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Abstract. Thin films of silicon oil driven up an inclined silicon wafer by a thermally induced
Marangoni force develop unusual shock profiles involving a non-classical undercompressive shock,
if the counteracting parallel component of gravity is sufficiently large (Bertozziet al1998Phys. Rev.
Lett.815169–72). They arise as a result of the interaction of a non-convex flux with the fourth-order
diffusion generated by surface tension. In this work, we investigate how the dynamical behaviour
of the solution is affected by including second-order diffusion resulting from the normal component
of gravity; this component was neglected in the previous study. Then the governing equation for
the film profileh(x, t) becomes

ht + (h2 − h3)x = −(h3hxxx)x +D(h3hx)x D > 0.
The numerical simulations in this paper confirm that neglecting second-order diffusion is justified
for smallD, but find that for largerD, the structure of the solution changes dramatically. We give
a detailed account of the transitions that occur while increasingD and make predictions for future
experiments carried out at small inclination angles, corresponding to moderately largeD.

AMS classification scheme numbers: 35L65, 37L67, 35Q35, 37C29, 35K30

1. Introduction

We consider the motion of a thin film of silicon oil driven up an inclined silicon wafer by
a thermally induced Marangoni stress. Recent experimental and theoretical work [1, 2] has
shown unusual dynamical behaviour of the film profile, with the appearance of non-classical
undercompressive shocks [3, 4], for which characteristics pass through the shock trajectory,
rather than entering from both sides.

We briefly introduce model equations for the heighth(x, y, t) of the film profile.
Conservation of mass for the liquid requires

ht +∇ · (hV ) = 0

where

V =
(
τ

2η
h− ρg sinα

3η
h2

)
ex − ρg cosα

3η
h2∇h +

γ

3η
h2∇1h

is a depth-averaged velocity that results from a lubrication approximation (see also [5–7]). Here
τ denotes the surface tension gradient,η the viscosity,ρ, g the density and the gravitational
constant,γ the surface tension andα the angle of inclination (from the horizontal);ex denotes
the unit vector for thex-axis. Coordinates have been introduced so thatx, y are the directions
parallel to the plate, withx pointing up the slope andy in the spanwise direction, respectively.
In this paper, we seek solutions with noy dependence. Such profiles are of physical relevance
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if they are stable with respect to spanwise perturbations, or as base profiles for a stability
analysis if they are not.

As in [2], we choose scalesH , l, T , for h, x and t , respectively, such that the
time derivative, the convective term and the contribution from surface tension balance, i.e.
H = 3τ/(2 sinαρg), l = (2γH 2/(3τ)

)1/3
andT = 2η

(
4
9τγρg sinα

)1/3
/τ 2. This results in

the non-dimensionalized equation

ht + f (h)x = −(h3hxxx)x +D(h3hx)x (1)

where f denotes the flux functionf (h) = h2 − h3. The parameterD =(
9τ 2/4γρg

)1/3
cotα/(sinα)1/3 measures the relative importance of the normal component

of gravity. It is zero for vertical wafers but increases monotonically for decreasing inclination
angle; in fact,D ∼ α−4/3 asα→ 0, if the surface tension gradientτ is kept fixed.

We choose boundary conditions consistent with the experiments described in [1]. Far
upstream (x → −∞), the film achieves a uniform thicknessh∞, determined by a meniscus
which forms at the surface of the reservoir of silicon oil into which the lower end of the wafer
is placed. To model the completely wetting system, we also assume the presence of a thin
precursor layer of small thicknessb > 0, preceding the leading front of the film. A positive
b is necessary for (1) to avoid the well known paradox [8, 9] for the case of a moving contact
line; see also [7, 10]. Thus we have the boundary conditions

lim
x→−∞h = h∞ lim

x→∞h = b. (2)

The large-scale, long-time behaviour of (1) and (2) is governed by the lower-order terms
in equation (1). To see this, consider for a moment rescalingx andt according tox ′ = εx,
t ′ = εt . Then, equation (1) becomes (after dropping the primes)

ht + (f (h))x = −ε3(h3hxxx)x +Dε(h3hx)x (3)

which represents a nonlinear singular perturbation of theconservation law

ht + (f (h))x = 0. (4)

Smooth solutions of (4) evolve according to the method of characteristics, but where
characteristics cross, shocks form. These are propagating discontinuities, whereh jumps
from a left valueh− to a right valueh+. In particular, a centred shock wave with propagation
speeds is a piecewise constant function

h(x, t) =
{
h− if x < st

h+ if x > st.
(5)

This wave is a weak solution of (4) if the triple(h−, h+, s) fulfils the Rankine–Hugoniot
condition,

s = s(h+, h−) = f (h+)− f (h−)
h+ − h− . (6)

The diffusion terms in (1) smooths out the discontinuities to travelling waves, which make the
transition fromh− to h+ over a region of O(1) width.

