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Phase separation in swelling and deswelling hydrogels with a free boundary
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We present a full kinetic model of a hydrogel that undergoes phase separation during swelling and deswelling.
The model accounts for the interfacial energy of coexisting phases, finite strain of the polymer network, and
solvent transport across free boundaries. For the geometry of an initially dry layer bonded to a rigid substrate,
the model predicts that forcing solvent into the gel at a fixed rate can induce a volume phase transition, which
gives rise to coexisting phases with different degrees of swelling, in systems where this cannot occur in the free-
swelling case. While a nonzero shear modulus assists in the propagation of the transition front separating these
phases in the driven-swelling case, increasing it beyond a critical threshold suppresses its formation. Quenching
a swollen hydrogel induces spinodal decomposition, which produces several highly localized, highly swollen
phases which coarsen and are then ejected from free boundary. The wealth of dynamic scenarios of this system
is discussed using phase-plane analysis and numerical solutions in a one-dimensional setting.
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I. INTRODUCTION

Hydrogels are, in the simplest case, two-phase systems
composed of an elastic network of polymer chains immersed
in a liquid solvent. The transport of solvent into and out
of the network leads to the swelling and drying of the hy-
drogel, thereby introducing large deformations of the poly-
mer network. Since hydrogels are omnipresent in nature, in
innumerable biological processes, but also in many smart
soft-matter as well as medical applications, there have been
a large number of theoretical and experimental studies aiming
at understanding the dynamic behavior and pattern formation
during swelling and drying processes [1–9]. Fundamental
phenomena include the formation of a core-shell structure for
the swelling of beads [1,10], or the appearance of wrinkling
instabilities, such as those described in the seminal work by
Tanaka et al. [11] and others [1,12].

Aside from swelling and deswelling with their large vol-
ume changes, polymer gels can exhibit a volume phase tran-
sition giving rise to coexisting regions with different degrees
of swelling and hence different levels of elastic stresses. The
volume phase transition was theoretically predicted [13] and
then identified in polyacrylamide gels upon temperature and
fluid compositional changes [14], and explored in a host of
situations and potential applications. Recently, it was shown
that external stimuli such as stretching or compression of
the gel can also greatly affect the transition [15]. Sudden
quenching of a swollen polymer bead leads to a cloudy
appearance, indicating the onset of phase separation via spin-
odal decomposition, followed by growth and expulsion of the
solvent-rich domains from the gel [16]. The volume changes
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induced by this process lead to deformation of the boundary
in contact with the surrounding bath as well as a host of
patterns within a shrinking gel [17]. The polymer matrix can
impede growth of the solvent-rich domains beyond a certain
size, which is exploitable for applications: In [18], the authors
use this arrested phase separation in a polymer gel to produce
droplets of tunable size. The range of new potential applica-
tions that explore or exploit the relationship between forced
mass transport and heterogeneous microstructures [19], for
example in extreme mechanics, have led to a sharp rise in
the interest in phase transitions of gels, as documented in the
topical review by Dimitriyev et al. [20].

While the phenomenon of the volume phase transition
has been known for several decades, theoretical treatment
has been mainly carried out through thermodynamical equi-
librium descriptions with jump conditions at explicit inter-
faces between the coexisting phases, e.g. [12], and occasional
variational approaches. Since the kinetics of swelling and
deswelling can change significantly upon the formation of
internal interfaces by phase transitions, full time-dependent
models that implicitly capture these interfaces are needed.

Phase-field theories provide a natural framework for de-
veloping kinetic models of hydrogels by accounting for the
relevant thermodynamics as well as providing implicit de-
scriptions of the evolving interfaces that form upon phase
separation. Such models have been used to study phase sep-
aration in two-dimensional situations without considering the
effect of boundaries, i.e., periodic boundary conditions were
imposed [21–23]. In Drozdov et al. [24] a hydrogel model that
accounts for fixed boundaries was formulated but the energy
of internal interfaces was not considered.

The focus of this study is to investigate the role of solvent
exchange through a free boundary between the bath and the
gel in driving the system toward phase separation. We derive
our model along the lines of Drozdov et al. [24] and extend
the classical Flory-Rehner free energy [25] by accounting for
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the gradient-squared terms associated with the interfacial free
energy. The governing equations are then derived from the
energy imbalance inequality of Gurtin [26]. Accordingly, we
formulate appropriate conditions at the fixed boundaries, as
well as the free boundaries.

The general three-dimensional free-boundary problem for
a hydrogel that allows for solvent exchange through the free
boundaries and the formation of internal interfacial layers is
presented in Sec. II. In Sec. III we use our model to investigate
a hydrogel that is immersed in a solvent bath and allowed
to freely swell and compare this to the problem where the
hydrogel is forced to swell due to an imposed constant flux
of solvent through the free boundary. By combining linear
stability analysis with numerical simulation and phase-space
analysis of the quasistationary equations in a one-dimensional
setting, our model predicts that in the free-swelling case
a volume phase transition cannot occur. However, for the
forced-swelling case, a dynamic volume phase transition can
occur via a propagating front when the Flory-Huggins pa-
rameter is above a critical value. In addition, we investigate
the effect of quenching a swollen hydrogel and show that
spinodal decomposition leads to the formation of several
highly localized, highly swollen domains which are ejected
from the hydrogel one by one. We summarize our conclusions
and give an outlook on future research in Sec. IV.

II. MODELING

When a dry polymer network is immersed in a solvent
bath, osmotic forces drive solvent molecules into the network
in order to reduce the free energy of mixing. However, the
polymer chains must stretch to accommodate the volume
of solvent molecules, thereby increasing the elastic energy
of the network. Equilibrium is obtained when the energy
decrease due to mixing exactly balances the energy cost of
deforming the polymer network. Following previous works
that exploit the energy-driven nature of swelling [12,24,27–
29], we develop a continuum model for a hydrogel based on
the thermodynamics of solvent-polymer mixtures. However,
we also account for the energy cost of composition gradients,
which are typically associated with the energy of internal
interfaces that form due to phase separation.

We first present the balance equations representing con-
servation of mass and momentum in the dry (reference) and
swollen (current) configurations. We then construct the free
energy of the system and apply the energy imbalance inequal-
ity of Gurtin [26] to obtain thermodynamically consistent
expressions for the flux, stress, and constitutive relationships.
Finally, the boundary conditions for a specific geometry are
described.

A. Bulk equations

1. Balance laws

As the hydrogel swells, material elements that are initially
located at the (Lagrangian) coordinates X = (X1, X2, X3)
are displaced to (Eulerian) points x = (x1, x2, x3). The de-
formation gradient tensor F = ∂x/∂X and its determinant
J = det F, respectively, encode information about how these
material elements are distorted and change volume during

swelling. Assuming that the hydrogel is composed of an
incompressible polymer network, the increase in volume of a
material element must be directly linked to the concentration
C of solvent molecules contained within that element. This
leads to the molecular incompressibility condition

J = 1 + vC, (1)

where v is the volume of a solvent molecule. The nominal
concentration C describes the number of solvent molecules
per unit volume of the dry state. The actual solvent concentra-
tion, i.e., the number of solvent molecules per unit volume of
the current state, is given by c = C/J . The volume fractions
of solvent and polymer network can then be defined as φ f =
vC/J and φn = 1 − φ f = J−1, respectively.

