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Abstract
We investigate the dewetting rates of thin liquid films using a lubrication
model that describes the dewetting process of polymer melts on hydrophobized
substrates. We study the effect of different boundary conditions at the
liquid/solid interface, in particular, of the no-slip and the Navier slip boundary
condition, and compare our numerical solutions for the no-slip and the slip-
dominated cases to available results that originate from scaling arguments,
simplified flow assumptions and energy balances. We furthermore consider
these issues for an extended lubrication model that includes nonlinear curvature.

1. Introduction

Liquid, viscous films that are uniformly spread onto a hydrophobic surface tend to dewet in
a process that is initiated either spontaneously through spinodal decomposition or induced
for example through nucleation. The dry spots, or holes, that form as a result subsequently
grow as the newly formed contact line recedes, thereby accumulating liquid in a characteristic
capillary ridge at the edge of the hole, which increases in width and height as the dewetting
proceeds. The growth of a hole continues until it gets close to neighbouring holes. The liquid
evolves into a pattern of droplets and possibly ridges where holes have met; eventually, these,
too, break up into droplets. The droplet pattern continues to change on a long timescale in a
process called coarsening, whereby drops slowly drift and exchange mass.

Various aspects of these stages have been addressed experimentally and theoreti-
cally [8, 9, 11, 17, 20, 25, 26, 28]. Theoretical and in particular numerical work using lu-
brication models for the film profile have mostly concentrated on the process of the initial
hole formation [25, 26], or the formation of multiple hole patterns and of satellite holes on the
side facing the ‘thick’ film [1, 12] and also on the long time evolution of the residual droplet
patterns [4]. Except for the no-slip case [3], the evolution of a single hole after rupture but
well before the collision with neighbouring holes and the growth and shape of the ridges has
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Figure 1. Sketch of a portion of a dewetting polymer film of initial thickness h∞. The dewetting
front and the ridge propagate in the direction of the positive x-axis, as indicated by the bold-face
arrow, leaving behind a residual film of thickness h∗.

only been treated using approximate formulas derived from scaling arguments and energy bal-
ances ([2, 7, 15] and references therein). In order to understand the dynamics in this regime,
it is first of all of interest to establish how these approximated laws compare to the solution
of the corresponding lubrication model, essentially a fourth order nonlinear PDE for the film
profile.

This task has been carried out in considerable detail by Ghatak et al [3] for the case where a
no-slip condition holds at the liquid/solid interface. For the Navier slip boundary condition, no
comparable study exists. The focus of this paper is the comparison of our numerical solutions
for the evolution of the contact line position for a lubrication model with the predictions of
the scaling laws. Furthermore, we also consider extensions of the lubrication model where
the full nonlinear expression for the curvature of the liquid surface replaces the Laplacian
that is common in lubrication theory. This is important for applications where the solid is
very hydrophobic, leading to large contact angles that violate, at least locally, the small slope
assumption.

2. Formulation

In order to describe the evolution of the film surface z = h(x, y, t) we use a lubrication
model that includes the influence of surface tension and the effective interface potential W
of the air/polystyrene/SiO/Si layer system used in [22]. Figure 1 shows the film as it dewets
in the x-direction from a straight front oriented in the y-direction. In dimensional form, the
lubrication model [14], which we state here for the one-dimensional case, since we will not
consider spanwise perturbations in this paper, reads

3ηht +
∂

∂x

[
m(h)

(
σhxxx − W ′′(h)hx

)] = 0, (1)

where η and σ are the liquid viscosity and the liquid surface tension, respectively, and W ′′(h)

is the second derivative of the effective interface potential with respect to h.
Also, m(h) is a non-negative mobility coefficient, the form of which depends on the

boundary conditions at the liquid/solid interface. The widely used Navier slip condition relates
the slippage velocity v of the liquid at the wall to the local shear rate ∂v/∂z via

v = β ∂v/∂z, (2)

where the slip length β is defined as the distance below the interface at which the liquid velocity
extrapolates to zero. For the above slip boundary condition at the substrate, the mobility has
the form m(h) = h3 + βh2.
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The effective interface potential is composed of repulsive and attractive long-range van
der Waals contributions, with a separate contribution for each of the layers of the substrate,
and a short-range term which accounts for Born-type repulsion. The latter term provides a
cut-off by penalizing a thinning of the film below a positive thickness threshold given by the
minimum h∗ of the potential. In the specific experimental situation, the substrate is a Si wafer
coated with a native SiO layer of thickness dSiO, in turn covered by a monolayer of OTS of
thickness dOTS. The effective potential for this situation as given in [23] is

