncw1d
(B19)

Appendix C: Solution Method for the Immiscible Fluid

Interface Model

In the standard CSF method formulation, the curvature of the
interface (ji) is defined by divergence of the normalized gradient
of the phase volume fraction bi as

ji ¼ r �
rbi

jrbij
(C1)

Here, ji is not to be confused with j�r , which denote reaction
rates used in other sections; similarly, bi is not to be confused
with br, which denotes reaction scale in other sections. The
tracking of the interface(s) between the phases is accomplished
by the solution of a continuity equation for the volume fraction
of one (or more) of the phases. Since bi is a scalar function
which is always equal to zero at any point on the fluid inter-
face, its material derivative at any location on the interface is
obviously equal to zero (assuming that there is no phase or
mass transfer across the interface)

1

qi

@

@t
biqið Þ þ u � rqibi

� �
¼ 0 (C2)

XNphase

i¼1

bi ¼ 1 (C3)

where Nphase is the number of phases in the system (equals 2 in
this case) and qi is the density of component i. The initial condi-
tions for the phase variables (assuming a flat interface at
r ¼ R0 8z) are

b1ð0 � r � R0; z; 0Þ ¼ 1; b2ðR0 � r � 1; z; 0Þ ¼ 0 (C4)

and the boundary conditions (z¼ 0) as

b1ð0 � r � R0; 0; tÞ ¼ 1; b2ðR1 � r � 1; 0; tÞ ¼ 1 (C5)

The effects of the surface tension forces at the interface are inte-
grated into the system through an additional body term in Eq. (2)
as a function of the phase volume fraction bi

F ¼
XNphase

pairs ij;i<j

2rij
Re

We

biqijjrbj þ bjqjjirbi

qi þ qjð Þ
(C6)

where Weber number We ¼ q�w�2s R�=r�12. In the case of two
phases j1 ¼ �j2 and rb1 ¼ �rb2, with similar density ratios
(
q1

q2
� 1), Eq. (C6) can be simplified as

F ¼ Re

We
j1rb1 (C7)

In this model formulation, the zero-shear viscosity (lp) in Eq. (6)
is related to the alginate concentration C2 (in phase 1) as lp ¼
1þ bdC2 and for the salt solution (phase 2) lp ¼ 1. The variables
C2, bd, etc., are defined in Sec. 2.3. The VOF model solves a sin-
gle set of momentum equation (Eqs. (2)–(6)) based on the volume
averaged mixture quantities. However, the phase continuity equa-
tions are solved for the individual phases (Nphase� 1 equations are
solved for Nphase number of phases). From a scaling analysis, the
primary dimensionless parameters are Weber number (We) or
capillary number (Ca), and Reynolds number (Re) which govern
the physical processes. In the case, when the viscous force is dom-
inant (Re< 1), Capillary number (Ca ¼ l�2w�s=r

�
12) is relevant,

and in the case of strong advection (Re
 1), Weber number is
important (We ¼ Re � Ca ¼ q�w�s

2R�=r�12).

Appendix D: Developing Velocity Profile for Small e

In order to understand the underlying physics behind the dis-
crepancy with the analytical result in the far-field for small core
flows (e< 1) in Fig. 2(c), we have calculated the solution (for the
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immiscible case in this situation) in a much longer domain than
presented in Fig. 2(c) (z
 5). In Fig. 10, the variable z0 defines
the downstream location at which the radial velocity profile is
computed. The results show the developing nature of the hydrody-
namic profile. The developing region is larger on reducing the
core flow (e< 1), as expected. It is now evident that the computa-
tional velocity further away in the downstream is close to the far
field approximation (z!1) in the analytical model. We expect
similar qualitative trends would emerge from a longer domain
simulation of the miscible model. However, we have not done
that, as it is too computationally intensive solving an additional
coupled scalar transport equation together with the fluid flow.

Appendix E: Advective Mass Balance

To demonstrate the total mass of alginate and gel is conserved
in the model, let us examine the combined axial flux G of alginate
and gel using

Gðz; tÞ ¼ ðM1ðz; tÞ þM3ðz; tÞÞw1ð0; z; tÞ=ðQ1C10Þ (E1)

where Q1C10 is the flux of alginate through the nozzle, as speci-
fied in Eqs. (7) and (16).

Here, the flux is rescaled by the initial value of gel and alginate
at the nozzle inlet: Q1C20, so it approaches a uniform value in the
downstream, as depicted in Fig. 11. On the upstream of the noz-
zle, the velocity w(0, z) is the peak velocity (and not the mean
velocity) which approaches ðpeak velocityÞ=ðmean velocityÞ �
2:35=ðe=ðpð1� R2

1ÞÞÞ � 1:65 for e¼ 4 and � 1.6 for e¼ 1, 0.25.
The axial flux varies most notably close to the nozzle exit which
ultimately reduces in the downstream. Although there are over-
shoots here, all the components of the flux (w(0, z), M1(z), and
M3(z)) vary smoothly. Overall, this result gives us confidence on
the numerical computation that as one moves away from the noz-
zle, having an under-resolved Peclet number boundary layer, the
approximation is accurate in terms of the axial advection. This
result also demonstrates that the total mass of alginate (and hence
gel) is conserved in the model.
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