Conservation of solvent in the dry configuration is given by

Ċ + ∇0 · j0 = 0, (2)

where j0 is the nominal flux, which is defined per unit area
in the dry state, and ∇0 denotes the gradient with respect
to the Lagrangian coordinates X . Similarly, conservation of
momentum reads as

∇0 · S = 0, (3)

where S is the first Piola-Kirchhoff stress tensor. The corre-
sponding balance laws in the current state are given by (see
Appendix A)

∂c

∂t
+ ∇ · (cvn + j) = 0, (4a)

∇ · T = 0. (4b)

where vn is the velocity of the polymer network, j = J−1F j0
is the flux, T = J−1SFT is the Cauchy stress tensor, and ∇
denotes the gradient with respect to the Eulerian coordinates
x.

2. Construction of the free energy

Constitutive equations that are consistent with the second
law of thermodynamics can be derived by considering the
Helmholtz free energy per unit volume in the dry configura-
tion ψ . This is composed of four contributions

ψ = ψ1 + ψ2 + ψ3 + ψ4, (5a)

corresponding to the energy of solvent not interacting with
the solid phase (ψ1); the energy of the polymer network
not interacting with solvent (ψ2), i.e., the elastic energy of
the network; the energy of mixing solvent with the polymer
network (ψ3); and the interfacial energy between the solvent
and polymer phases (ψ4). The first three contributions are
given by Drozdov et al. [24]:

ψ1 = μ0C, (5b)

ψ2 = W (I1, I2, J ), (5c)

ψ3 = kBT

v
J (φ f ln φ f + χφ f φn), (5d)

where μ0 denotes the chemical potential of a solvent bath, W
is the hyperelastic strain energy (per unit volume in the dry
state), I1 and I2 are the first and second principal invariants of
the right Cauchy-Green tensor C = FT F, kB is Boltzmann’s
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constant, T is temperature, and χ is the Flory-Huggins pa-
rameter. We will consider an idealized system where χ can
be treated as a constant as in Bertrand et al. [1] and elaborate
on the implications of this assumption in Sec. IV. The final
contribution to the free energy ψ4 is determined by assum-
ing that ideal interfaces [27] form between the two phases,
leading to

ψ4= γ (C)

2
J |∇C|2= γ (C)

2
JHiK

∂C

∂XK

∂C

∂XL
HiL. (6)

The function γ plays the role of a surface energy and
the tensor H with components HiK is defined as H = F−T .
The concentration dependence of γ enables various forms
of the interfacial energy ψ4 to be captured. For example,
ψ4 = (γ0/2)J|∇c|2 can be recast into (6) by setting γ (C) =
γ0/(1 + C)4.

3. Energy imbalance inequality

Having defined the free energy of the mixture, we now
proceed to determining the constitutive relationships through
the use of the energy imbalance inequality of Gurtin [26]. In
essence, this inequality states that the energy gain in every
control volume V0 (of the dry state) is at most equal to the total
influx of energy and working combined. The integral form of
the inequality is given by

d

dt

∫
V0

ψ dX � −
∫

∂V0

μ j0 · N dA

+
∫

∂V0

(ξ · N)Ċ dA +
∫

∂V0

SN · u̇ dA, (7)

where μ is the chemical potential of solvent in the polymer
network, ξ is the microstress, and u = x − X is the displace-
ment vector. Equation (7) must be satisfied for all volume
elements V0. Hence, after using the divergence theorem on
the right-hand side, we can localize to obtain

ψ̇ + ∇0 · (μ j0) − ∇0 · (ξĊ) − ∇0 · (ST · u̇) � 0. (8)

By differentiating the incompressibility condition (1) with
respect to time, we obtain

vĊ − JF−T : Ḟ = 0. (9)

By adding (9) times a Lagrange multiplier p to (8) and
then using ψ = ψ (C,∇0C, F) along with the chain rule, we
obtain(

∂ψ

∂∇0C
− ξ

)
· ∇0Ċ +

(
∂ψ

∂C
− μ − ∇0 · ξ + pv

)
Ċ

+
(

∂ψ

∂F
− S − pJF−T

)
: Ḟ + ∇0μ · j0 � 0. (10)

As will be shown below, the multiplier p plays the role of the
mechanical pressure. The quantities ∇0Ċ, Ċ, Ḟ, and ∇0μ can
be chosen independently at each point X and each time t . In
particular, we can keep ∇0μ = 0 and then vary the other three
terms individually. Since none of the terms in the brackets
depend on any of these three quantities, the only way to satisfy

the inequality in all cases is to assume the brackets vanish
identically. Hence, we obtain

ξ = ∂ψ

∂∇0C
, (11a)

μ = vp + ∂ψ

∂C
− ∇0 · ξ, (11b)

S = −pJF−T + ∂ψ

∂F
. (11c)

What remains of (10) is then the inequality

∇0μ · j0 � 0, (12)

which can be satisfied by choosing the nominal flux to be of
the form

j0 = −M(C, C)∇0μ, (13)

where M is a positive-semidefinite mobility tensor.

4. Specification and simplification of constitutive equations

The expressions in (11) can be evaluated to derive explicit
expressions for the Cauchy stress T and the chemical potential
μ. We find that

T = −pI + 1

J

∂W
∂F

FT + K, (14a)

K = γ (C)

(
1

2
|∇C|2I − ∇C ⊗ ∇C

)
, (14b)

where I is the identity tensor. The first term in (14a) describes
an isotropic stress induced by the pressure, the second term is
the elastic stress of the network, and the final term represents
the Korteweg stress generated by internal interfaces. The
calculation of the Korteweg stress tensor can be found in
Appendix B. We will assume that the elastic response of
the polymer network can be described by the neo-Hookean
equation of state with shear modulus G:

W = G

2
(I1 − 3 − 2 ln J ). (15)

Using this in (14a) gives

T = −pI + G

J
(B − I) + K, (16)

where B = FFT is the left Cauchy-Green strain tensor.
The chemical potential μ can be written as

μ = μ0 + v(p + �) + μM + μG, (17a)

where the mechanical pressure p, osmotic pressure �, and
μM and μG can be interpreted as the contributions from
mechanical stress, mixing, surface-energy gradients, and com-
position gradients, respectively. The latter three quantities are
defined as

� = kBT

v

[
ln

(
vC

1 + vC

)
+ 1 + vC + χ

(1 + vC)2

]
, (17b)

μM = γ ′(C)

2
J|∇C|2, (17c)

μG = −J∇ · [γ (C)∇C]. (17d)

A derivation of (17d) is provided in Appendix C.
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The mobility tensor M appearing in (13) can be determined
by writing the flux in the current configuration as

j = − Dc

kBT
∇μ. (18)

By transforming (18) into variables associated with the dry
state, we find that

j0 = − DC

kBT
C−1∇0μ, (19)

from which we conclude that

M = DC

kBT
C−1

. (20)

It is insightful to examine the form of the flux after (18) has
been evaluated using the chemical potential (17). The flux can
be decomposed into four contributions associated with distinct
driving mechanisms:

j = j1 + j2 + j3 + j4, (21a)

j1 = −D

[
1 + (1 − 2χ )vC

(1 + vC)4

]
∇C, (21b)

j2 = − D

kBT

vC

1 + vC
∇p, (21c)

j3 = − D

2kBT

C

1 + vC
∇[γ ′(C)(1 + C)|∇C|2], (21d)

j4 = D

kBT

C

1 + vC
∇((1 + vC)∇ · [γ (C)∇C]). (21e)

The flux vector j1 describes the transport of solvent driven
by the osmotic pressure and j2 describes the flux driven by
the gradient of the mechanical pressure. Dropping for now j3
and j4 and taking the limit vC → 0, we recover Fick’s law of
diffusion

j = −D∇C; (22)

conversely, in the limit vC → ∞, we obtain Darcy’s law

j = − D

kBT
∇p. (23)

Darcy’s law is usually written in the form

v f − vn = −φ f

ζ
∇p, (24)

where v f is the velocity vector of the fluid and ζ is a coeffi-
cient of friction between solvent molecules and segments of
chains. This friction coefficient is experimentally measured to
be governed by the law (see, e.g., Drozdov et al. [24])

ζ = ζ0φ
β
n φ2

f , β = 1.5. (25)

As shown in Appendix A, the flux j is equal to c(v f − vn).
Therefore, comparing (23) and (24) gives an expression for
the diffusivity,

D = D0(1 + vC)β, (26)

where D0 = (kBT )/(ζ0v).