However, not all discontinuous solutions of (4) actually correspond to a solution of (1);
rather, the interaction of the nonlinear flux function with the diffusion terms in (1) determines
which shock profiles actually form, in particular, the values of their left and right statesh±.
Moreover, the shock structure may vary for different types of higher-order terms, a fact that we
highlight in section 2 by contrasting classical results for the solutions of scalar conservation laws
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with second-order viscosity [11] with recently published results [1, 2] for (1) and (2) that focus
on pure fourth-order diffusion (D = 0). In these recent publications, the authors find that the
fourth-order term gives rise to unexpected solutions with an intricate wave structure, involving
so-called undercompressive shock profiles, which are not allowed in the classical situation of
second-order diffusion; the solutions are found to agree well with thin-film experiments [1].
The comparison of these two extreme cases naturally raises the issue, not considered in the
earlier work, of the wave structure for the case of generalD, and possible transitions asD
is varied. This paper attempts to answer this question, using a combination of numerical and
phase space methods.

In section 3, we begin our investigation of generalD > 0 with numerical simulations
for (1) and (2). In section 4, we explore shock profiles directly, by studying travelling wave
solutionsh(ξ), ξ = x − st of the partial differential equation (PDE) with the appropriate
far-field behaviour (h → h±, andh′ → 0, h′′ → 0, etc, asξ → ±∞). This amounts to
a discussion of heteroclinic orbits for a third-order ordinary differential equation (ODE). In
section 5, the results of the previous sections are used to map out the wave structure of the
solutions of (1) and (2) in different regions of the parameter space forD, b, h∞, and to make
predictions and suggestions for future physical experiments.

2. Shock structure for second- or fourth-order diffusion

For largeD � 1, we expect second-order diffusion to dominate over the fourth-order term;
neglecting the latter, we obtain, after appropriate rescaling,

ht + f (h)x = (h3hx)x. (7)

The family of shocks which correspond to fronts in solutions of (7) consists ofcompressiveor
Lax shocks, i.e. those shocks that fulfil the Lax entropy condition [11],

f ′(h+) < s < f ′(h−) (8)

together withgeneralized Lax shocksfor which one of the inequalities is an equality. Since
f ′(h±) is the characteristic speed for the left and right stateh± of the shock, respectively,
equation (8) requires characteristics from both sides to impinge on the shock trajectory, hence
the term ‘compressive shock’. Also note that (8) relates the slope of the chord connecting the
points(h+, f (h+)) with (h−, f (h−)) to the slope of the tangents to the graph off at these
points. Finally, we remark that we obtain a condition equivalent to (8) if we require the chord
to lie above the graph off .

We can now describe the dynamical behaviour of solutions of (7) with boundary
conditions (2) and smoothed jump initial data in terms of solutions of (4) satisfying the Lax
entropy condition. Within the range of parameters of interest, 0< b < 1

3 andh∞ > b, we can
distinguish two cases, namely,b < h∞ < hm = hm(b) := (1− b)/2 andh∞ > hm.

(a) If b < h∞ < hm, the chord connectingB = (b, f (b)) andI = (h∞, f (h∞)) lies above
the graph off (see figure 1). In this case, the solution is a single Lax wave.

(b) If h∞ < hm, the corresponding chord (e.g. fromII to B in figure 1) cuts through the
graph of the flux function (atI ), hence a single shock is not admissible, that is, it does not
correspond to a solution of (7) and (2). Instead, a rarefaction–shock evolves,

h(x, t) =


h∞ if x < f ′(h−)t
(f ′)−1(x/t) if f ′(h−)t < x < f ′(hm)t
b if x > f ′(hm)t .

(9)



734 A Münch

Figure 1. Graphs of the flux functionf (h) = h2−h3, and chords corresponding to various types
of shocks.

The chord corresponding to the leading generalized Lax shock, indicated in figure 1 by a
broken line, is tangent athm to the graph off .

In the other limit of (1) with only the fourth-order diffusion term (D = 0), the admissible
shock structure was investigated in [2], by a combination of numerical simulations of (1) and
(2) and phase space investigations for the travelling wave ODE. The authors distinguish four
cases.

(a) Forb < h∞ < h1(b), with a special,b-dependent valueh1, the profile evolves into a
single compressive travelling wave.

