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Abstract In this work we investigate a two-phase model for concentrated suspen-
sions. We construct a PDE formulation using a gradient flow structure featuring
dissipative coupling between fluid and solid phase as well as different driving forces.
Our construction is based on the concept of flow maps that also allows it to account
for flows in moving domains with free boundaries. The major difference compared to
similar existing approaches is the incorporation of a non-smooth two-homogeneous
term to the dissipation potential, which creates a normal pressure even for pure shear
flows.

1 Introduction

Suspension flows of solid particles in a viscous liquid are omnipresent in nature
and are involved in many technological processes, e.g., in the food, pharmaceutical,
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printing or oil industries. The fraction of volume occupied by solid particles 0 ≤ φs ≤
1 relative to the combined solid and liquid content, as shown in Figure 1, strongly
affects the suspension flow. For very small volume fraction φs the suspension is
called dilute, and mutual interaction between particles is neglegible. For increasing
volume fraction of the particles the suspension enters a number of flow regimes and
rheological behaviours, from shear thinning, to discontinuous shear thickening until
it enters the shear jamming transition, when a critical volume fraction φcrit is reached.
Suspensions in this state are called dense or concentrated. The actual value of φcrit
depends sensitively on the particle shape, surface and other material properties.

Fig. 1: Discrete solid particle distribution and corresponding volume fractions φs, φ� .
Left: characterstic functions of particles P : Ω→ {0,1} and Right: volume fractions
φs : Ω→ [0,1] ≡ 〈P〉 defined by a suitable average.

Predictive models therefore need to link the interaction of solid particles with the
liquid and with other particles on the micro scale with the large-scale description
of the dynamics of the liquid and solid phases on the continuum scale. In Figure 2
the numerical simulation of the sedimentation of two-dimensional particles in a
viscous liquid is shown. The sedimentation of a particle is certainly influenced by
the presence of other particles that create mututal long-ranged interactions due to
the fluid flow. On the continuum scale, such a two-phase model works with averaged
flow quantities such as averaged velocity u, or effective viscosity μeff which relates
the deviatoric1 stress τ and the shear rate Du = 1

2 (∇u + ∇u�) via τ = 2μeff devDu.
For dilute suspensions of Newtonian liquids with viscosity μ and spherical particles
Einstein [12] derived the effective viscosity law

μeff
μ
= 1 +

5
2
φs . (1.1)

1 The deviator of a tensor/matrix in dimension d is defined as dev A = A − d−1 tr(A)I with I the
d × d unit matrix. It is tr dev A ≡ 0 by construction. Subsequently we use σ to denote the total
(Cauchy) stress, τ for the deviatoric stress, and p for the normal stress/pressure.
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However, for many problems suspensions are not dilute but exhibit complex phe-
nomena such as the formation of aggregates, creation of dense sedimentation layers,
and shear-induced phase separation into highly concentrated and dilute regions. In
fact, for any suspension where the liquid phase evaporates, Einstein’s result (1.1) or
its extensions [4] will eventually fail.

For many decades a great number of experimental and theoretical studies have
been devoted to obtain expressions for an effective viscosity for the regime of
concentrated suspensions, such as the Krieger-Dougherty law [21]. It has been
observed experimentally that, as the suspension attains a solid-like state, it undergoes
a jamming transition and develops further distinct phases [8, 16, 19, 27, 32]. These
studies focussed on examining the role of friction and other properties of the particles
interacting with each other and the liquid, reflecting how these microscopic properties
control large-scale networked patterns. The dramatic increase in research devoted to
this topic is rooted in the ground-breaking experimental study by Cassar et al. [7],
where it was found that a dense suspension on an inclined plane sheared at a rate
2|Du| under a confining pressure pc can be characterized by a single dimensionless
control parameter, the viscous number

Iv =
2μ|Du|

pc
. (1.2)

Fig. 2: Particulate flow with gravity in Ω ⊂ R2 showing the sedimentation in a
suspension with time advancing from left to right. The particle indictor function
P : Ω → {0,1} is shown using white discs, the shading indicates the magnitude of
the velocity field, shown using vectors.

This result was taken up by Boyer et al. [5], where a new constitutive friction
law combining the rheology for non-Brownian suspensions and granular flows has
been proposed, and for the first time offers to quantitatively capture the jamming
transition. In Ahnert et al. [1], this new constitutive friction law was incorporated
in the derivation of a new two-phase model for non-homogeneous shear flows and
studied for simple shear flows such as plane Couette and Poiseuille flow. One key
feature of these suspension models is the appearance of the normal or contact
pressures pc , with their role for particle migration discussed by Morris & Boulay [24].

Beyond simple effective models, predictive models on the length scale of these
applications need to combine the interactions of the liquid and solid particles among
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each other on the microscale with a description of the dynamics of the liquid and
solid phase on the continuum scale. This requires to incorporate phenomena such as
transport of volume and mass with the balances of momenta and forces. The solid
and liquid phase, i.e., their volume fractions φs and φ� = 1 − φs, are transported
by individual velocities us and u� . The velocities themselves obey the momentum
balances of solid and liquid phase and are dissipative due to the presence of viscosity.
Similar phenomena are known in the literature for classical mixture models.

To obtain further insight into the mathematical structure of this model we discuss
in this article two-phase flow models from an energetic point of view and obtain
that the general mathematical structure behind is of gradient-flow type. Hence, the
evolution of the model system is characterized in terms of an energy functional and
a dissipation potential. In particular, we will use the property that the model for the
different regimes, from dilute to highly concentrated states, have a common general
mathematical structure of variational type. In the long run, this will allow it to pursue
the limit passage using variational convergence methods, and thus to carry out the
transition from a dilute to a concentrated suspension as a rigorous scaling limit.

The focus of this work is to construct a class of thermodynamically and me-
chanically consistent models that support normal pressures using the framework of
variational modelling. We present a method to construct suspension models with free
boundaries and provide the underlying construction for gravity driven and surface-
tension driven flows. Examples of such flows are given in applications such as in
Murisic et al. [26].