FIG. 1. Schematic of the cross section of a laterally bounded gel
film that is attached to a rigid substrate (shown here in the reference
state). The gel can exchange solvent with a bath through its upper
surface.

B. Boundary conditions

To facilitate the discussion of boundary conditions, we
consider a specific geometry based on a thin film of hydrogel
that is bonded to a rigid substrate, as shown in Fig. 1. The
upper surface of the hydrogel is in contact with a solvent bath.
We consider an idealized situation whereby the sides of the
hydrogel are held into position so that lateral expansion is not
possible. Although the boundary conditions that apply at the
substrate and sides are specific to this geometry, the conditions
at the bath-gel interface are general and can be applied to other
systems, e.g., spherical hydrogel beads immersed in a solvent
bath.

1. Boundary conditions at the substrate

At the bottom surface, X3 = 0 (or x3 = 0), the hydrogel
film is attached to a rigid substrate. We therefore impose no-
displacement conditions

u = 0. (27)

Moreover, the flux of solvent vanishes, as the substrate is
assumed to be impenetrable,

j · e3 = 0, (28)

where ei are the canonical unit vectors (in the current con-
figuration). A further boundary condition is needed since
second-order derivatives of C appear in the expression for the
chemical potential μ. We use the condition

∇C · e3 = 0, (29)

which describes a situation where the gel is in local equilib-
rium with a neutral wall, that is, a wall that does not have a
preference for either the gel or the solvent. This is a special
case of the boundary conditions used for phase-field models
in the context of surface-directed phase separation, e.g., [30].
The ramifications of prescribing the concentration gradient
will be discussed in greater detail below; however, we mention
here that (29) can lead to boundary layers as γ becomes small.

2. Boundary conditions at the side walls

At the side walls, X1 = 0, L0, and X2 = 0, L0, the gel
cannot move sideways but may slide freely along these walls,
hence, we impose

u · ek = 0, e3 · T · ek = 0, (30)

where k = 1, 2. Again, we assume no flux

j · ek = 0, (31)
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and adopt the additional boundary condition

∇C · ek = 0. (32)

3. Boundary conditions at the bath-gel interface

The bath-gel interface is located at X3 = H0 in the dry state
or x3 = h(x1, x2, t ) in the current state, where H0 denotes the
initial thickness of the polymer network. The normal vector to
the bath-gel interface in the current configuration is denoted
by n, which points from the gel into the bath.

The solvent bath is assumed to be stress free. This means
we essentially assume a hydrostatic situation without a body
force (e.g., gravity), giving constant pressure in the bath. The
constant is free so we simply set it to zero. Continuity of stress
across the bath-gel interface then leads to

T · n = 0. (33)

We consider two possible boundary conditions describing
the transport of solvent across the bath-gel interface. In the
first, local chemical equilibrium across this interface in im-
posed. This requires the chemical potential of solvent in the
gel and in the bath to be equal, so that

μ = μ0. (34)

Alternatively, a prescribed solvent flux Q into the hydrogel
can be imposed [31],

j · n = −Q, (35)

which can be experimentally realized through the use of a
syringe [19]. We refer to (34) and (35) as free-swelling and
forced-swelling conditions, respectively. The free-swelling
condition (34) is frequently used in hydrogel models that
do not account for the energy cost of composition gradients,
and it leads to a scenario whereby the gel freely swells until
an equilibrium is established between mixing and elasticity.
In the forced-swelling case described by (35), the solvent
concentration can be pushed beyond its equilibrium value,
allowing for greater exploration of the energy landscape.
A forced influx of solvent cannot be sustained indefinitely,
however, as this could stretch the polymer chains beyond their
extensibility limit or lead to rupturing of the gel.

As with the other boundaries, we also impose

∇C · n = 0 (36)

at the bath-gel interface. Interestingly, the normal component
of the concentration gradient at a free or fixed boundary
controls the tangential Korteweg stresses. Setting the normal
concentration gradient to zero, as done here, eliminates these
stresses.

III. PHASE SEPARATION IN A HOMOGENEOUS GEL

We consider a one-dimensional swelling scenario in which
the hydrogel undergoes uniaxial deformations of the form F =
diag(1, 1, J ). This one-dimensional approximation is valid
when the lateral dimensions of the gel L0 are either large
[12] or small compared to its height h. The former case may
lead to the onset of instabilities, as discussed in Sec. IV; the
latter case may be difficult to achieve in experiments due to
friction at the side walls which is neglected in the model. It is

convenient to formulate the one-dimensional model in terms
of the Lagrangian coordinates associated with the dry state
because this removes the need to track the free boundary at
x3 = h(t ). For convenience, we relabel the vertical coordinate
X3 as Z . It is assumed that all of the variables only depend
on Z and time t . The corresponding balance equations are
given by

∂tC + ∂Z j0 = 0, (37a)

∂ZS33 = 0, (37b)

where the vertical components of the nominal stress tensor
and flux are

S33 = −p + G

1 + vC
[(1 + vC)2 − 1] − γ (C)

2

(∂ZC)2

(1 + vC)2
,

(38)

j0 = −D0(1 + vC)β−2C

{[
1 + (1 − 2χ )vC

C(1 + vC)3

]
∂ZC

+ v

kBT
∂Z p + 1

2kBT
∂Z

[
γ ′(C)

1 + vC
(∂ZC)2

]

− 1

kBT
∂2

Z

(
γ (C)∂ZC

1 + vC

)}
. (39)

The vertical stress balance (37b) can be integrated and the
stress-free condition at the free surface used to show that
S33 = 0, which from (38) provides an expression for the
pressure p:

p = G

1 + vC
[(1 + vC)2 − 1] − γ (C)

2

(∂ZC)2

(1 + vC)2
. (40)

The horizontal components of the stress tensor are

S11 = S22 = −G[(1 + vC)2 − 1] + γ (C)

1 + vC
(∂ZC)2, (41)

showing that the gel can experience a net compressive stress
that can result in instability (see, e.g., [32,33]). Using the
pressure (40), the flux (39) can be formulated in terms of the
concentration and its gradients, thus reducing the model to a
single equation for C. Before presenting this equation, it is
convenient to nondimensionalize the model as follows:

z = H0z∗, t = H2
0

D0
t∗, j0 = D0

H0v
j∗, (42a)

S = G S∗
, p = Gp∗, C = v−1C∗, (42b)

γ (C) = γ0γ
∗(C∗), μ = μ0 + kBT μ∗, (42c)

and define the nondimensional parameters

G = Gv

kBT
, ω = v

kBT

γ0

v2H2
0

. (43)

The parameter G represents the effective stiffness of the
polymer network and it characterizes the ratio of the elastic
energy to the mixing energy. Similarly, ω is defined as the ratio
of the interfacial energy to the mixing energy and it selects
the width of the diffuse interfaces that form when phase
separation occurs. The resulting nondimensional problem for
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the solvent concentration is, after dropping the star notation
and some algebraic manipulation, given by

∂tC = −∂Z j0 , (44a)

j0 = −(1 + C)β−2C∂Z

[
F (C) − ω

2

γ ′(C)

(1 + C)
(∂ZC)2

−ω
γ (C)

(1 + C)1/2
∂Z

(
∂ZC

(1 + C)1/2

)]
, (44b)

F = ln

(
C

1 + C

)
+ 1 + C + χ

(1 + C)2
+ GC

(
2 + C

1 + C

)
. (44c)

The function F defined in (44c) plays a particularly important
role in the model, as it corresponds to the (nondimensional)
chemical potential of a homogeneous state; its functional form
arises from the mixing and elastic energy densities and can be
obtained by differentiating the sum of these contributions with
respect to the nominal concentration.