W (h) = cs

h8
− AOTS

12πh2
+

AOTS − ASiO

12π(h + dOTS)2
+

ASiO − ASi

12π(h + dOTS + dSiO)2
(3)

where cs denotes the strength of the short-range part of the potential, and ASiO, ASi and AOTS

are the Hamaker constants of polystyrene on SiO, Si and OTS respectively. AOTS and ASiO

nearly cancel out, so we can neglect the third term in what follows.
The numerical values for (3) were constructed in [23] based on AFM measurements of

the static contact angle of about 58.5◦. This means that slopes near the contact line are order
one, so that it becomes interesting to consider replacing the linearized curvature in (1) with
the full nonlinear expression. We therefore also investigate here a modified model

3ηht +
∂

∂x

[
m(h)

(
σκx − W ′′(h)hx

)] = 0, κ = hxx

(1 + h2
x)

3/2
, (4)

and compare the results with those for (1). Augmented lubrication models like (4) that retain
the full nonlinear curvature have been used for various types of coating flows and for the case
of liquids spreading on solids, for example in [27].

The lubrication model (1) treats the polymer film in its melt state as a Newtonian liquid.
The assumption of Newtonian behaviour is justified for polymers having short chains well
below the entanglement length of polystyrene (which is around 18 kg mol−1 [13]) in studies
by [6, 12, 21]. Our study will focus on this case.

In order to minimize the number of parameters that appear in the equation, we non-
dimensionalize so that the time derivative of h, the contribution from surface tension and the
first terms in W ′′(h)hx balance. This is achieved with the following choices:

H =
(

144πcs

ASiO

) 1
6

, L = 4π

(
81σ 3c2

s

2π A5
SiO

) 1
6

, T = 864π2ησ

A2
SiO

(
4π5c5

s

9A5
SiO

) 1
6

(5)

for the normal and parallel length scales and for the timescale. Introducing these scalings for
h, x , y and for t we obtain

∂h

∂ t
+

∂

∂x

[
m(h)

(
hxxx −

{
1

h10
− 1

h4
+

a

(h + d)4

}
hx

)]
= 0. (6)

Note that in (6) the slip length β, which is contained in the mobility m(h), has also been
scaled with H . The expression in curly brackets is the second derivative of the following
non-dimensional form of the effective interface potential:

W (h) = 1

72h8
− 1

6h2
+

a

6(h + d)2
, (7)

which contains two parameters, namely

a = (ASiO − ASi)/ASiO and d = (dOTS + dSiO)/H. (8)

For the model (4) with the nonlinear expression for curvature, the corresponding non-
dimensional form is

∂h

∂ t
+

∂

∂x

[
m(h)

(
κx − W ′′(h)hx

)] = 0, κ = hxx

(1 + ρ2h2
x)

3/2
, (9)
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Table 1. List of physical parameters, scalings and non-dimensional parameters (note d� ≡
dOTS + dSiO).

cs 4 × 10−81 J m6 ASiO 2.2 × 10−20 J ASi −1.4 × 10−19 J

d� 4.4 × 10−9 m σ 30.8 × 10−3 N m−1 η 4 × 104 Pa s

H 2.09 ×10−10 m L 1.29 × 10−10 m T 1.19 × 10−4 s

a 7.36 d 21.1 ρ 1.62

where ρ is another parameter that measures the ratio of the length scales,

ρ = H

L
= 1

2

(
A4

SiO

18π4σ 3cs

)1/2

.