2 Model for a concentrated suspension

We briefly summarise the dense suspension model that was derived in Ahnert et
al. [1], by averaging the microscopic formulation of the flow with a liquid and a
particulate solid phase along the lines of Drew [9] and Drew & Passman [10], in
combination with a constitutive law for the solid phase stress-strain rate relation
based on the results of the experiments by Boyer et al. [5] and a Kozeny-Carman
relation for the interphase drag, see for example Brennen [6]. We assumed that the
suspension consists of monodisperse, spherical, non-Brownian particles. It is also
assumed that the mass densities of the solid ρs and liquid phase ρ� are constant. The
equations are stated in non-dimensional variables as explained in detail in [1]; here
we only give a brief summary of the scalings and the resulting equations. We use a
velocity scale U, a length scale L, a time scale L/U and a viscous scale μ�U/ρ� for
the pressure and stress field, where μ� is the liquid phase viscosity. The variables
φs , us , τs and ps denote the volume fraction, velocity, deviatoric stress and normal
stress for the solid phase, respectively, and analogously φ� , u� , τ� and p� for the
liquid phase; t is the time. (The index � is ommitted from the liquid pressure to be
consistent with notation for the Lagrange multiplier in subsequent sections.) The
bars | · | represent the componentwise Euclidean norm of a vector or tensor. Without
inertia, the mass conservation and momentum balance equations for the two phases
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are

∂tφ� + ∇ · (φ�u�) = 0, (2.1a)
∂tφs + ∇ · (φsus) = 0, (2.1b)

−∇ · σ� + Md + φ�∇π = 0, (2.1c)
−∇ · σs − Md + φs∇π = 0, (2.1d)

where the total stresses in liquid and solid phase are

σ�(u�) = −p�(u�)I + τ�(u�), (2.1e)
σs(us) = −(pc(us) + ps(us)

)
I + τs(us). (2.1f)

The Lagrange multiplier π takes care of the constraint divx(φsus + φ�u�) = 0,
which results from the condition φs + φ� = 0 upon differentiation with respect to
time using the transport equations. The drag Md is given by the non-dimensional
form of the Kozeny-Carman relation

Md = Da
φ2
s

φ�
(u� − us). (2.2)

The Darcy number which appears here is Da = L2/K2
p , where Kp is proportional

to the square of the particle diameter, so that Da is typically large. Next we specify
the constitutive equations for the rheology of the liquid and the solid phase. For the
liquid phase in three space dimensions, i.e., for d = 3,we have

p� = −2
3
φ� divx(u�), τ� = 2φ� devDu�, (2.3)

with Du� =
(∇u� + ∇uT

�

) /2 the shear rate. For the solid phase, if |Dus | > 0, then

ps = −2
3
φsηs(φs) divx us, τs = 2φsηs(φs) devDus, (2.4a)

with dev A = A − 1
3 trA the deviator of a matrix A ∈ R3×3; additionally there also

acts a contact pressure given by

pc = 2φsηn(φs)|Dus |. (2.4b)

For i = s, � note that pi = 0 for divergence-free flows divx ui = 0, whereas pc only
vanishes when Dus does so. The constitutive material laws in the above definitions
are
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ηs(φs) = 1 +
5
2
φcrit

φcrit − φs
+ μc(φs) φs

(φcrit − φs)2
, (2.4c)

μc(φs) = μ1 +
μ2 − μ1

1 + I0φ
2
s(φcrit − φs)−2

, (2.4d)

ηn(φs) =
(
φs

φcrit − φs

)2
, (2.4e)

with the non-dimensional parameters, μ2 ≥ μ1, I0,and the maximum volume fraction
φcrit for a random close packing. Instead, if Dus = 0, we require

φs = φcrit, (2.4f)

and
|σs | ≤ μ1pc . (2.4g)

A typical value for the maximum random packing fraction is φcrit = 0.63. The values
suggested in Boyer et al. [5] for the other parameters are μ2 = 0.7 , and I0 = 0.005,
but these lead to a problem with ill-posedness even for plane Poiseuille flow [1].

The constitutive law (2.4) has the following implications: Given a fixed, pos-
itive finite contact pressure pc , if the shear rate Dus tends to zero, then ηn =
pc/(2φs |Dus |) → ∞ and thus (φcrit − φs) → 0. Since ηs has the same singular de-
pendence on φcrit−φs , it tends to infinity at the same rate and, therefore, |σs | tends to
a finite positive value, μ1pc/φs , which gives rise to the yield stress in (2.4g). Across
a yield surface, we require that φs , u� , us , |Dus | and the projection of −p�I+ τ� and
−(ps+ pc)I+τs onto the surface normal are continuous. While the suspension model
above is stated for simplicity without any additional external forces, the later gradient
flow construction will contain the full model with forces arising due to certain bulk
or surface energies.

3 Gradient flow for two-phase flows of concentrated suspensions

Beyond flows of purely viscous liquids, the discussion of the proper mechanical
statement of models for multi-phase flows has been studied extensively in the past,
e.g., [9, 10, 18, 20]. A major challenge from the modelling point of view is the con-
struction of models that are mathematically, thermodynamically and mechanically
meaningful. We here construct a class of models using a variational approach based
on the energy and dissipation functionals related to the processes. In this way, we
will deduce one possible model to describe flows of two-phase mixtures with free,
evolving boundaries and provide the underlying construction for gravity-driven and
surface-tension driven flows.

First variational descriptions of fluid flows are due to Helmholtz [15] and Rayleigh
[31]. A general framework for the thermodynamic description of fluids has been layed
out by Öttinger & Grmela [14,28]. For the special construction of Euler flows using
Poisson structures has been reviewed, for instance, by Morrison [25]. Peletier [29]
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gave a well-structured overview of systems which can be casted as gradient flows.
For an extensive overview of different models for complex fluids and flow maps we
refer to the recent review by Giga et al. [13]. It has to be stressed that the afore
mentioned contributions consider the flow in fixed domains with fixed boundaries.
In fact, our approach can be seen as a generalization of the one presented in [13]
for single-phase fluid flow in a fixed domain to the problem of two-phase flows on
evolving domains.