The nondimensional free- and forced-swelling conditions
at Z = 1 are given by

μ = 0, (45a)

j0 = −Q, (45b)

respectively. Here, Q = QH0v/D0 is a dimensionless solvent
flux. We also impose j0 = 0 at Z = 0, ∂ZC = 0 at Z = 0 and
Z = 1, and C = 0 when t = 0.

A. Equilibrium conditions for a free-swelling gel

The equilibrium states of a freely swelling hydrogel can
be determined by seeking a stationary homogeneous solution
to (44) of the form C(Z, t ) = Ceq with j0(Z, t ) = 0. The
spatially uniform chemical potential is given by μ = F (Ceq).
Thus, from the free-swelling boundary condition (45a), the
homogeneous equilibrium concentration of solvent can be ob-
tained from solving the nonlinear equation F (Ceq) = 0, which
represents a balance between the osmotic and mechanical
pressures (or, equivalently, the mixing and elastic energies).
Thus, for fixed values of G, the solutions to F (Ceq; χ ) = 0
define the homogeneous states on the phase diagram which
are in equilibrium with the solvent bath. As shown in Fig. 2 for
the case G = 0.01, this curve is monotonic, implying that only
a single equilibrium state exists for a given value of χ , and
thus a volume phase transition is not possible. A phase-plane
analysis below will confirm that this is the case for all values
of G and that nonhomogeneous equilibria are not possible for
the free-swelling case.

B. Onset of phase separation: Linear stability analysis

A simple normal modes analysis about a homogeneous
state C̄ using the ansatz

C(Z, t ) = C̄ + δC̃ exp(λt + iKZ ) (46)

shows that perturbations will grow at a rate given by

λ = −(1 + C̄)β−2C̄

[
F ′(C̄)K2 + ωγ (C̄)

1 + C̄
K4

]
, (47)

where F ′ = dF/dC and K is the wave number of the perturba-
tion as measured from the dry state (with k = J−1K denoting

FIG. 2. The phase diagram when G = 0.01 in terms of dimen-
sionless quantities. The dashed line defined by F = 0 determines
the equilibrium solvent fraction for the free-swelling case as a
function of χ . For values of (φ f , χ ) to the right of this curve,
spatially homogeneous states have a positive chemical potential
μ = F (C; χ, G) > 0, and negative to the left. The thick black line
given by F ′ = dF/dC = 0 represents the spinodal curve and marks
the boundary of the region where homogeneous states are linearly
unstable (LU; shaded red). The thin black lines are defined by (49)
and represent the binodal curves. The metastable region (M) is
shaded in blue.

the actual wave number). From this we immediately see that
the homogeneous state is linearly unstable and the gel layer
phase separates if F ′(C̄) < 0 is fulfilled. The critical case
F ′(C̄, χ ) = 0 defines points on a spinodal curve, which has
a minimum at (φ f c, χc), where

χc = min
C̄>0

(1 + C̄)[G(C̄3 + 2C̄2 + 2C̄) + 1]

2C̄
, (48)

and φ f c = C̄/(1 + C̄) for the C̄ where this minimum is
achieved, as shown in Fig. 2. We note for future reference
that χc � 1

2 . Equation (48) shows that increases in the elastic
constant G will shift the spinodal upward, meaning that points
initially within the unstable region can become excluded.
Thus, the elasticity of the network has the potential to com-
pletely suppress the onset of phase separation. The critical
value of the elastic constant Gc at which phase separation is
suppressed at a given value of χ can be obtained through the
inversion of (48).

The binodal curves C1(χ ) and C3(χ ) can be computed
using the Maxwell construction, i.e., by solving the nonlinear
system ∫ C3

C1

[F (C) − μ̄] dC = 0, (49a)

F (C1) = μ̄, F (C3) = μ̄, (49b)

which uniquely determines μ̄, C1, and C3 for given χ (and
given G). These solutions define the concentrations and hence
also the liquid volume fractions of coexisting phases at a phase
transition. Notice that (49) only has a solution for χ > χc and
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is equivalent to the common tangent construction since F is
the derivative of the homogeneous free energy.

A dry, unswollen gel in ambient conditions will have a
chemical potential that is less than zero. Upon immersing this
gel in a solvent bath, the surface chemical potential increases
to zero. The gradient in chemical potential from the surface to
the bulk drives solvent into the gel until the chemical potential
is uniformly equal to zero, at which point equilibrium is
obtained. From Fig. 2, it is clear that during the free-swelling
process, the system is always below or at the curve F = 0 and
hence no phase transition can occur.

One possible method to induce a phase transition that was
explored by Hu et al. [16] is by quenching the system via
a sudden increase in χ through increasing the temperature.
In Fig. 2, we consider an increase from χ = 1 to χ = 1.82.
During the increase, which is assumed to be instantaneous, the
gel retains a homogeneous solvent distribution with a volume
fraction φ f given by F = 0 for χ = 1. Immediately after the
increase, the system is in the linearly unstable region (marked
by an open circle) and has a positive chemical potential.
Hence, spinodal decomposition sets in. Over time, however,
the system will relax back into equilibrium with the bath,
which is at μ = 0, and evolve into the homogeneous state
indicated by the solid diamond in Fig. 2.

A second possibility, and the main focus of our numerical
experiments in the next section, is by driving solvent into the
gel, say at a fixed rate. This creates situations with a positive
chemical potential in the gel, effectively moving it into the
upper-right regions of Fig. 2, enabling phase transitions to
occur.

C. Numerical solutions

Numerical simulations are used to study the onset of
surface-induced phase separation and the interplay of nonlin-
ear elasticity. The numerical method is based on a finite differ-
ence scheme that uses a staggered grid. The flux j0 is solved
on cell edges while the concentration C and the contribution to
the chemical potential from the gradient-energy terms μG are
solved on cell midpoints. A semi-implicit method is used that
treats nonlinear terms explicitly and linear terms implicitly.
Thus, each time step requires the solution of a linear system
of equations for C, j0, and μG. The discretized equations are
formulated in terms of Lagrangian coordinates, which fixes
the position of the free boundary for the hydrogel surface to
Z = 1.