The numerical experiments presented here are based on physical parameters from [23, 9]
which are listed in table 1, together with the resulting values for the scalings and for the
non-dimensional parameters a, d and ρ. Note that the length scales are very small (in the
sub-nanometric range) which is to be expected since the balance we used to fix them includes
the Born repulsion term in the potential which acts only over very small distances. As a result,
the residual film h∗ = 0.833 (equivalent to 0.174 nm) is an order one value in the scaled
variables, while the size of the ridge or the distance it travels will have very large values.

In many fluid mechanical situations, the slip length is very small compared to other length
scales in the problem and slip conditions such as (2) are only invoked to relax the stress
singularity near a moving three-phase contact line [5]. Since the inclusion of a Born repulsion
term in the potential W (h) stabilizes a very thin residual film in the region of the hole, thus
regularizing the contact-line region, one might consider neglecting slip altogether and set
β = 0. There is growing evidence, however, that polymer melts can slip significantly at the
substrate, i.e. the slip length β can be on the order of ten to a few hundred nanometres, or
even larger (e.g. [16, 24]). The slip length then becomes comparable to, or even exceeds, the
thickness of the polymer film used in many experiments, for example those in [7, 11]. Then
one would expect that the term βh2 balances or dominates h3 in the mobility and in fact in
the latter case determines the timescale of the evolution. In the following, we will discuss
and compare the two asymptotic cases: no slip, where β = 0 so that m(h) = h3, and the
(Navier) slip-dominated case with mobility m(h) = h2. The latter is obtained by rescaling
time with β, and letting β → ∞ in (6) and (9). We note that this limit was considered before
for the lubrication model of a thin film by Sharma and Khanna in [24]. Finally, we also briefly
look into the transition between these two regimes by using finite, non-zero values for β and
observing the contact-line motion as the height of the ridge of the film profile approaches and
then passes β.

3. Dewetting of the unperturbed ridges

To investigate the evolution of the straight ridge/dewetting front, we solve (6) numerically,
and subsequently also (9), using a finite-difference scheme with implicit time discretization.
The profile employed as initial condition is a steep front connecting the dewetted region and
the unperturbed film of thickness h∞, so that limx→−∞ h = h∗ and limx→∞ h = h∞. For
the numerical experiments here, we usually set h∞ to a reference value, href = 20.8 (noting
in passing that this is 25h∗), and, where stated explicitly, to exactly the fourfold thickness.
Recall that h∗ is the film thickness that corresponds to the minimum of the potential (7) and is
energetically strongly preferred compared to the initial thickness, so that in the computations
the film dewets, i.e. the front moves to the right.
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We remark that our choice for h∞ corresponds to a dimensional film thickness of 4.34 nm.
This is much smaller than the typical values used for the experiments presented in [9],
which were in the range of 100 nm and more. However, larger values for h∞ increase the
computational work considerably, so we chose a value that was fairly small but large enough
to prevent or delay satellite hole formation in the simulations until the ridge, i.e. the base state,
had travelled over a distance that is comparable to typical experiment hole sizes. Satellite
holes as described in [12] tend to form fairly quickly in thinner films through rupture of the
first minimum of the oscillatory tail on the ‘wet’ side of the ridge. By this term we denote the
side that faces the ‘thick’ film into which the ridge penetrates as it dewets.

We use the lubrication model in the no-slip and slip-dominated case to track the position
of the front xc(t), which we take to be the location of the inflection point, on the ‘dry’ side of
the ridge, i.e. the side that faces the dewetted area. This is where the dewetting front begins
to pass over into the residual film in the hole and it captures quite well the place where one
would intuitively place the contact line position. The results were normalized by subtracting
the initial location of the front so that xc(0) = 0. We then fit the ansatz

xc(t) = a0 + a1 |t + a2|λ , λ > 0, (10)

to the numerically obtained results for xc(t). Computations are continued, for each case, until
the normalized xc(t) has reached 4.5 × 105, or 58 µm, and the data accumulated in this time
are used to fit (10). Note that these (non-dimensional) times are different for the no-slip and
the slip-dominated case, since the two mobilities m(h) = h3 and m(h) = h2 differ by a factor
h that is typically equal or larger than h∞ in the ridge and the thick film. To limit the effect of
initial transients peculiar to our choice of initial data, we also limit the range of xc for the fit
from below in that we exclude all data points with xc < 1000.