In the following we focus on the formal description of free boundary multi-phase
flows on moving domains in terms of generalized gradient flows. This concept has
been discussed e.g. by Mielke [22] in an abstract framework and formally applied
to models arising in many different applications. Following [22], such a description
is based the specification of a triple

(
V,R,E) consisting of the (Banach) space of

velocities, a dissipation potential R : Q × V → [0,∞], and an energy functional
E : Q → R defined on the state space Q. Elements of the state space are denoted
by q ∈ Q and their corresponding velocities by q ∈ V. For all states q ∈ Q it is
required that R(q; ·) : V → [0,∞] is convex and that R(q; q = 0) = 0 . With V∗ we
denote the dual space of V and define for fixed q ∈ Q the dual dissipation functional
R∗(q, ·) : V∗ → [0,∞] as the convex conjugate of R(q; ·), i.e., for all v∗ ∈ V∗ it is
R∗(q, v∗) := supv∈V

(〈v∗, v〉V − R(q, v)) . As in [22] we speak here of a generalized
gradient flow as we neither require R to be quadratic nor classically differentiable. In
this generalized setting it can be shown, cf. e.g. [22,23], by exploiting the convexity
of the functionals R(q, ·) and R∗(q, ·) that a solution q : [0,T] → Q of

(
V,R,E) is

characterized by the following three equivalent problem formulations:

q(t) ∈ ∂R∗(q(t),−DqE(q(t))) in V, (3.1a)
⇔ −DqE(q(t)) ∈ ∂R(q(t), q(t)) in V∗, (3.1b)
⇔ 〈−DqE(q(t)), q(t)〉V = R(q(t), q(t)) + R∗(q(t),−DqE(q(t))), (3.1c)

where ∂(·) denotes the subdifferential of a convex functional with respect to q and
DE(q) the Fréchet-derivative of E.

Since the Young-Fenchel inequality for convex functionals and their conjugate al-
ways ensures
〈−DqE(q), q〉V ≤ R(q, q) + R∗(q,−DqE(q)) one can infer from (3.1c) that the time-
derivative q of a solution q of (3.1) also satisfies

q ∈ argmin q∈V
(〈DqE(q), q〉V + R(q, q)

)
, (3.1d)

since R∗(q(t),−DqE(q(t))) is independent of q.
Indeed, the setting of generalized gradient flows based on convex potentials with

the formulation (3.1) provides a generalization of classical gradient flows character-
ized by quadratic potentials. For a given self-adjoint linear operator G(q) : V → V∗

and quadratic functionals R(q, q) = 1
2 〈G(q) q, q〉 a solution q(t) of the gradient flow

is given by a curve q : [0,T] → Q satisfying (3.1b), which reads in this smooth,
quadratic context as
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q(t) = −∇RE
(
q(t)) . (3.1e)

where the gradient v = ∇RE(q) ∈ V of E with respect to the metric induced by R is
defined by 〈G(q)∗v, ̃q〉 = 〈G(q)∗DqE(q), ̃q〉 for all ̃q ∈ V and G(q) = G(q)∗.

Formulation (3.1) provides the abstract framework that we are going to use in order
to deduce two-phase suspension models on moving domains. More precisely, in this
section we will show that, under suitable smoothness assumptions on the functions
involved, flow models for suspensions as discussed in the previous Section 2 indeed
arise as generalized gradient flows (V,R,E) in the form (3.1b). Given a suitable
triple (V,R,E) we will rigorously derive a weak formulation of the corresponding
PDE system (3.1b). At this point our presentation will stay on a formal level, as we
will not address the existence and regularity of solutions for the resulting problem.
Under further smoothness assumptions we will then formally deduce a pointwise
formulation of the associated Cauchy problem and compare our resulting system
with the one presented in Section 2. Indeed, we shall see that a dissipation potential
suited to produce a critical pressure of 1-homogeneous nature is not of the standard
smooth, quadratic nature.

3.1 Notation and states

We consider the motion of a liquid continuous phase (index �) mixed with a solid
dispersed phase of non-Brownian particles (index s) phase occupying at each time
t ∈ [0,T] a bounded set Ω(t) ⊂ Rd where d ∈ N. At the initial time t = 0 this
subdomain is denoted by Ω̄ = Ω(0). For each point in space x ∈ Ω(t) the state of the
suspension is characterized by volume fractions 0 ≤ φs(t, x), φ�(t, x) ≤ 1 such that
we have φs(t, x) + φ�(t, x) = 1 pointwise. In the following we define the structures
needed to model the evolution of φi and Ω(t) using a gradient flow structure. One
key idea in this construction is the consistent use of flow maps as elements of an
abstract state space.
Definition 1 (Evolution of shapes with flow maps) Let χ(t, ·) : Ω̄→ Ω(t) a family
of diffeomorphisms that map from Ω̄ ⊂ Rd to Ω(t) ⊂ Rd using

Ω(t) = χ(t, Ω̄) ≡ {x ∈ Rd : ∃X ∈ Ω̄ s.t. x = χ(t,X)}. (3.2)

The small letter x will always denote coordinates inΩ(t), whereas the capital letter X
denotes coordinates in the reference configuration X ∈ Ω̄. We define the associated
velocity u(t, ·) : Ω(t) → Rd with

u(t, x) = (
∂tχ

)(t, χ−1(t, x)). (3.3)

We call χ(t, ·) the flow map associated to the motion of Ω(t) and u(t, ·) the corre-
sponding velocity vector field. Initial data are chosen such that χ(t = 0,X) = X and
Ω̄ = Ω(0). With the notation Fχ = ∇Xχ we indicate the gradient of the transforma-
tion and assume for its Jacobian determinant that det Fχ > 0. On the other hand, for
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Ω̄ Ω(t) ⊂ R
d

x = χ(t,X)
X

x

u(t, x)

Fig. 3: Flow map χ(t, ·) : Ω̄→ Ω(t)mapping a point X ∈ Ω̄ ⊂ Rd from the reference
domain Ω̄ (green shaded) to a point in the mapped configurationΩ(t) (gray shaded).
When considering the trajectory x(t) = χ(t,X) (dashed line) for any given X , then
u = x(t) is the associated velocity (arrow) and u(t, x) the corresponding flow field.

given flow field u we have an associated ODE-Cauchy problem:

∂tχ(t,X) = u(t, χ(t,X)) for all X ∈ Ω̄ and t ∈ [0,T], (3.4a)
χ(0,X) = X for all X ∈ Ω̄. (3.4b)

Note that (3.4) is the kinematic condition for the domain motion.