For the simulations we set the permeability exponent to
β = 0, the dimensionless surface-energy parameter to ω =
10−6, and use a constant value for the dimensionless surface-
energy function γ (C) ≡ 1. Although our choice of β is
smaller than the experimentally measured value, this param-
eter does not affect the thermodynamics of the system so the
qualitative behavior of the solutions should remain the same
in all cases. A similar statement holds for ω and γ (C), as these
quantities mainly control the width of the diffuse interface
that forms between coexisting phases. Taking γ as a constant
has computational advantages, as it prevents the diffuse in-
terface from becoming extremely thin, which can happen if
the decreasing function γ (C) = (1 + C)−4 associated with the

|∇c|2 form of the interfacial energy ψ4 is used, as discussed
in Appendix D.

We first consider a forced-swelling situation by imposing
(45b). Due to volume conservation, the thickness of the
hydrogel layer grows linearly in time according to h(t ) =
1 + Qt . In order to isolate the mechanism of phase separation,
the dimensionless solvent flux is set to be Q = 0.01. Larger
values of Q lead to the formation of solvent-rich layers near
the free surface even when the thermodynamics of the system
do not allow for phase separation. In this case, the formation
of solvent-rich layers is due to the vastly different timescales
of solvent intake and diffusive mass transport, the former of
which is fast compared to the latter. For small values of the
flux Q, the concentration of solvent is roughly uniform due to
relatively high rate of diffusion, and remains this way until
phase separation occurs. In the numerical simulations, the
Flory-Huggins parameter is set to χ = 1. This value is based
on measurements of the interaction parameter for PHEMA-
water and PNIPAM-water gels, which are known to exhibit
phase transitions. A composition-dependent quadratic form
of χ for PHEMA-water gels is given in Ref. [15] and varies
between 0.4 and 1.3. The temperature and concentration
dependence of χ for PNIPAM-water has been measured in
Ref. [34] and has a maximum value of χ = 0.82 at the phase-
transition temperature 305.5 K. As we have neglected the
composition dependence of the interaction parameter, larger
values of χ > χc are needed to induce phase separation in
our model compared with some experimental systems. The
effective elastic constant G is set to 0, 0.01, 0.02, and 0.05,
corresponding to relatively stiff hydrogels with shear moduli
on the order of a few MPa (assuming water is the solvent
and a temperature of 300 K). For this value of χ , the system
exhibits a miscibility gap when G � Gc = 0.019. Profiles of
the solvent volume fraction φ f are shown in Fig. 3 as functions
of the Lagrangian coordinate Z̄ = 1 − Z at various times.

In the absence of elastic effects, G = 0 [Fig. 3(a)], the sys-
tem undergoes phase separation at t � 73, forming a highly
solvent-rich layer near the hydrogel surface (Z̄ = 0) and a
solvent-poor layer in the bulk. The solvent-rich and solvent-
poor layers are separated by a thin interfacial region centered
about Z̄ = S̄(t ), which propagates very slowly into the bulk.
The position of the interfacial layer can be implicitly defined
by the expression

φ f (S̄(t ), t ) = 0.6, (50)

and is shown as a function of time in Fig. 4(a). The finite
time at which S̄ begins to increase from zero marks the onset
of phase separation. Interestingly, Fig. 3(a) shows there is a
backflow of solvent from the bulk into the surface layer, which
causes the surface concentration to increase at the expense of
the bulk concentration. Figure 4(b), which plots the evolution
of the solvent fraction at the surface of the hydrogel and the
substrate, illustrates this more clearly.

When the effective elastic constant is increased to G =
0.01 [Fig. 3(b)], the dynamics remains qualitatively similar.
However, the onset of phase separation is slightly delayed and
occurs at t � 79. Furthermore, the interfacial layer separating
the solvent-rich and solvent-poor layers now propagates much
more rapidly into the bulk and reaches the substrate when

032501-7



HENNESSY, MÜNCH, AND WAGNER PHYSICAL REVIEW E 101, 032501 (2020)

(a) (b) (c) (d)

FIG. 3. Numerical simulations of the full model (44) showing the onset and suppression of surface-induced phase separation for weak
elasticity and strong elasticity, respectively. The dimensionless shear moduli are given by (a) G = 0, (b) 0.01, (c) 0.02, and (d) 0.05. The
parameter values are χ = 1, ω = 10−6, β = 0, and Q = 0.01. The system has a miscibility gap when G � 0.019.

t � 709, which is shown in Fig. 4(a). Contrary to the inelastic
case, there is no backflow of solvent. Once phase separation
begins to occur, the concentration of solvent in the bulk (i.e.,
ahead of the solvent-rich layer) remains constant in time; see
Fig. 4(b).

Increasing the effective elastic constant to G = 0.02 pre-
vents the system from exhibiting a miscibility gap [F ′(C) > 0
for all solvent concentrations]. However, the simulation re-
sults in Fig. 3(c) indicate that the system can weakly separate
into a solvent-rich and solvent-poor layer, which now occurs
at t � 91. Unlike the previous two cases, the interfacial region
separating the solvent-rich and solvent-poor layers is now
much more diffuse. Furthermore, the solvent content ahead of
the propagating layer increases in time [see Fig. 4(b)]. As a re-
sult, the solvent-rich layer is able to penetrate the depth of the
hydrogel and reach the substrate much faster than when G = 0
or 0.01 [see Fig. 4(a)]. When the effective elastic constant is
increased to G = 0.05 [Fig. 3(d)], the solvent concentration
remains roughly uniform during the entire swelling process.

The numerical simulations show that while elasticity can
delay or even suppress the onset of phase separation, it fa-
cilitates the propagation of solvent-rich layers into the bulk.
The mechanism behind this enhancement is stress-assisted
diffusion. The solvent-rich layer will experience a greater de-
gree of volumetric expansion than the solvent-poor layer and
hence also experience a greater elastic stress. This gradient in
the elastic stress will promote the transport of solvent to the

(a) (b)

FIG. 4. Evolution of the (a) position of the interfacial layer Z̄ =
S̄(t ) that separates solvent-rich and solvent-poor layers in the hydro-
gel and (b) the solvent volume fraction at the surface (Z̄ = 0) and
substrate (Z̄ = 1). The position of the interfacial layer is implicitly
defined in (50). The parameter values are χ = 1, ω = 10−6, β = 0,
and Q = 0.01.

interfacial layer. As the effective elastic constant increases,
this transport becomes so effective that the interfacial layer
is suppressed and the composition remains spatially uniform
during the entire swelling process.

In cases where phase separation does occur upon initial
forcing of solvent into the gel, as in Fig. 3(b), the propagation
of the front slowly comes to a rest and the solvent profile
approaches an equilibrium shape if the influx of solvent is
stopped. This is shown in Fig. 5(a), where the forced-swelling
condition (45b) is replaced with a no-flux condition (Q = 0)
at time t = 200. Hence, the solvent distribution achieved by
forced phase separation is long-time stable if the total amount
of solvent is conserved. If instead of a no-flux boundary con-
dition being imposed at t = 200, the free-swelling condition
(45a) is imposed as in Fig. 5(b), then liquid drains back into
the bath, forming an advancing depletion front that moves
forward as the liquid is removed.