3.1. The no-slip case
We begin with a discussion of the no-slip case. Theoretical work (see [15] and references
therein) predicts that, except for a logarithmic prefactor, the dewetting rates are independent
of the size of the ridge, which would mean that the front moves at a constant speed, implying
a spreading law like (10) with λ set to one. A best fit of (10) to the numerical results with
xc � 4.5 ×105 for yields λ = 0.913 < 1, however. Such a deviation of the exponent from one
was also noted in [3]. The authors also point out that increasing the time interval over which
the fit is carried out tends to increase λ, suggesting that the predicted asymptotic behaviour
might be approached eventually, but only for extremely long times.

Furthermore, dewetting rates are predicted to be independent of the initial thickness h∞
of the dewetting film, see again [16] and references therein, and this is recovered to a good
degree by our numerical computations for the lubrication model, see figure 2(a), though a
slight difference remains.

The reason for the less than linear dewetting law can be routed to the logarithmic prefactor,
which introduces a weak dependence on the width of the ridge [15]. Since the width of the
ridge changes by orders of magnitude in the above numerical experiment, even a logarithmic
dependence can have a noticeable effect on the observed front evolution. Furthermore, since
the rates at which the size of the ridge grows depends on the initial film thickness h∞, this
provides a mechanism by which a (weak) dependence of the dewetting rates on h∞ enters.

We can use the expression given in [15] for the dewetting velocity

ẋc(t) = 1

12 × 21/2l

σ

η
θ3

s ,

to obtain a better fit function for xc. Here l ≈ ln(cw(t)) denotes the logarithmic prefactor, w(t)
is the width of the ridge and c is a constant that depends on the (dynamical) contact angle and a
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Figure 2. Evolution of the contact line position with time for the no-slip case, for two different
values of h∞. Panel (a) on the left shows the results for the linearized expression for curvature;
the right panel shows the results using the full nonlinear expression for curvature. Note that dotted
curves in (b) duplicate the solid and dashed curves from (a) to facilitate comparison of the results
for the two curvature expressions.

microscopic length that provides a cut-off at the contact line (an obvious candidate here would
be the residual film thickness h∗). We will not need a detailed expression for this constant in
what follows, and also, further constant factors that appear will be tacitly absorbed into c.

Upon rescaling the expression, we obtain the following non-dimensional form:

ẋc(t) = θ3
s

25/2 ln (cw(t))
. (11)

The width can be approximately determined from the contact line evolution in the following
way: as the ridge translates to the right its volume increases by ẋc(t)h∞. Furthermore, we
assume that the ridge grows in approximately a self-similar way, so its volume scales like the
product of its height and width. Assuming further that the dynamical contact angle remains
constant [15] (noting though that for example in [3] it does change, but only slowly for later
times), it follows that the ratio of the ridge height and width remains approximately constant,
too. Hence the volume change is proportional to the time derivative of w(t)2. Equating the
two expressions for the increase in volume suggests that w(t) is proportional to (xc(t)+ c1)

1/2,
where c1 is another constant that we will not elaborate on.

Inserting into (11), we obtain

ẋc(t) = θ3
s

23/2 ln (c(xc(t) + c1))
,

which has the implicit solution

t = −t0 + 23/2θ−3
s (xc + c1) ln (c(xc + c1)) , (12)

where t0 is a constant of integration. This suggests using the following function to fit with the
numerical data for xc(t):

t = b0 + b1|xc + b3| ln(b2|xc + b3|), b2 > 0. (13)

Indeed, this ansatz could be excellently fitted to the numerical data in the range 1000 � xc �
4.5 × 105, while a simple fit with a linear function produced a line that visibly differed from
the numerical graph for xc(t). Moreover, we can compare the value obtained for b1 with the
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Figure 3. Evolution of the contact line position with time for the slip-dominated case, for two
different values of h∞. Panel (a) on the left shows the results for the linearized expression for
curvature; the right panel shows the results using the full nonlinear expression for curvature. The
dotted curves in (b) duplicate the solid and dashed curves from (a) to facilitate comparison of the
results for the two curvature expressions. Note also that in each figure the crosses were obtained
by rescaling the dashed curve with 41/3.

theoretical prediction in (12). We interpret the static contact angle θs to actually mean the
slope for the outer solution of a static ridge, which is given by (−2W (h∗))1/2 = 0.596 (see for
example [4]); then we obtain 23/2θ−3

s = 13.4. The fit resulted, for h∞ = href , in b1 = 13.3,
which is indeed close to the prediction.