In the presence of two phases, each phase is characterized by its own flow map χi :
[0,T] × Ω̄→ Ω(t) ⊂ Rd with i ∈ {s, �} for solid and liquid phase. Correspondingly
we use ui and Fi to indicate the corresponding velocities and Jacobians. With this
notation we further require the flow maps to satisfy the following assumptions:
Multiple flow maps are defined on the same domain

Ω(t) = χs(t, Ω̄) = χ�(t, Ω̄), (3.5)

which of course does not imply that the flow maps are equal. Furthermore we have
the following assumptions on ui and χi for i ∈ {s, �} for all t ∈ [0,T]:

• Ω(t) and Ω̄ bounded and sufficiently smooth, (3.6a)
• χi(t, ·) : Ω̄→ Ω(t) is a smooth diffeomorphism, (3.6b)
• det Fi(t, ·) > 0, where Fi(t,X) = ∇Xχi(t,X), (3.6c)
• us(t, ·) = u�(t, ·) on ∂Ω(t). (3.6d)

Note that for the gradient structure equality of tangential velocities on the boundary
would suffice to ensure (3.5), but we require the slightly stronger condition (3.6d).

At each time t ∈ [0,T] and each x ∈ Ω(t), the fraction of volume occupied by
liquid and solid phase is characterized by the two phase indicators φi(t, x), i ∈ {s, �}.
Since φi represent volume fractions, they must satisfy

φs(t, x), φ�(t, x) ∈ [0,1] for all t ∈ [0,T] and all x ∈ Ω(t) (3.7a)
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Ω̄ Ω(t)
Xs = χ−1

s (t, x)

X� = χ−1
� (t, x)

x

u�(t, x)

us(t, x)

Fig. 4: Flow maps χi(t, ·) for solid i = s phase and liquid i = � phase mapping a point
X ∈ Ω̄ ⊂ Rd from the reference domain Ω̄ (green shaded) to a point in the mapped
configuration Ω(t) (gray shaded). When considering the trajectories xi(t) = χi(t,X)
(dashed lines) for any given X and i ∈ {s, �}, then ui = xi(t) are the associated
velocities (arrow) and ui(t, x) the corresponding flow field. At time t the trajectories
meet at the same point x, when they started at Xi = χ−1

i (t, x).

and fill the volume such that

φs(t, x) + φ�(t, x) = 1 for all t ∈ [0,T] and all x ∈ Ω(t) (3.7b)

The evolution of the densities is defined via a local conservation law for the two
volume fractions. We assume that the given initial volume fractions φi(t = 0,X) =
φ̄i(X) ∈ [0,1] and that the flow maps χi(t, ·) : Ω̄ → Ω(t) as well as their velocities
ui(t, ·) : Ω(t) → R

d are sufficiently smooth for i ∈ {s, �}. For arbitrary ω̄ ⊂ Ω̄
let ωi(t) = χi(t, ω̄) ⊂ Ω(t). In the absence of reaction or diffusion processes we
require the volume fraction φi(t, ·) : Ω(t) → R to satisfy the integral form of volume
conservation stated as ∫

ω(t)
φi(t, x) dx =

∫
ω̄
φ̄i(X) dX . (3.8a)

Differentiating (3.8a) in time and using the Reynolds transport theorem, given the
smoothness of all quantities involved, shows the equivalent differential form of
volume conservation: For given t ∈ [0,T] and any x ∈ Ω(t) the density φi(t, x)
satisfies the (Cauchy problem for the) transport equation

∂tφi(t, x) + divx

(
φi(t, x)ui(t, x)

)
= 0 in Ω(t),

φi(0,X) = φ̄i(X) in Ω̄,
(3.8b)

with given, sufficiently smooth initial data φ̄i,which also have to satisfy the volume
constraints, i.e., we claim that

• 0 ≤ φ̄i ≤ 1 for all X ∈ Ω̄, (3.9a)
• φ̄s + φ̄� = 1 for all X ∈ Ω̄. (3.9b)
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The following lemma summarizes a few immediate consequences of the preceed-
ing definitions, constraints, and assumptions. Moreover, Statement 4. below justifies
why we can subsequently work with the divergence contraint (3.10) for the average
velocity, cf. the definition of the dissipation potential (3.17), in order to equivalently
guarantee the volume constraint (3.7b) for the phase indicators.

Lemma 3.1 Let i ∈ {s, �} and let all the quantities χi, φi,ui, φ̄i be sufficiently smooth.

1. Assume the densities φi fill the volume (3.7b). Then at each time t ∈ [0,T] the average
velocity defined as u = φsus + φ�u� satisfies the following divergence constraint

divx u(t, x) = 0, for all x ∈ Ω(t). (3.10)

2. Let the sufficiently smooth flow map also satisfy the positivity assumption (3.6c), i.e.,
det Fi > 0. Then, the transport problem (3.8) for the volume fraction φi is equivalent
to the following explicit representation for any given t ∈ [0,T]:

φi
(
t, χi(t,X)) = (

det Fi(t,X))−1
φ̄i(X), for each X ∈ Ω̄. (3.11)

3. Let the transport problem (3.8) as well as the volume constraint (3.7b) be satisfied.
Then the two phase volumes are conserved, i.e.,

Vi(t) =
∫
Ω(t)
φi(t, x) dx = Vi(0), and |Ω(t)| = Vs + V� = |Ω̄|. (3.12)

4. Let the transport problem (3.8) be satisfied. Then, the following equivalence holds
true for the volume constraint on the phase indicator:{

(3.9b) for φ̄s, φ̄� at initial time
& divergence constraint (3.10)

}
⇔ {

(3.7b) for φs, φ� at any t ∈ [0,T] }
(3.13)

5. Assume that φ̄i satisfies the convex constraint (3.9a) at initial time, that the transport
relation (3.8) as well as volume constraint (3.9b) and divergence constraint (3.10)
hold true. Then the convex constraint (3.7a) holds true also for φi(t, ·) in Ω(t) for
any t ∈ [0,T].