(b) Forh1(b) < h∞ < h2(b), with a second special valueh2, there are several possibilities.
Depending on the initial data, the solution evolves to one of multiple travelling waves. All
of them correspond to the same compressive shock, but differ in the height of the capillary
ridge, or bump, that forms due to the fourth-order smoothing of the jump discontinuity.
However, monotonically smoothed jump initial data typically select the travelling wave
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with the smallest bump. Within the interval ]h1(b), h2(b)[, there is a further transition
at h∞ = h∗(b). Forh∗(b) < h∞ < h2(b), and certain smooth jump initial data with a
sufficiently large initial bump, one obtains a double wave, consisting of two separating
shock profiles. Only the trailing shock fulfils the Lax entropy condition, whereas the
leading shock isundercompressive, meaning that characteristics pass through its trajectory,
rather than entering it from both sides. Here,h∗(b) denotes a third special,b-dependent
value in ]h1(b), h2(b)[. The undercompressive shock heighthuc(b) is independent of
h∞ and is linked to the other special value byhuc(b) = 1 − h∗(b) − b. The chords
corresponding to undercompressive shocks cut through the graph off , as can be seen in
figure 1(b) for three different value ofb = 0.1, 0.01 and 0.001 (dotted, broken, chain
lines, respectively).

(c) Forh2(b) < h∞ < huc(b), the double wave emerges for all smoothed jump initial data.
(d) Forh∞ > huc(b), the trailing Lax shock in the inviscid limiting solution is replaced by a

rarefaction wave, i.e. one obtains a rarefaction–undercompressive shock,

h(x, t) =


h∞ if x < f ′(h∞)t
(f ′)−1(x/t) if f ′(h∞)t 6 x < f ′(huc)t
huc if f ′(huc)t 6 x < s(huc, b)t

b if s(huc, b)t 6 x.

(10)

Note that, in contrast to the rarefaction–compressive shock combination (9), the leading
edge of the rarefaction wave moves at the characteristic speedf ′(huc) and hence separates
from the undercompressive shock.

3. Numerical simulation for mixed second-/fourth-order diffusion

In this section, we present some results from numerical simulations for (1) and (2) with
smoothed jump initial data, where we varyD andh∞, while keepingb fixed. We observe that
the solutions with undercompressive fronts disappear at finite values ofD, and are replaced
by solutions with the classical shock structure for pure second-order diffusion.

The results in this section were obtained by using a finite-difference scheme discretization
of (1) and (2) in space and an implicit Euler scheme for the time integration, see [2, 12] for
details.

Figure 2 shows the result of a typical computation, for three differentD = 0, 0.5, 1.5.
The tanh profile

h(x, 0) = 1
2 [(h∞ + b) + (−h∞ + b) tanh(x − x0)] (11)

was used as initial data, withx0 = 300, andb = 0.1,h∞ = 0.425, and the computations were
carried out on a sufficiently long, but finite spatial domain. The results are shown in a frame
of reference that moves at the speeds(h∞, b) of a simple shock profile connectingh∞ andb.
For the lower two values ofD, the figure gives the profiles for each of the solutions at two
different times, indicated by broken and full curves, fort = 2400 and 4000, respectively.

We see that forD = 0 and 0.5, the smooth initial jump evolves into a structure with
two fronts that visibly separate, indicating that the corresponding shocks move at different
speeds. For both solutions, the speed of both the trailing and the leading front is lower than
s(h∞, b), and therefore, the fronts appear to move backwards in the figure. Inspection of the
corresponding chords in the graph of the flux function reveals that, while the trailing shock
profile is compressive, the leading one is undercompressive, since its left statehuc satisfies
huc > hm(b) = (1− b)/2, implyings(huc, b) > f ′(huc).
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Figure 2. Shock profiles from simulations of (1) and (2) for different values ofD, and fixed
b = 0.1, h∞ = 0.425. ForD = 0, 0.5, broken and full curves indicate the profiles att = 2400
and 4000, respectively. The chain curve show the simple shock profile that evolves forD = 1.5.

Figure 3. Rarefaction–shock profiles from simulations of (1) and (2) for the same values ofD

andb as in the previous figure, buth∞ = 0.8. The full curves show the profiles at timet = 1400;
a dotted line indicates the initial profile used for all three simulations.
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The value ofhuc depends onD (andb), but not onh∞. AsD is increased,huc decreases.
This increases the slope of the chord connecting the statesb andhuc, and hence the velocity
of the leading front increases. By comparing the profiles forD = 0 and 0.5 in figure 2, or
the corresponding chords, one finds that, in addition, the separation rate decreases. For even
largerD = 1.5, the solution of the initial-value problem converges to a simple compressive
wave (chain curve), instead of evolving into a double wave.