The front is remarkably robust and, as can be seen in
Fig. 5(a), persists even after the influx has been stopped, in
which case the transition front becomes stationary. The gel
composition to the left and right of the front is determined
by the binodals (49) as discussed in the section on the
phase-plane analysis. The mechanical pressure is larger in
the solvent-rich layer and smaller in the solvent-poor layer,
whereas the osmotic pressure varies in the opposite man-
ner. When both pressures are summed along with the small

(a) (b)

FIG. 5. The effect of stopping the flux of solvent into the gel.
Parameters and conditions are the same as for Fig. 3(b) except that
the flux was stopped at t = 200. In (a), the phase separation solvent
profile settles into an equilibrium shape with a fixed front S̄(t ). In
(b), a constant chemical potential μ = 0 is imposed as a boundary
condition at x = 0 for t � 200. A second, depletion front forms as
the liquid drains out of the gel into the bath at x = 0.
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FIG. 6. Phase separation upon quenching a swollen hydrogel with a no-flux boundary condition imposed at the free surface Z̄ = 0. The
initial condition is a noisy homogeneous state calculated with χ = 1. Simulations are carried out at χ = 1.82 with ω = 10−6, β = 0, and
G = 0.01. The initial exponential growth of the perturbations gives way to progressively slower coarsening resulting in a state with two spikes
for which no further motion could be detected. Further details are given in the main text.

contribution from μG, the chemical potential becomes spa-
tially uniform and takes the value μ � 6.57 × 10−2. In the
case of Fig. 3(a), the elasticity of the network has been
neglected so the mechanical pressure is too weak to coun-
terbalance the osmotic pressure. This imbalance drives fluid
from the solvent-poor to the solvent-rich layer.

Phase separation can also be induced by quenching, that
is, by a sudden change of the temperature that is mani-
fested through a change of χ . We consider a gel that is in
equilibrium with a reservoir at μ = 0, then sealed from the
bath while the value of χ is dramatically increased. Hence,
we start the simulations by first computing the equilibrium
concentration associated with χ = 1 by solving F (Ceq) = 0
and then perturbing it with small-amplitude random noise.
More specifically, the initial concentration is computed by
adding a random vector with uniformly distributed entries that
lie in the interval (0, 10−4) to Ceq. The simulations are run
with no-flux boundary conditions and a value of χ = 1.82,
which leads to F ′ < 0. The results are shown in Fig. 6 for the
case of G = 0.01. The onset of phase separation leads to the
formation of highly localized solvent-rich regions, and gives
rise to a composition profile consisting of several “spikes.”
The spacing between emerging spikes coincides with the
wavelength of the fastest-growing linearly unstable mode that
is computed by maximizing (47), which indicates that the
initial number of spikes is controlled by the characteristics
of the instability. Coarsening then occurs by shrinking some
of the spikes, whereby solvent is transferred predominantly
to the two immediate neighhors. The state shown in the last
subfigure with two spikes is very close to being stationary.
There was no visible change up to t = 1000 and the typical
flux in the domain at this time was approximately 10−12. To
ensure the spike solutions are well resolved, we performed
simulations using 104 grid points, which amounts to roughly
200 grid points per spike.

In Fig. 7, we use the same construction as in Fig. 6
but keep the chemical potential at the free boundary equal
to zero, μ = 0, allowing the gel to freely exchange solvent
with an adjacent reservoir. Furthermore, we do not perturb
the initial composition with random noise. This corresponds
to the situation indicated by arrows in Fig. 2. Increasing χ

reduces the equilibrium solvent concentration and results in
a depletion region that propagates toward the bulk from the
free surface. However, in contrast to Fig. 5(b), the depletion
front now triggers the onset of phase separation, which occurs
in a localized region that grows toward the bulk. The eventual

amplification of fluctuations in the bulk leads to a composition
profile that again consists of several spikes with high solvent
content. During the coarsening process, the solvent in the
spikes that are closer to the free surface tends to be rejected
from the network sooner and the spikes that are deeper in the
bulk persist for longer. After a sufficient amount of time has
passed, all excess solvent is pushed into the reservoir and a
homogeneous final state is recovered (not shown here).

The coarsening events are easily detected as kinks in the
evolution of the gel thickness,

h(t ) = 1 +
∫ 1

0
C(Z, t ) dZ. (51)

Each kink marks a change in the rate at which the hydrogel
thins. This decrease occurs because coarsening continually
diminishes the gradient in the chemical potential and, con-
sequently, the driving force behind solvent transport to the
free surface. After the final coarsening event, the thickness of
the network has decreased to 76% of its initial swollen value.
This situation is qualitatively similar to the experiment by Hu
et al. [16], who report highly swollen domains being ejected
from hydrogels that have undergone phase separation and are
surrounded by a solvent bath.

D. Phase-plane analysis

We investigate the structures seen in the simulations further
via a phase-plane analysis of the quasistationary solutions for
negligible flux. Thus, making the simplifications Ċ 	 1 and
j0 	 1 in (44), as well as γ (C) ≡ 1 for consistency with
the simulations, leads to the conclusion that the chemical
potential μ is uniform and the concentration must satisfy the
second-order ordinary differential equation (ODE)

ω ∂Z

(
∂ZC

(1 + C)1/2

)
= (1 + C)1/2[F (C) − μ], (52)

where F is defined in (44c). The generalized case with γ =
γ (C) is discussed in Appendix D. The equivalent phase-plane
system is given by

∂ZC = (1 + C)1/2W, (53a)

∂ZW = (1 + C)1/2[F (C) − μ]. (53b)

Notice that we have tacitly rescaled Z by ω1/2 	 1. This ODE
system has fixed points, i.e., constant solutions, (C,W ) =
(Ce, 0) where F (Ce) − μ = 0, and these are saddle points if
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FIG. 7. Phase separation upon quenching a swollen hydrogel with the boundary condition μ = 0 imposed at the free surface Z̄ = 0. The
initial condition is the homogeneous equilibrium solution at χ = 1 (without noise). Simulations are carried out using χ = 1.82 with ω = 10−6,
β = 0, and G = 0.01. The penultimate image is not the final state, as the single peak eventually vanishes.

F ′(Ce) > 0 or centers if F ′(Ce) < 0, near which solutions are
periodic since the system has a first integral (the total energy
of the system).

The number of fixed points depends on the value of μ and
the shape of the graph of F . Figure 8(a) shows graphs of F for
χ = 1 (this will be our value in the following unless otherwise
stated) and the four different values of G used in the numerical
simulations in previous sections. The value of χ was chosen
to be larger than 1

2 , which is the critical χc without elasticity
(G = 0). We expect the system to stabilize for sufficiently
large G and find, for χ = 1, that above Gc = 1.86 × 10−2,
all homogeneous gel compositions are stable, i.e., there is no
miscibility gap. We can see that we have either one, two, or
three fixed points, depending on the values of G and μ.

For G = 0.05 > Gc, the function F increases monotoni-
cally and hence we have only one fixed point C1, which is
a saddle. Inspection of the phase plane in Fig. 8(b) shows that
the only solution of (52) with boundary conditions ∂ZC = 0
at Z → ±∞ is the constant solution C = C1. Hence, forced
solutions of the time-dependent problem which are quasista-
tionary due to small influx are almost flat, i.e., only slightly
perturbed constant solutions as in Fig. 3(d). Since G = 0.02 is
also above Gc, the situation is the same for Fig. 3(c), though at
early times, the deviations from flat states are larger as we are
closer to the critical value of G.

We note that for μ = 0, we obtain this phase plane situation
for all non-negative G and χ . So, in general, the constant
solution is the only equilibrium in the free-swelling situation,
where the gel is simply placed in contact with the bath. So,
phase separation cannot be achieved in this situation except
transiently through a change of χ achieved, for example, by
changing the temperature in the gel.

For 0 < G = 0.01 < Gc, the graph of F has an S shape,
first increasing, then decreasing, and finally increasing again
as we increase C. Hence, there is a range of μ1 < μ <

μ2, where F (C) = μ has three equilibria (C,W ) = (C1, 0),
(C2, 0), (C3, 0), with C1 < C2 < C3. The first and the last
are saddle points and the middle is a center. As we vary μ,
essentially three different phase-plane situations emerge as
depicted in Figs. 8(c)–8(e), and these we discuss now.