Proof To 1.: Since we assumed φs(t, x) + φ�(t, x) = 1 for any x ∈ Ω(t) we readily
conclude ∂t (φs + φ�) = 0 = divx(φsus + φ�u�).
To 2.: Using change of variables X = χ−1

i (t, x) and volume conservation (3.8) we
find for all t ∈ [0,T], arbitrary ω̄ ⊂ Ω̄ and ω(t) = χi(t, ω̄) that∫

ω̄
φ̄i(X) dX =

∫
ω(t)
φi(t, x) dx =

∫
ω̄
φi(t, χi(t,X)) det Fi(t,X) dX .

The assertion follows due to the smoothness of φi and the positivity of det Fi .
To 3.: This is a direct consequence of 1. and φs + φ� = 1.
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To 4.: Clearly, condition (3.7b) includes (3.9b) initial time. The divergence constraint
again follows from (3.7b) and (3.8) along the lines of Item 1.. Hence, ’⇐’ in
(3.13). To find also ’⇒’ we argue as follows: Transport problem (3.8) together with
(3.10) implies ∂t (φs + φ�) = 0 in [0,T] × Ω(t). Hence φs(t, x) + φ�(t, x) = c(x) =
φs(0,X) + φ�(0,X) = 1,which is (3.7b) at any t ∈ [0,T].

To 5.: The above argument implies φi ≤ 1, if it is possible to show that φi ≥ 0.
Indeed, the latter follows from (3.8) thanks to its equivalence to the representation
(3.11). By the positivity of the determinant (3.6c) and the constraint (3.9a) satisfied
by the initial data we may thus conclude that φi ≥ 0. �

Here we point out the crucial observation that the evolution of φi is not independent
but rather defined using the flow maps χi . However, when considering functional
depending on φi we need to be able to compute its variations. For this we recall the
simple identity for change of variables for volume integrals.

Theorem 3.1 (Change of variables in volumes) Let χ : (t, ·)Ω̄ → Ω a flow map
from Ω̄ ⊂ Rd to Ω(t) ⊂ Rd and let φ(t, χ(t,X)) = (det Fχ)−1φ̄(X) and f (x, φ) given.∫

χ(t ,Ω̄)
f (x, φ) dx =

∫
Ω̄

f
(
χ(t,X), (det Fχ(t,X))−1φ̄(X)) det Fχ(t,X) dX .

For instance using f (x, φi) = φi and χ = χi shows that conservation of volume
holds by construction since∫

χi (t ,Ω̄)
φi(t, x) dx =

∫
Ω̄

φ̄i(X) dX = Vi .

3.2 The triple (V,R,E) for flows of concentrated suspensions

In view of the discussion in Section 3.1 we denote in the following the vector of states
by q := (χs, χ�) ∈ Q and its associated vector of velocities by q := (us,u�) ∈ V.
Hereby, we will use the spaces

X := {χ ∈ H1(Ω̄;Rd), χ = idΩ̄ on ∂Ω̄\Γ̄}, (3.14a)
Q := {(χs, χ�) ∈ X × X, χs = χ� on Γ̄}, (3.14b)

as the state space for the flow maps defined on the reference configuration Ω̄ and

V :=
{
(ũs, ũ�) ∈ H1(Ω(t);Rd × Rd), ũs = ũ� on Γ(t)

ũs = ũ� = 0 on ∂Ω(t)\Γ(t)
}
, (3.15)

as the function space for the velocities defined on the current configuration Ω(t)
for all t ∈ [0,T]. Note that above we introduced a part of the boundary ∂Ω̄ \ Γ̄,
on which the shape of the domain is fixed corresponding to a no-slip boundary
condition. Moreover we stress that the upcoming definitions of functionals will
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always implicitely depend on a vector of given data (φ̄s, φ̄�, Ω̄),which consists of the
reference configuration Ω̄ ⊂ Rd, and of the reference densities φ̄s, φ̄� of solid and
fluid phase.

Further using the notation from Definition 1 we consider an energy functional
E : Q → [0,∞] where

E(q) := Ebulk(q) + Esurf(q) with

Ebulk(q) :=

{ ∫
Ω(t) E(x, φs) dx if φi(t, x) = φ̄i (t ,X)

detFi (t ,X) ,
∞ otherwise,

(3.16a)

where E(x, φs) := gxd(φsρs + (1 − φs)ρ�), and (3.16b)

Esurf(q) :=

{ ∫
Γ(t) ϑ dH d−1 if φi(t, x) = φ̄i (t ,X)

detFi (t ,X) ,
∞ otherwise.

(3.16c)

In (3.16b) the constant g denotes the gravity constant, xd is the dth component of
the space variable x ∈ Ω(t) ⊂ Rd in the current configurationΩ(t), and ρs, ρ� denote
the mass densities of the solid and the fluid phase, respectively. Moreover, in (3.16c),
the parameter ϑ denotes the surface tension and H d−1 is the (d − 1)-dimensional
Hausdorff measure.