For values ofh∞ > hm, rarefaction–shock profiles form in place of the double-shock
profiles; in fact, they also occur if, for the given valuesb andD, h∞ > huc. Figure 3 shows
the result of a simulation forb = 0.1 andh∞ = 0.8 and the same three values ofD. Again,
equation (11) was used as an initial profile (indicated in the figure by a dotted line), with
x0 = 1000. ForD = 0, 0.5, we obtain a rarefaction–undercompressive wave where the
leading undercompressive front has the same heighthuc as in the corresponding situation, for
the same value ofD, with a double-shock profile. The leading edge of the rarefaction wave
moves with characteristic speed, hence it separates from the undercompressive front. Since
huc > hm decreases asD is increased, the separation rates(huc, b) − f ′(huc) decreases as
well, as can be seen by considering the corresponding chords in the graph of the flux function.
ForD = 1.5, the rarefaction wave in fact extends right up to the shock, i.e. no separation
is observed. This implies that the shock moves at the characteristic speed of its left state,
so that for this (and larger)D, we recover the situation of a rarefaction wave connected to a
generalized Lax shock that is encountered for pure second-order diffusion.

As a general tendency, we see that our numerical results for largerD are consistent with
the classical results for pure second-order diffusion as summarized in section 2, in the sense
that undercompressive shock profiles are suppressed for large enoughD.

4. Travelling waves

We now investigate the travelling wave solutionsh(ξ), ξ = x − st for the PDEs (1) and (2),
with h→ h±, andh′ → 0, h′′ → 0, etc, asξ → ±∞. This will give us a complete picture
of the transitions of the wave structure, and the precise values for the parameters, in particular
for D, at which they occur.

Inserting the travelling wave ansatz into the PDE yields a fourth-order ODE that can be
integrated once. The far-field conditions fix the constant of integration and requires to satisfy
the Rankine–Hugoniot condition (6), leading to the following third-order ODE forh:

h3hξξξ = Dh3hξ + (s(h− h+)− f (h) + f (h+)). (12)

We convert (12) into a first-order system,

h′ = v v′ = w w′ = Dv + (s(h− h+)− f (h) + f (h+))h
−3 (13)

then look for trajectories with the required behaviour atξ → ±∞. Our main focus is on
travelling waves that describe the front of the rising film, therefore, we seth+ = b and assume
h− > b. For (13), we now discuss equilibria, invariant manifolds and orbits connecting
equilibria, as we vary the parameterss, b andD.

We first observe that (12) possesses a Lyapunov function

L(h) = h′′h′ +R(h) with
dR(h)

dh
= − s(h− b)− f (h) + f (b)

h3

which increases along trajectories, since by differentiating with respect toξ and using (12) we
obtain

L(h)′ = (h′′)2 +D(h′)2.
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For a travelling wave connectingh− andb, it follows thatL(h−) < L(b), henceR(h−) < R(b).
In particular, this rules out the possibility of homoclinic connections.

Equilibria of (13) are given by(h̃, 0, 0), whereh̃ satisfies

s(h̃− b)− f (h̃) + f (b) = 0. (14)

One easily finds the roots for this cubic equation to be

h̃1 = b and h̃2,3 = hm(b)±
√
f ′(hm(b))− s (15)

with h̃2 corresponding to the negative sign in front of the square root. Ifs > f ′(hm), there is
only one real solution for the cubic equation, i.e. only one equilibrium, which is of little use
since there can be no homoclinic connections. Furthermore, for the equilibria to be hyperbolic,
the three roots have to be distinct, which leads us to requiref ′(b) 6= s 6= f ′(hm). Finally,
equation (14) is also the condition for stationary points ofR(h), in fact, for local extrema,
since we have restricted the parameter space so that all roots of (14) are simple. The rightmost
extremum is necessarily a maximum, since dR(h)/dh→−1< 0 forh→∞. The remaining
extremah > 0 to its left must then be a minimum followed by a maximum, in right-to-left
order. FromR(h−) < R(b), it follows that b cannot be the minimum, nor can it be the
rightmost maximum, since we have imposedb < h−; therefore,b < h̃2. This impliesb < 1

3

(sinceb + h̃2 + h̃3 = 1), and is equivalent tof ′(b) < s.
Summarizing, we restrictb ands to the range 0< b < 1

3, f ′(b) < s < f ′(hm(b) where,
in particular, equation (13) has three distinct equilibria,

B = (b, 0, 0) M = (h̃2, 0, 0) T = (h̃3, 0, 0)

and seek connections fromM toB andM to T .
Linearization of (13) atI ∈ {B,M, T } leads to the characteristic equation

λ3−Dλ− (s − f ′(hI ))hI−3 = 0 (16)

wherehI refers to the non-zero component of the equilibriumI . We have the possibility of
either three real eigenvalues, or a pair of complex-conjugate eigenvalues accompanied by a
single real eigenvalue. From Cardano’s formula for cubic equations, we see that the latter
occurs if and only if