Next we investigate the effect of retaining the full nonlinear curvature on the evolution of
the front, by carrying out the corresponding numerical simulations for (9). We see in figure 2(b)
that the evolution is closer to a linear law than for the model (6), i.e., the curves appear to be
flatter and fitting of (10) results in a value for λ = 0.919 that is slightly closer to one. Again,
a logarithmic ansatz (13) could be excellently fitted to the numerical data; taking as usual the
results for h∞ = href , the fit yields b1 = 10.4. Also, changing the film thickness has a smaller
impact on the dewetting rate than for (6), as can be seen from comparing the solid and dashed
curves in figure 2(b), which are closer together than in figure 2(a).

3.2. The slip-dominated case

For the slip-dominated case, [2, 16] predict a t2/3 law for the evolution of the dewetting front.
In fact, the evolution law is much more specific; in the form published by [18], it reads

xc(t) = 2−4/3C1/6σ 2/3θ5/3
s η−2/3h−1/3

∞ β2/3t2/3

in dimensional form, from which we obtain the dimensionless version (by using (5) and then
rescaling time according to βt → t),

xc(t) = [
32/3C1/3/42/3

]
θ5/3

s h−1/3
∞ t2/3. (14)

We remark that since θs measures a slope, it also has been scaled by H/L. The value for the
constant C is given by [18] to be about 0.1; using this, the numerical prefactor enclosed by
brackets in (14) evaluates to 0.38.

We first verify the exponent for the dewetting law. A best fit of (10) to the numerically
obtained evolution of xc(t) yields λ = 0.661, which is indeed very close to the prediction
λ = 2/3. Also, (14) implies that for thicker initial coatings, the dewetting proceeds more
slowly and in figure 3(a) we see that this is the case. In fact, upon rescaling the line for
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Figure 4. Comparison of the evolution of the dewetting front for a finite slip length, i.e. mobility
m(h) = h3 + βh2 (solid curves) to the (unscaled) slip-dominated case, i.e. mobility m(h) = βh2

(dashed curves). The choice for the slip length β is indicated on the graph for each pair of curves.

the h∞ = 4href by 41/3 the result collapses onto the line for h∞ = href , as required by the
h−1/3

∞ -dependence in (14).
Furthermore, we can compare the prefactors in (14) with those obtained from our fittings

for the case h∞ = href = 20.8. Inserting the previously computed value for θs into (14)
yields xc(t) = 0.0583t2/3; we compare this factor to the values for a1 obtained from our fits.
From the fit of (10) we get a1 = 0.0716. This is only about 25% off the predictions, which
is quite satisfactory if one takes into account that derivation of (14) in [2] includes scaling
arguments and other approximations that make the resulting accuracy (regarding prefactors)
hard to predict.

Finally, we turn to the model (9) using the nonlinear expression for curvature. In the
slip-dominated case, the impact on the evolution of the dewetting front appears to be very
small. In figure 3(b), the numerical results lie very close to their counterparts for the model (6)
with linearized curvature, as can be seen by comparing the solid and dashed curves with the
dotted curves. Consequently, the results for the fit produce values that are close to the former
values; for h∞ = href , we obtain λ = 0.661 and a1 = 0.0739. Finally, rescaling the graph for
xc(t) for h∞ = href (dashed curve in figure 3(b)) by 41/3 yields a curve that coalesces with the
curve for h∞ = href (solid curve).

3.3. Finite slip length

In realistic experiments, slippage occurs for a finite slip length β. Since in the mobility
m(h) = h3 + βh2 the second term dominates the first when h � β, we expect to find the
typical dewetting t2/3 law when the film profile is everywhere much smaller than the slip
length. On the other hand, as the ridge grows and its height becomes of the order of, and
eventually larger than, the slip length, we expect the evolution of xc(t) to increasingly depart
from the t2/3 law. Figure 4 compares the numerical results for two choices of finite β with the
corresponding evolution of xc(t) using the mobility m(h) = βh2 for the slip-dominated case.
Note that for the comparison it is convenient to use this form for the mobility where β has not
been removed by a rescaling of time.