For one special value μ̄ in the range μ1 < μ < μ2, the
saddle points connect and we have two trajectories between
(C1, 0) and (C3, 0), which are symmetric upon reflection at
the C axis [see Fig. 8(d)]. We can determine this value in
the following way. By multiplying (53b) with W on the left-
hand side and (1 + C)−1/2∂ZC on the right-hand side and
integrating over −∞ < Z < ∞ we recover the condition for
the binodal values (49). For the parameters we use here, we
obtain μ̄ = 6.57 × 10−2, C1 = 0.800, and C3 = 4.18 for the
chemical potential and the two binodal values, corresponding
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FIG. 8. (a) Graphs of F for χ = 1 and increasing values of G. (b)–(e) Phase planes of (53) when (b) χ = 1, G = 0.05, μ = 0; (c)–(e)
χ = 1, G = 0.01 with μ1 < μ < μ̄, μ = μ̄, and μ̄ < μ < μ2, respectively. The values μ̄, μ1, and μ2 are explained in the text. Fixed points
are emphasized by small circles, trajectories emanating from or asymptoting into fixed points are indicated by solid lines, all other trajectories
by dashed lines.
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to fluid volume fractions φ = 0.444 and 0.807, respectively.
These values are consistent with the two volume fractions
to the left and right of the slowly evolving leading front in
Fig. 5(a) and match the chemical potential computed from
numerical simulations of the full model.

For μ̄ < μ < μ2, the left fixed point connects with itself,
giving rise to a stationary solution with an isolated spike that
tends to the same value C1 for Z → ±∞. This is shown in
Fig. 8(e). Inside this homoclinic trajectory, all solutions in
the phase plane are periodic, consisting of periodic arrays of
spikes. Solutions that arise in the time-dependent simulations
display such spikes, but they usually differ in size and are
rarely periodic and are hence not stationary. However, when
the spikes are well separated, the evolution is slow and can
be considered to be quasistationary, except for brief transients
where a spike disappears. We therefore expect these spikes
to be well approximated by a homoclinic trajectory though
the value of μ can be different for each spike. For such a
spike solution of (53), we can write a condition that is derived
analogously to (49):∫ Cmax

C1

F (C)dC = (Cmax − C1)μ, (54)

and F (C1) = μ, where Cmax is the maximum value of the
spike. These conditions fix μ in terms of the maximum value
(or vice versa), and it decreases with Cmax. Hence, the smaller
spikes have a larger potential and this imbalance between the
spikes sustains the evolution. As fluid is driven away from the
smaller to the larger neighboring spikes, the former shrinks
and eventually disappears. This process can be observed, for
example, for the middle spike between the last two snapshots
in Fig. 6. The corresponding situation occurs for μ1 < μ < μ̄

[see Fig. 8(c)] but with the spikes pointing downward, i.e.,
appearing as narrow regions where the gel is relatively dry
compared to the surroundings.

A special situation arises for G = 0, that is, for vanishing
stiffness. For χ above the critical value χc = 1

2 , there are at
most two fixed points for μ > 0, and hence front solutions
as in the phase plane in Fig. 8(d) never occur. The situation
in the phase plane is similar to the one shown in Fig. 8(e),
except that the rightmost fixed point is absent. Therefore,
in the forced-swelling simulations in Fig. 3(a), the liquid
accumulates to a spike right at the left boundary, with an ever-
growing maximum Cmax, that is, with the fluid volume fraction
φ f → 1. As this happens, the chemical potential μ goes down.
For decreasing chemical potential, the far-field value C1 of the
homoclinic solution in the phase plane decreases too [as can
be seen from Fig. 8(a) from intersecting the graph of F for
G = 0 with horizontal lines at decreasing heights μ]. This is
consistent with the behavior in Fig. 3(a), where the fluid never
forms a moving front and the fluid volume fraction deeper in
the gel is reduced at larger times.

IV. CONCLUSION

In this study we derive a general model for a hydrogel
that accounts for finite strain of the polymer network and
the contributions to the free energy due to the formation
of internal interfacial layers between the phases, together
with appropriate boundary conditions at fixed and the free

boundary through which the solvent is transported into (or out
of) the polymer network. Based on this model, we investigated
uniaxial swelling and deswelling for a range of parameter
settings. The model predicts spinodal decomposition for large
enough χ , which can in turn be suppressed by larger shear
moduli. We predict so-called “spike” solutions representing
one-dimensional “droplets” which arise from spinodal decom-
position and then undergo coarsening.

Within the unstable regime, the forced intake of solvent
induces a volume phase transition by pushing the system into
the spinodal region of the phase diagram. This leads to a
sharp front, separating highly and weakly swollen phases,
that propagates into the gel from the free surface. While a
nonzero elastic modulus is required to force the transition
front into the gel, for a modulus that is large enough, the
formation of this front is suppressed and a swelling mode
akin to the gradual transition in the free-swelling case oc-
curs. Interestingly, the front becomes stationary if the flux
is switched off, and a second draining front arises if instead
the free boundary is set at the constant chemical potential
of the bath. Spinodal decomposition can be initiated prefer-
entially near the draining front before it occurs throughout
the gel layer, which is followed by coarsening and ejection
of highly swollen domains through the free boundary. This
ejection of domains has been experimentally observed by
Hu et al. [16]. Our modeling framework enables this phe-
nomenon to be captured, in contrast to previous theoretical
studies which have imposed periodic boundary conditions
[21,23].

By treating the Flory-Huggins parameter as a constant, the
analysis predicts that volume phase transitions cannot occur
under (one-dimensional) free-swelling conditions. However,
accurately describing many hydrogel systems requires the
use of empirically determined interaction parameters that are
concentration dependent. This additional dependence can sub-
stantially alter the free-swelling thermodynamics and enable
volume phase transitions to occur upon crossing a critical
temperature, as observed in PNIPAM-water systems [35]. In
this case, the equilibrium free-swelling curve F (C) = 0 would
pass through the spinodal region of the phase diagram, leading
to an interesting situation where free swelling will induce
spinodal decomposition. The model presented here is well
suited to study such a situation.

Another key feature that determines the swelling ther-
modynamics is the elastic response of the material. This is
affected by the choice of constitutive relationship as well as
the allowable modes of deformation. Accurately describing
the mechanics of the highly swollen regions that occur upon
phase separation, or indeed the conditions for phase separa-
tion, may require alternative constitutive equations that extend
the neo-Hookean law, such as the Gent law which considers
the finite extensibility of polymer chains. Restricting the gel
to uniaxial deformations leads to the generation of a large
mechanical pressure which was found to suppress the onset of
phase separation. By relaxing this restriction, the volumetric
expansion will be distributed across the three principal axes,
thereby reducing the elastic stresses generated along these
directions and hence the mechanical pressure. This could
potentially widen the window where phase separation occurs,
making this a more robust phenomenon.
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It would also be interesting to extend our model to other ge-
ometries, in particular, to look at the core-shell structure that
forms in spherical beads, and the impact of expansive stresses
on the core [15]. In two- and three-dimensional situations
involving a gel that is thin compared to its length h 	 L0, we
expect additional instabilities to affect, for example, the transi-
tion fronts induced by the forced influx of solvent. The volume
phase transition produces a bilayer configuration consisting of
a highly swollen film that is bonded to a weakly swollen sub-
strate. Such configurations are well known to become unstable
[32,36]. For experimental comparisons with the results here,
it may be possible to suppress these instabilities by choosing
a small enough length scale for the lateral confinement but,
in general, corrugations of the one-dimensional solutions will
trigger a more complex evolution of the transition boundary.
In this context, it would also be exciting to further explore
the analogy with lithium intercalation in battery electrodes
and the instabilities observed there [37–39]. It would be
interesting to know if stress relaxation at the free surface also
promotes phase transitions [40] in a swelling hydrogel.