1I(b, s,D) ≡ −
(

1
3D
)3

+

(
s − f ′(hI )

2h3
I

)2

> 0. (17)

For eachI , the sum of the eigenvalues is zero, whereas their product is non-zero, since
otherwise,s − f ′(hI ) = 0, which is not possible since our restrictions onb and s ensure
that thehI are simple roots of (14). We conclude that all eigenvalues have a non-zero real
part, hence the equilibria are indeed hyperbolic. Moreover, in order for the real parts of the
eigenvalues to cancel, exactly two eigenvalues have a real part with the same sign. Since then
their product is positive, regardless of whether they are both real or a complex-conjugate pair,
the remaining eigenvalue (which is necessarily real) determines the sign of the product of all
three eigenvalues. This eigenvalue is therefore positive, or negative, depending on whether
s − f ′(hI ) > 0, or< 0, respectively.

We are now in a position to characterize the stable and unstable manifoldsWs(I) and
Wu(I) for all equilibriaI ∈ {B,M, T }.
• If s > f ′(hI ), thenWu(I) is one dimensional andWs(I) is two dimensional, and vice versa

for the opposite inequality. These two cases alternate for equilibria corresponding to
consecutive zeros ofs(h−b)−(f (h)−f (b)). Also, this expression goes to∞ forh→∞,
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so that theh derivative has to be positive for the topmost zerohT , i.e. s − f ′(hT ) > 0.
Therefore,T ,B have a two-dimensional stable and a one-dimensional unstable manifold,
and the converse is true forM.

• Trajectories on the two-dimensional manifold spiral into (or out of) the equilibrium, due
to the presence of a complex-conjugate pair of eigenvalues, if and only if1I(b, s,D) > 0.

Orbits connectingM or T to B arise as intersections of the corresponding unstable and
stable manifolds. For convenience, these trajectories will sometimes simply be referred to as the
‘compressive connections’ or ‘undercompressive connections’, according to the properties of
the travelling waves they represent. The orbits fromM toB (i.e. the compressive connections,
sinces − f ′(hM) < 0 < s − f ′(hB)) arise as codimension-zero intersections of two two-
dimensional invariant manifolds, and hence persist under perturbations of the parametersD,
b ands. On the other hand, the connections fromT toB (the undercompressive connections,
sinces−f ′(hB) ands−f ′(hT ) are both positive) are codimension-one intersections of a one-
and two-dimensional unstable/stable manifold, and generically break under perturbations of
the parameters.

Existence of undercompressive connections is established with the following theorem.
The proof is given in a recent paper [13].

Theorem 1. Letb ∈ ]0, 1
3[. Then there exists a valueD0 > 0, so that, for eachD ∈ [0,D0],

there exists a special values = s∗(D), for which one branch ofWu(T ) connects toB, i.e.
where we have an undercompressive connection.

In the same paper, the authors also prove the following complementary result for largeD.

Theorem 2. Let b ∈ ]0, 1
3[. Then there is aD1 such that forD > D1 and f ′(b) < s <

f ′(hm(b)), there is no orbit from the equilibriumT toB.

An example in which both compressive and undercompressive connections are present
is shown in the phase portrait of figure 4, forb = 0.1,D = 0 ands = 0.278 588, with the
equilibria lined up along theh-axis, and the one-dimensional unstable manifolds ofB and
T denoted by dotted curves. The branch ofWu(T ) corresponding to the undercompressive
connection is emphasized with diamonds. Also indicated are two compressive connections (full
curves). The trajectories were computed numerically using an explicit method with step-size
control from the LSODE package [14], with initial data close to the respective equilibrium.

Trajectories connecting equilibria can be investigated in a systematic way by looking at
the intersections of the stable and unstable manifolds with a Poincaré plane, located, in this
paper, atP = {h′ = −0.05}. This choice ofP differs from that in [2], where the authors set
Pold = {h = (2hM + b)/3}. The new Poincaré plane was more convenient for largerD, and
s close tof ′(hm(b)), where the eigenvalues nearT are typically real and different from each
other. As a consequence, it becomes more difficult to numerically obtain trajectories onWu(M)

very close toWu(T ). This can lead to a visible ‘gap’ betweenWu(M) ∩ P andWu(T ) ∩ P
in the computed Poincaré sections. The gap could be reduced or closed by carrying out the
calculations with higher precision (using quadruple-precision arithmetic), which confirms that
it is indeed a numerical artefact. ReplacingPold with the newP also reduces the gap without
using high-precision arithmetic up to the point that it is no longer visible, in the figures shown
here.