In addition, we also introduce the dissipation potential R : Q × V → [0,∞] as

R(q; ̃q) :=
∫
Ω(t)

R(φs, φ� ; ũs, ũ�, ẽs, ẽ�) dx + IK(q)(ũs, ũ�), (3.17a)

where we used the indicator functional IK(q) and the constraint set K(q) defined as

IK(q)(ũs, ũ�) :=

{
0 if (ũs, ũ�) ∈ K(q),
∞ otherwise,

(3.17b)

K(q) := {(ũs, ũ�) ∈ V, divx(φsũs + φlũ�) = 0 a.e. in Ω(t)}. (3.17c)

The constraint set K(q) ⊂ V depends on q = (χs, χ�) ∈ Q through φs, φ� by (3.11).
Indeed, with given, fixed φs, φ� it can be checked that K(q) is a closed linear subspace
of V.

Moreover, in (3.17a) there are the following contributions to the density R

R(φs, φ� ; ũs, ũ�, ẽs, ẽ�) := R�(φ� ; ẽ�) + Rs(φs; ẽs) + Rs�(φs; ũs, ũ�), (3.17d)

R�(φ� ; ẽ�) := μ̃�1(φ� )
2 | dev ẽ� |2 + μ̃�2(φ� )

2 | trẽ� |2, (3.17e)

Rs�(φs; ũs, ũ�) := μ̃s� (φs )
2 |ũs − ũ� |2, (3.17f)

Rs(φs; ẽs) := μ̃s (φs )
2

[
α | dev ẽs |2 + β+( trẽs)2+ + β−( trẽs)2− + γ |ẽs |( trẽs)−

]
, (3.17g)

where ei = e(ui), ẽi = e(ũi), e(u) := 1
2 (∇u + ∇u�) is the symmetric strain tensor,

trei :=
∑d

k=1 ei,kk is the trace of the matrix ei = (ei,kl)dk ,l=1 ∈ Rd×d, and with the
notation dev ei := ei − 1

d treiI we indicate its deviator. The functions (·)± in (3.17g)
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denote the positive, resp. negative part, i.e.,

(a)± := max{±a,0} for a ∈ R.

Observe that the contribution of the liquid (3.17e) and the coupled part (3.17f)
are both quadratic, hence convex for strictly positive coefficient functions. Instead,
the dissipation potential of the solid phase features, in addition to the quadratic
terms, also the mixed term | dev ẽs |( trẽs)−. Hence, convexity of the solid dissipation
potential can only be ensured under additional assumptions on α, β−, and γ.

We now specify conditions on the coefficients in (3.17), for which coercivity and
convexity of R can be ensured. Under these conditions we give a characterization of
its subdifferential.

Proposition 3.1 (Properties of R) Let R be given by (3.17) with the velocity space
V as in (3.15) and let the states q = (χs, χ�) be given in accordance with (3.6) and
(3.11). For given us ∈ H1(Ω(t);Rd), resp. u� ∈ H1(Ω(t);Rd) with us = u� = 0
on ∂Ω(t)\Γ(t), set

Vus := {ũ� ∈ H1(Ω(t);Rd), (us, ũ�) ∈ K(q)} , (3.18a)
Vu� := {ũs ∈ H1(Ω(t);Rd), (ũs,u�) ∈ K(q)} . (3.18b)

1. Assume that μ̃s, μ̃�, μ̃s� ∈ L∞(R) and that there is a constant μ̃∗ > 0 such that
μ̃s, μ̃�1, μ̃�2, μ̃s� > μ̃∗ a.e. in R. Further assume that α, β+, β− > 0, and γ ≥ 0.
Then, for given q ∈ Q the functional R(q; ·) is lower semicontinuous and coercive
on V, i.e., for all (us,u�) ∈ V it is

R(q; q) ≥ 1
2 μ̃∗α∗CPF

(‖us ‖2
H1(Ω(t);Rd ) + ‖u� ‖2

H1(Ω(t);Rd )
)
, (3.19)

where α∗ := min{α, β−, β+} and CPF is the Poincaré-Friedrichs constant for V.
2. Let the assumptions of Item 1. hold true. Then the functional Rs(q; ·) :=∫
Ω(t) Rs(q; e(·)) dx with Rs from (3.17g) is strictly convex on Vu� , cf. (3.18b),

if γ2

(1−δ)β− ≤ 4 min{α, β+, δβ−} for a constant δ ∈ (0,1).
3. Let the assumptions of Item 1. hold. Then R(q; ·) is strictly convex if γ2

(1−δ)β− ≤
4 min{α, β+, δβ−} for a constant δ ∈ (0,1).

4. Let the assumptions of Item 3. hold true. The subdifferential of R(q; ·) for an
element (us,u�) ∈ V is given by the elements (ξs, ξ�) + (ζs, ζ�) ∈ V∗ such that for
all (ũs, ũ�) ∈ V it is

R(q; ̃q) − R(q; q) ≥ 〈(ξs + ζs, ξ� + ζ�), (ũs, ũ�)〉V,

with (ζs, ζ�) ∈ ∂IK(q)(us,u�) characterized for any (us,u�) ∈ K(q) by elements
π ∈ L2(Ω(t)) in the following way

0 = 〈(ζs, ζ�), (ũs, ũ�)〉V =
∫
Ω(t)
π divx(φsũs + φlũ�) dx for all (ũs, ũ�) ∈ K(q) .

(3.20a)
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Moreover, the elements (ξs, ξ�) ∈ V∗ are given by

〈ξ�, ũ�〉H1(Ω(t);Rd ) :=
∫
Ω(t)

[
μ̃�1(φs) dev e� : dev ẽ� + μ̃�2(φs) tre� trẽ�

−μ̃s�(φs)(us − u�) · ũ�

]
dx, (3.20b)

〈ξs, ũs〉H1(Ω(t);Rd ) :=
∫
Ω(t)

[
μ̃s(φs)α dev es : dev ẽs + μ̃s�(φs)(us − u�) · ũs

+β̂+( tres)+ trẽs + β̂−( tres)− trẽs
+μ̂1 |es | trẽs + μ̂2(es) : ẽs( tres)−

]
dx, (3.20c)

with β̂+ ∈ L∞(Ω(t)), β̂+ = β+ μ̃s(φs)H( tres),
and β̂− ∈ L∞(Ω(t)), β̂− = −β− μ̃s(φs)H(− tres),
and μ̂1 ∈ L∞(Ω(t)), μ̂1 = − μ̃s (φs )γ

2 H(− tres),

and μ̂2 ∈ L∞(Ω(t);Rd×d), μ̂2(es) =
{

es
|es |

μ̃s (φs )γ
2 if |es | > 0,

ê ∈ Rd×dsym with |ê| ≤ μ̃s (φs )γ
2 if |es | = 0,

at a.e. point x ∈ Ω(t), and where H denotes the Heaviside function

H(a) ∈
⎧⎪⎪⎨⎪⎪⎩
{0} if a < 0,
[0,1] if a = 0,
{1} if a > 0.