Indeed, in both cases, the solid lines agree well with the dashed lines for early times but
deviate at larger times. Also, for the case of larger slip length, the relative deviation increases
more slowly. To make a quantitative statement, we record the deviation of the slip-dominated
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evolution of xc from the finite slip evolution when the height of the ridge is equal to the slip
length. The times at which this occurs are indicated in the figure by the vertical dotted lines,
the left corresponding to the lower pair of lines and β = 100, the right to the upper pair and
hence β = 400. The relative deviations are quite close, in that the deviations of the front
positions from the finite slip evolution are in the range of 7–7.5% for the two choices of β. We
conclude that indeed the ratio of slip length and typical scale of the ridge height determines
when the transition from a slip-dominated to a no-slip front evolution occurs.

A fitting ansatz for the intermediate case between no-slip and slip-dominated contact line
evolution is derived by Jacobs et al in [7] by adding the separate contributions for the contact
line velocity and then integrating the arising ODE, without detailing how their parameters
relate to the slip length β. For future studies, it would be interesting to derive a dewetting law
for the finite slip length case that clarifies how the slip length quantitatively determines the
transition from a slip-dominated to a no-slip regime for the growing ridge. This could then be
used to reconstruct the slip length from measurements of the contact line evolution.

4. Conclusions

In this paper, we revisit the evolution laws for dewetting fronts at the receding capillary ridges
that form in situations where a thin polymer liquid dewets from a (very) hydrophobic substrate,
and compare them to our numerical results for a lubrication and an extended lubrication model.
We find that these laws capture the essence of the evolution, even quantitatively, quite well.

Our interest in these questions was spurred by the suggestion by Reiter and Sharma in [19]
that slippage plays a role in the appearance of finger-like protrusions at the contact line. Their
rationale can be summarized as follows: the different dewetting behaviour of ridges in the no-
slip and the slip-dominated case indicate that the dewetting rate in the latter case significantly
decreases as the width (and height) of the ridge increases,while in the no-slip case the dewetting
rate is approximately independent of the size of the ridge. Now consider a perturbation of the
ridge in the spanwise (i.e. y-) direction, giving rise to thinner and thicker parts along the
contact line. Then, one would expect the thinner parts to dewet faster, while the thicker parts
stay behind, thus reinforcing the pattern.

In another paper [9], we focus on this issue and use the two-dimensional form of the
lubrication model (9) to investigate how spanwise perturbations evolve together with the
dewetting of the ridge. Similarly as in this paper, we distinguish the asymptotic cases of
no-slip (m(h) = h3) and slip-dominated mobility (m(h) = h2). We are first led to consider a
somewhat non-standard linear stability analysis, since the base state, i.e. the dewetting ridge,
is non-stationary. This analysis reveals that, both for the no-slip and slip-dominated cases,
perturbations of the ridge are amplified, but the effect is greater by orders of magnitude
in the slip-dominated case. Furthermore, the perturbations become asymmetrical for the
slip-dominated mobility, while they develop symmetrical bulges under no-slip conditions.
Additional computations that solve the two-dimensional lubrication model confirm that
these findings carry over into the nonlinear regime. In this paper a comparison of our
theoretical results and experiments of dewetting polystyrene on hydrophobic substrates is made.
The experiments showed the formation of finger-like protrusions for polymers of different
molecular weight well below the entanglement length. In striking accordance with the observed
asymmetry of the perturbations in the numerical simulations, the finger-like protrusions only
grow on the side of the ridge facing the hole,while the back side of the ridge remains almost flat.

The potential that applies to the liquids and substrates in the experiments in [9] is the same
as the one studied in the current paper, which leads to a large length scale ratio ρ = H/L.
Therefore, we also consider, in a further article [10], the extended lubrication model that
includes the full nonlinear expression of curvature, i.e. the two-dimensional form of (9).
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