In the following,b is fixed to be 0.1, while we varyD ands; we remark, however, that
the same qualitative picture is obtained for other values ofb in ]0, 1

3[. We distinguish three
ranges ofD.
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Figure 4. A three-dimensional view of the phase space, forb = 0.1, D = 0 and
s = 0.278 588. Dotted curves indicateWu(B) andWu(T ). The branch ofWu(T ) representing
the undercompressive connection fromT to B is emphasized by diamonds and the compressive
connection fromM toB is shown by a full curve. Also indicated is a connection fromM to T , by
a chain curve.

Figure 5. Poincaŕe sections of the invariant manifolds with the planeP = {(h, h′, h′′);h′ =
−0.05} for s = s∗(D) andD = 0 in (a) andD = 0.9 in (b). The cross shows whereWu(T )

intersects withP , whereas full and broken curves representWu(M) ∩ P andWT (M) ∩ P ,
respectively.

Case I: 06 D < DT . We find essentially the same situation as reported in [2] forD = 0.
An undercompressive connection exists for a special speeds = s∗(D). ForD = 0, we know
from the discussion of figure 4 thats∗ = 0.278 588, and for thisD and s, we obtain the
Poincaŕe section of figure 5. We see thatWu(T )∩P andWs(B)∩P coincide, indicating the
existence of an undercompressive orbit. There are also multiple intersections ofWu(M) ∩ P
andWs(B) ∩ P , each representing the place where a compressive orbit crosses the Poincaré
plane; hence we have multiple compressive waves.

The spiral structure ofWu(M) is a result of the pair of complex-conjugate stable
eigenvalues and the real unstable eigenvalue present in the linearization of the ODE near
T . We consider figure 6 for a qualitative description of the situation in phase space, which
is not yet rigorous, but suggests that rigorous results can possibly be obtained within the
framework of Sil’nikov’s method [15]. The cylinder in figure 6 denotes a region in which the
vector field nearT is approximately linear. The unstable manifold ofT is represented by a
dotted line, and, for all the orbits depicted, arrows indicate the direction of the flow. Incoming
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Figure 6. Behaviour of trajectories ofWs(M) that pass nearT , for the case where the linearized
vector field nearT has two complex-conjugate eigenvalues (i.e.1T (b, s,D) > 0).

trajectories fromM that cross the cylinder wall60 are rotated around, and attracted toWu(T )

due to the pair of complex-conjugate stable eigenvalues ofT . Except for the connectionM to
T (broken curve entering a full spiral), which spirals into the equilibrium through an infinite
number of windings, the orbits are simultaneously dragged towards the lower or upper lid of
the cylinder.

Consider any one of those trajectories which leave through the upper lid61, and its
intersection pointsS0 andS1 with60 and61, indicated by⊗ and�, respectively. An example
of such a trajectory is denoted by a full curve;Wu(T ) is represented by a dotted line. The
angle formed byS1 with the projection ofS0 on61 at60 ∩ Wu(T ), and the distance ofS1

from the centre of the lid depends on how long the trajectory remains within the cylinder. By
the angle we mean the total angle, with multiples of 2π accounting for the windings of the
helical structure. Letρ > 0 be the distance fromWu(T ) at which an orbit ofWu(M) ∩ P
intersects the upper half of60. In particular,ρ = 0 for the intersection of61 with the orbit
connectingM to T . As we decreaseρ to zero, the ‘time’ the trajectory needs to reach the
cylinder lid after passing60 becomes arbitrarily large. Thus, the distance betweenS1 and
Wu(T ) ∩ 61 decreases arbitrarily, while the aforementioned angle increases arbitrarily. We
conclude that, asρ is varied, the intersection pointS1 moves along a spiral inWu(M) ∩ 61

centred atWu(T ) ∩ 61, with an infinite number of windings. The numerical results indicate
that this spiral structure remains essentially unchanged as we move to a Poincaré plane further
away fromT .

We now return to the discussion of the Poincaré sections withP for fixed D. If s is
increased/decreased above/belows∗(D), respectively, the centre of the spiral shifts to the left
or right ofWs(B) ∩ P . We therefore find three ranges fors, f ′(b) < s < s1, s1 6 s < s2 and
s2 < s < f ′(hm(b)), with s∗ ∈ ]s1, s2[, with unique, multiple and no compressive travelling
waves, respectively. Ass approachess∗ from above or below, a new pair of travelling wave
solutions appears each timeWs(B) passes through a new winding of the spiral. In the limit,
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Figure 7. Dependence of the specials onD, for fixedb = 0.1. The full curve indicatess∗(D)
for D < D∗, crosses and diamonds shows1(D) ands2(D) for D = 0 and 0.4. The broken curve
represents1T (b, s,D) = 0.

this cascade of bifurcations leads to an infinite number of compressive connections, with the
undercompressive connection at the centre.