(3.21)

Proof To 1.: Observe that the functional R(q; ·) is continuous in K(q) due to the
closedness of this subspace in V. In particular this is immediate for all the quadratic
contributions of the functional; the continuity of the product term can be seen by the
following calculation����∫

Ω(t)
μ̃s (φs )

2
(|es |( tres)− − |ẽs |( trẽs)−

)
dx

����
≤ μ̃∗

∫
Ω(t)

��|es | − |ẽs |
�� ��( tres)− − ( trẽs)−

�� dx

≤ μ̃∗‖es − ẽs ‖L2(Ω(t);Rd×d ) ‖( tres)− − ( trẽs)−‖L2(Ω(t))

by Hölder’s inequality. This proves continuity in K(q). Lower semicontinuity in V
then follows by the fact that R(q; us,u�) = ∞ for any (us,u�) ∈ V\(Vu� × Vus ).

Coercivity estimate (3.19) directly follows from all quadatic terms thanks to the
positive bounds from below for the coefficient functions and by Poincaré-Friedrich’s
inequality in V.
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To 2.: Let (us,u�), (ũs, ũ�) ∈ V and λ ∈ (0,1). In what follows, we abbreviate
e = es and ẽ = ẽs . First of all, we observe that the positive and the negative part (·)±
are convex functions so that (λ tre + (1 − λ) trẽ)± ≤ λ( tre)± + (1 − λ)( trẽ)±. Since
| · |2 is monotone, we find

β±|( tr(λe + (1 − λ)ẽ))± |2 ≤ β±|λ( tre)± + (1 − λ)( trẽ)± |2 . (3.22)

Furthermore, dev and tr are linear operators. Hence, with placeholders a ∈
{dev e, tre, ( tre)±} and ã ∈ {dev ẽ, trẽ, ( trẽ)±} the uniform convexity of | · |2 can
be checked:

|λa + (1 − λ)ã|2 = λ |a|2 + (1 − λ)|ã|2 − λ(1 − λ)(a − ã)2. (3.23)

This also proves the convexity of R� . Moreover, the product term contained in Rs

can be estimated by monotonicity of | · | and (·)−, and Young’s inequality as follows:

|λe + (1 − λ)ẽ|( tr(λe + (1 − λ)ẽ))−
≤ (λ |e| + (1 − λ)|ẽ|)(λ( tre)− + (1 − λ)( trẽ)−)
= λ |e|( tre)− + (1 − λ)|ẽ|( trẽ)−
−λ(1 − λ)(|e| − |ẽ|) (( tre)− − ( trẽ)−

)
≤ λ |e|( tre)− + (1 − λ)|ẽ|( trẽ)−
+λ(1 − λ)√ε

��|e| − |ẽ|
�� ��( tre)− − ( trẽ)−

��(√ε)−1

≤ λ |e|( tre)− + (1 − λ)|ẽ|( trẽ)−
+λ(1 − λ)( ε2 (|e| − |ẽ|)2 + 1

2ε
(( tre)− − ( trẽ)−

)2)
,

where the positive terms in the very last line of this estimate have to be absorbed by
the corresponding negative term obtained in (3.23). For this, it can be checked that

−α(| dev e| − | dev ẽ|)2 − β+(( tre)+ − ( trẽ)+)2 − (δ + 1 − δ)β−(( tre)− − ( trẽ)−)2
≤ −mδ(|e| − |ẽ|)2 − (1 − δ)β−(( tre)− − ( trẽ)−)2

with mδ := min{α, β+, δβ−} for a constant δ ∈ (0,1). Thus, combining this estimate
with the previous ones, we obtain

Rs(φs; λe + (1 − λ)ẽ) ≤ λRs(φs; λe) + (1 − λ)Rs(φs; ẽ)
−λ(1 − λ) μ̃(φs )

2
((mδ − γε

2 )(| dev e| − | dev ẽ|)2
+((1 − δ)β− − γ

2ε )
(( tre)− − ( trẽ)−

)2
+ β+

(( tre)+ − ( trẽ)+
)2)
,

and we have to make sure that both mδ − γε
2 ≥ 0 and (1 − δ)β− − γ

2ε ≥ 0. This
implies the constraint γ

2(1−δ)β− ≤ ε ≤ 2mδ

γ , which finally gives γ2

(1−δ)β− ≤ 4mδ for
strict convexity.
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To 3.: Thanks to the previously proved statement of Item 2, the convexity proper-
ties of the full functionalR(q; ·) now follow by the uniform convexity of the quadratic
fluid and solid-fluid contributions.

To 4.: From Item 1. we recall that R(q; ·) is convex. The Moreau-Rockafellar
Theorem for convex functionals, cf. e.g. [17, p. 200, Thm. 1], provides a sum rule
for the subdifferential of convex functionals, i.e.: If F1, . . . ,Fk : U → (−∞,∞]
are proper, convex functionals, all but possibly one of them continuous in a point
v̄ ∈ domF1 ∩ . . . ∩ domFk, then

∂F1(v) + . . . + ∂Fk(v) = ∂(F1(v) + . . . + Fk(v)) for all v ∈ U. (3.24)

We observe that all the contributions to
∫
Ω(t) R dx are continuous on all of V and a

possible discontinuity for some (us,u�) ∈ domR arises by the constraint term IK(q).
Hence, the prerequisites of the Moreau-Rockafellar Theorem are met and (3.24)
applies to determine the contributions of its subdifferential.