APPENDIX A: SOLVENT TRANSPORT
IN EULERIAN COORDINATES

In terms of Lagrangian coordinates X associated with
the dry reference state, the equation governing the nominal
concentration of solvent C is given by

Ċ + ∇0 · j0 = 0. (A1)

To map (A1) to the corresponding current configuration, we
consider the integral form of the balance law, which reads as

d

dt

∫
V0

C dX = −
∮

∂V0

j0 · N dA, (A2)

where V0 is an arbitrary volume element in the dry state with
corresponding (outward) unit normal vector N. Using dx =
J dX , Nanson’s formula, and the Reynolds transport theorem
gives∫

V (t )

[
∂c

∂t
+ ∇ · (cvn)

]
dx = −

∮
∂V (t )

j · n da. (A3)

Here, c = C/J and j = J−1F j0 are the concentration and the
flux in the current configuration, respectively, and vn = ∂x/∂t
is the velocity of the material element initially contained
within V0. The corresponding local balance law in terms of
Eulerian coordinates is then

∂c

∂t
+ ∇ · (cvn + j) = 0. (A4)

The two contributions in the divergence operator, which sum
to give the total solvent flux, represent the fact that solvent
is advected with the polymer network and transported down
gradients in the chemical potential. Assuming incompressible
materials, the solvent volume fraction is given by φ f = vc,
where v is the volume per solvent molecule. Upon multiplying
(A4) by v, we can obtain the usual conservation law

∂φ f

∂t
+ ∇ · (φ f v f ) = 0 (A5)

by letting the solvent velocity v f be defined through the
relation φ f v f ≡ φ f vn + v j. This definition implies that

φ f (v f − vn) = v j. (A6)

Using the definition of the flux in (18), we obtain

φ f (v f − vn) = −Dφ f

kBT
∇μ, (A7)

where D = D0(1 − φ f )−β from (26). The Eulerian transport
model is completed by linking the network velocity vn to the
displacement u via

∂u
∂t

+ (vn · ∇)u = vn, (A8)

and using the fact that the deformation gradient tensor is now
given by F−1 = I − ∇u.

APPENDIX B: CALCULATION OF THE KORTEWEG
STRESS TENSOR

The Korteweg stress tensor K can be computed directly
from the expression

Ki j = 1

J

∂ψ4

∂FiK
F jK , (B1)

where ψ4 represents the interfacial free energy density. We
write ψ4 in terms of the nominal concentration C as

ψ4 = γ (C)

2
J|∇C|2. (B2)

To calculate the components of K, we use the fact that

∂

∂xi
= HiJ

∂

∂XJ
. (B3)

Thus, the interfacial energy (B2) can be written as

ψ4 = γ (C)

2
JHaKHaL

∂C

∂XK

∂C

∂XL
. (B4)

To evaluate the derivatives of ψ4 with respect to F, we use

∂J

∂FiK
= JHiK ,

∂HaB

∂FiK
= −HaKHiB. (B5)

Then, by using the identity HaBFbB = δab and

∂

∂FiJ
(HaKHaL )FlJ = −HiKHlL − HiLHlK , (B6)

it can be shown that

∂

∂FiJ

(
HaKHaL

∂C

∂XK

∂C

∂XL

)
FlJ = −2

∂C

∂xi

∂C

∂xl
. (B7)

When combining everything, we find that

Ki j = γ (C)

(
1

2

∂C

∂xk

∂C

∂xk
δi j − ∂C

∂xi

∂C

∂x j

)
. (B8)

In tensor form, this is equivalent to

K = γ (C)
(

1
2 |∇C|2I − ∇C ⊗ ∇C

)
, (B9)

which corresponds to (14b).
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APPENDIX C: CONTRIBUTIONS TO THE CHEMICAL
POTENTIAL FROM COMPOSITION GRADIENTS

The contributions to the chemical potential from gradients
in the solvent concentration are given by

μG = − ∂

∂XL

(
γ (C)JHiLHiK

∂C

∂XK

)
. (C1)

However, this can be simplified by first noting that

μG = −γ (C)
∂

∂XL
(JHiL )

∂C

∂xi
− J∇ · [γ (C)∇C]. (C2)

Furthermore, the first term on the left-hand side of (C2) can
be shown to be zero, i.e.,

∂

∂XL
(JHiL ) = 0. (C3)

To show that (C3) is true, we use the product rule to obtain

∂

∂XL

(
JHaL

) = ∂J

∂XL
HaL + J

∂HaL

∂XL
. (C4)

Then, using the identities in (B5), we find that

∂

∂XL
(JHaL ) = J

(
HiKHaL

∂FiK

∂XL
− HaQHpL

∂FpQ

∂XL

)
. (C5)

Now, we can use the equality of mixed second derivatives to
write

∂FpQ

∂XL
= ∂

∂XL

(
∂xp

∂XQ

)
= ∂

∂XQ

(
∂xp

∂XL

)
= ∂FpL

∂XQ
. (C6)

This gives

∂

∂XL
(JHaL ) = J

(
HiKHaL

∂FiK

∂XL
− HpLHaQ

∂FpL

∂XQ

)
= 0,

(C7)

as claimed in (C3).

APPENDIX D: PHASE-PHASE ANALYSIS AND
SIMULATIONS WITH A COMPOSITION-DEPENDENT

INTERFACIAL ENERGY

The phase-phase analysis carried out in Sec. III D can be
generalized to account for composition-dependent interfacial

FIG. 9. Numerical simulation of a forced-swelling scenario that
is stopped when t = 200 after which a no-flux condition is imposed.
The parameters are the same as in Fig. 6 except that ω = 10−4 and
γ (C) = (1 + C)−4.

energies γ = γ (C). The corresponding phase-plane system
for the quasistationary solutions of (44) is given by

∂ZC = (1 + C)1/2W, (D1a)

W

2
∂Zγ (C) + γ (C)∂ZW = (1 + C)1/2(F (C) − μ), (D1b)

which is analogous to (53). The fixed points of (D1) and
their linear stability are the same as those of (53). Therefore,
the dynamics of (D1) will be qualitatively similar to those
illustrated in Fig. 8. Multiplying (D1b) by W results in

1
2∂Z (γ (C)W 2) = [F (C) − μ]∂ZC. (D1c)

Integrating (D1c) from Z = −∞ to +∞ produces the same
conditions defining the spike solutions given by (54) and the
binodal given by (49).

In Fig. 9 we illustrate the effect of using a composition-
dependent form of γ in a numerical simulation of a forced-
swelling scenario that is stopped when t = 200. This situation
is analogous to that shown in Fig. 6(a). We take γ (C) = (1 +
C)−4, which corresponds to a (dimensionless) interfacial free
energy density given by ψ4 = (ω/2)J|∇c|2. The qualitative
behavior of the solution remains unchanged; however, the dif-
fuse interface separating the two layers is now much thinner,
despite the fact that the parameter ω has been increased from
10−6 to 10−4.
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