IncreasingD leaves the qualitative picture intact, as long as we remain within the range
of D for which1T (b, s∗(D),D) (cf equation (17)) is positive. This range is delimited by the
valueDT where{1T (b, s,D) = 0}, shown in figure 7 by a broken curve, intersects the graph
of s∗(D). Forb = 0.1, this occurs for

DT = 0.797 85.

In figure 7, we see that, asD increases from zero toDT , s∗(D) increases monotonically. A
comparison ofs2(D)− s∗(D) ands∗(D)− s1(D) forD = 0 and 0.4 indicates that both values
decrease for increasingD.

Case II: DT < D < D∗. In this range, we still have an undercompressive connection for
a specials = s∗(D), but no simultaneous spiral inWu(M), so we no longer have an infinite
number of compressive connections. This range ends by a special valueD∗ = sup{D; s∗(D) <
sm}, where the full curve in figure 7 meetss = sm ≡ f ′(hm(b)). Forb = 0.1, we findD∗ to
be

D∗ = 1.2645.

Since1T (b, sm,D∗) = −(D∗/3)3 < 0, we know that, in general,(D∗, sm) must lie to the
right of the broken curve in figure 7, so that we always haveD∗ > DT .

A Poincaŕe section for a value ofD just aboveDT , ands = s∗(D) = 0.291 463, is given
in figure 5(b). We see thatWs(B) ∩ P andWu(M) ∩ P meet atWu(T ) ∩ P at a non-zero
angle, suggesting there are no compressive connections. For fixedD, a change ins shifts
Wu(T ) ∩ P with respect toWs(B) ∩ P exactly as before. The structure ofWs(M) ∩ P
and careful numerical trials for several values ofs suggest that we only have to distinguish
between two cases fors, namelys > s∗(D) ands < s∗(D). In the former case, compressive
connections are absent, whereas for the latter, there is a unique trajectory fromM toB.

Complications could arise in two ways.

(1) If, for D > DT , and for somes > s∗(D),Wu(M) ∩ P happens to be strongly curved, a
non-empty intersection withWs(B) could arise. This was never observed, however.

(2) For a range ofD aboveDT , the spiral inWu(M), though absent fors = s∗(D), reappears
if s is lowered to a range belows∗(D), making multiple intersections possible again,
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in principle. However, in all of the cases studied, the spiral was so tightly wound that
the distance of its centre fromWs(B) in the Poincaŕe section was much larger than all
the inner windings. Hence, there was only a unique compressive connection, for all
f ′(b) < s < s∗(D).

We therefore conjecture that the simple picture outlined above correctly describes the situation
for DT < D < D∗. Note that this in particular implies thats1(D) → s∗(D) and
s2(D)→ s∗(D) asD ↑ D∗.

Case III: D∗ 6 D. In this case, we foundWu(T ) ∩ P to lie to the right ofWs(B) ∩ P in
all the Poincaŕe sections, for alls ∈ ]f ′(b), f ′(hm(b))[. This confirms that undercompressive
connections fromT toB are not possible in this range ofD ands.

5. Consequences for the dynamics

We can now assign specific regions in the(D, h∞)-parameter space to the different long-time
structures observed in the solutions for (1) and (2), in section 3. These regions are shown
in figure 8, where they are delimited by different styles of thick curves and full symbols for
b = 10−4. The corresponding regions for larger values ofb = 0.001, 0.01 and 0.1 are also
indicated by thin curves and open symbols.

In particular, the chain curves shows the left statesh∗ andhuc of the compressive and
undercompressive waves with speeds = s∗(D), i.e. they are given byh∗ = hM = h̃2, and
huc = hT = h̃3, after settings = s∗ in (15). Similarly,h1(D) andh2(D) denote the value
h̃2 for s = s1(D) ands2(D), respectively. They delimit the hatched area in the figure where
multiple compressive connections fromM to B exist. We remark thath1 andh2 were only

Figure 8. Wave structure of the solution of (1) and (2) that evolves from jump initial data, in
different regions of(h∞,D) parameter space. The thick curves and full symbols correspond
to fixed b = 0.0001, the thin curves and open symbols correspond to other fixed values of
b = 0.001, 0.01, 0.1.
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calculated forD = 0 and set toh∗ atD = DT , according to the conjecture in the previous
section thats1(D) ands2(D) tend tos∗(D) asD ↑ DT . Approximations ofh1(D) andh2(D)

for other 0< D < DT were then obtained by interpolation.
For 06 D < DT , there are essentially the same four ranges forh∞ as described for the

special case of pure fourth-order diffusion (D = 0) in section 2. ForDT < D < D∗, we
have three ranges ofh∞. For b < h∞ < h∗(b), we obtain a single compressive travelling
wave, forh∗(b) < h∞ < huc(b), a double-shock profile and forhuc(b) < h∞, a rarefaction–
undercompressive shock profile. AsD increases, the ranges ofh∞ with a single compressive
travelling wave or a rarefaction–undercompressive shock profile increase at the expense of the
range with double fronts. Simultaneously, the height of the undercompressive shock decreases,
while its velocity increases. Ifh∞ is kept fixed whileD is increased, the separation rate of
the leading front from the trailing wave (either a compressive shock profile or a rarefaction
wave) decreases. Eventually, atD = D∗, the valueshuc(D) andh∗(D) merge, since, for
D ↑ D∗, s∗(D) → sm. Beyond the critical valueD∗, the shock structure of the solution
is identical to that of pure second-order diffusion. However, the shock profiles can still
have a more or less noticeable capillary ridge forD > D∗, as an effect of the fourth-order
term.

We finally turn to predictions for future experiments, e.g. for extensions of those reported
in [1]. There, the meniscus-controlled thickness of the rising film increased as the inclination
angleα was lowered. For thinner films, the experimental profile was that of a simple travelling
wave with a capillary ridge of constant height and width. For larger thicknesses, however,
the film formed a rather large pronounced bump that continued to broaden until the film left
the temperature-controlled zone on the wafer. Furthermore, the rising rates measured for
the film front were significantly lower than those expected for a simple travelling wave. Both
observations indicate the formation of a double-shock profile with two separating compressive–
undercompressive fronts. All these experiments were carried out for values ofτ and inclination
angles for whichD < 1

2, so that the second-order term could be neglected in [1]. We can
now pursue the question of what we can expect to happen, if, for example,α is lowered even
further.

An obvious direction to look in experimental observations is the transition in the shock
structure atD∗. For a fixed temperature gradient, the criticalD∗ corresponds to a critical
inclination angleα∗. However, even forb = 0.01, which is somewhat larger than is adequate
for the experiments in [1],D∗ is about 4.3, and with typical values forτ = 0.18 Pa,
γ = 0.0209 N m−1, ρ = 965 kg m−3 reported in the same paper, we obtainα∗ = 2.7◦.
This angle is very small and may not be achievable without difficulty in an actual experiment.

If experiments can be designed that allowα to approach the critical value (for example,
by increasingb by using wafers with a precoating of silicon oil) the specific observations to
be expected depend on howh∞ is varied withα. In the experimental set-up in [1, 5, 6], the
meniscus region at the surface of the reservoir changes with the inclination angle, and so does
h∞, which it controls.

If h∞ remains belowhm(b) as we increaseα (case (a)), a transition to a single travelling
wave will eventually occur for somêD < D∗, with h∞ = h∗(D̂) or h2(D̂) at the transition
(depending on whether̂D > DT or D̂ < DT , respectively). Let̂α > α∗ denote the angle
corresponding tôD. The double wave is typically higher than the capillary ridge of the single
compressive wave, hence we expect a noticeable decrease in the height of the bump as we
passα̂, though the difference tends to be less pronounced if the transition occurs at higher
values ofD̂ (i.e. lowerα̂). Furthermore, the separation of fronts in the double wave leads to
a widening of the bump observed in the experiment, whereas the width of the capillary ridge
for a single travelling wave saturates. However, the rate of separation decreases continuously
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asα approacheŝα, complicating a sharp distinction of double and single waves near the point
of transition.

If h∞ exceedshm(b) as we increaseα (case (b)), the double-shock profile will first change
to a rarefaction–undercompressive wave, which will then gradually become a non-separating
classical rarefaction–shock wave asα gets close toα∗. It may therefore be interesting to observe
the rate of separation for the rarefaction–shock wave, asα is increased. We note that the rate at
which the leading edge of the rarefaction wave separates from the leading undercompressive
front is independent ofh∞.

In both cases, the final transition is expected to leave a visible signature in the rising rate
of the front. In case (a), the theory predicts rising ratess(huc, b) < s(h∞, b) that tend to
s(h∞, b) if the transition atα̂ occurs withh∞ = h∗(D̂). In case (b), the rising rate of the
rarefaction–undercompressive front decreases withα, and then becomes constant forα > α∗.

Even if the criticalα∗ cannot be approached, a significant impact of the second-order
diffusion term on the spreading rate of the leading front can be achieved for somewhat
larger α. For values ofb = 0.01–0.001, a change inD from 0 to about 1.7–1.1, or
α = 5.3◦–7.4◦ (using the previously mentioned choice forτ , γ andρ), leads to a change
in the undercompressive speeds∗(D) by about 30%. This could be discernible against the
uncertainties in the rising rate of the film front visible in the measurements of figure 4 in
[1].
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