In order to find the characterization (3.20a) of (ζs, ζ�) ∈ ∂IK(q)(us,u�) we note
that for any (ũs, ũ�) ∈ V it is

(ũs, ũ�) ∈ K(q) ⇔ for all η ∈ L2(Ω(t)) :
∫
Ω(t)
η divx(φsũs + φ� ũ�) dx = 0 .

(3.25)
This equivalently states that the annihilator K(q)⊥ of the linear subspace K(q) is
given by

K(q)⊥ =
{( ∫

Ω(t)
η divx(φs • +φ�•) dx

)
: K(q) → 0, η ∈ L2(Ω(t))

}
.

On the other hand, by the definition of the subdifferential of IK(q) for any (us,u�) ∈
K(q) we have that (ζs, ζ�) ∈ ∂IK(q)(us,u�) is a support function, i.e.,

(ζs, ζ�) ∈ ∂IK(q)(us,u�) ⇔ for all (ũs, ũ�) ∈ K(q) :
〈(ζs, ζ�), (us,u�) − (ũs, ũ�)〉V ≥ 0 .

With the specific choices (ũs, ũ�) = (0,0) ∈ K(q) and (ũs, ũ�) = −2(us,u�) ∈ K(q)
we find that 〈(ζs, ζ�), (us,u�)〉V = −〈(ζs, ζ�), (us,u�)〉V ≥ 0 and hence (ζs, ζ�) = 0 on
K(q). This means that (ζs, ζ�) ∈ K(q)⊥ and hence (3.20a) is deduced.

It remains to determine the other contributions to the subdifferential given by
(3.20b) & (3.20c). For this, we further make use of the chain rule for the subdiffer-
ential of convex functionals, cf. e.g. [17, p. 201, Thm. 2]: Assume that A : U → W
is linear, F : W → (−∞,∞] is convex and there is u ∈ U such that F is continuous
in Au. Then,

∂(F ◦ A)(u) = (A∗∂F )(Au), (3.26)

where A∗ : W∗ → U∗ is the adjoint of A, defined by 〈A∗u∗, v〉 = 〈u∗, Av〉.
Since the dissipation potential of the liquid (3.17e) and the coupling term (3.17f)

are Fréchet-differentiable, we directly find (3.20b) and the second summand of
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(3.20c). To deduce the remaining terms of (3.20c) we shall apply the above theorem
to the dissipation potential of the solid Rs(q; ·). To this aim we set U = Vu� with
given u�, A : Vu� → W = L2(Ω(t);Rd×d) × L2(Ω(t)) × L2(Ω(t);Rd×d), Av :=
(dev e(v), tre(v), e(v))� and set R̃s(a1,a2,a3) :=

∫
Ω(t)

μ̃(φs )
2

(
α |a1 |2 + β+ |(a2)+ |2 +

β−|(a2)− |2 + γ |a3 |(a2)−
)
dx. Thus, Rs(q; v) = (R̃s ◦ A)(v) for all v ∈ Vu� . Thanks

to the previously proved continuity and convexity properties of R(q; ·) we see that
also R̃s is convex and continuous on W . Hence chain rule (3.26) is applicable. To
ultimately conclude (3.20c), we note that for all (a1,a2,a3), (ã1, ã2, ã3) ∈ W it is

〈∂R̃s(a1,a2,a3), (ã1, ã2,a3)〉W
= 〈∂a1 R̃s(a1,a2,a3), ã1)〉L2(Ω(t)) + 〈∂a2 R̃s(a1,a2,a3), ã2)〉L2(Ω(t)) with

〈∂a1 R̃s(a1,a2,a3), ã1)〉L2(Ω(t)) =
∫
Ω(t)
μ̃s(φs)αa1 : ã1 dx ,

〈∂a2 R̃s(a1,a2,a3), ã2)〉L2(Ω(t)) =
∫
Ω(t)

(
β̂+(a2)+ã2 + β̂−(a2)−ã2 + μ̂1 |a3 |ã2

)
dx ,

〈∂a3 R̃s(a1,a2,a3), ã3)〉L2(Ω(t)) =
∫
Ω(t)

(a2)− μ̂2(a3) : ã3 dx ,

with the coefficient functions β̂±, μ̂1, μ̂2 as stated in (3.20c). �

In order to state (3.1b) for the system of concentrated suspensions it remains to
calculate the derivative of the energy functional.

Proposition 3.2 (Functional derivative of E) Let the energy functional E(q) be
given as in (3.16) and consider the family of flow maps q(h) defined by

χi(h,X) = X + h ui(X), (3.27)

for any arbitrary ui ∈ H1(Ω̄;Rd) representing an element q = (us,u�) ∈ V. Then
the variation of E in an arbitrary direction q ∈ V is given by

〈DqE(q), q〉 = lim
h→0

1
h
[E (

q(h)) − E (
q(0)) ] . (3.28)

1. The functional derivative of Ebulk from (3.16a) reads

〈DqEbulk(q), q〉 =
∫
Ω

(∇xE) · us + (E − φs∂φs E)(∇ · us) dx (3.29)

where E = E(x, φs).
2. The functional derivative of Esurf from (3.16c) reads

〈DqEsurf(q), q〉 =
∫
Γ

(
u · ∇xϑ + ϑ divΓ(u)

)
dH d−1 (3.30)

with surface energy ϑ = ϑ(x) and u = φsus + φ�u� .
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Proof To 1.: First we use change of variables to express the integral

Ebulk
(
q(h)) = ∫

Ω(h)
E(x, φs(h, x)

)
dx

=

∫
Ω̄

E
(
χs(h,X), φ̄s(X)

det Fs(h,X)

)
det Fs(h,X) dX .

This allow us to use (3.28) for a fixed domain. Then the differentiation of the integrand
gives the expression

〈DqEbulk(q), q〉 =
∫
Ω̄

lim
h→0

1
h

[
E
(
χs(h,X), φ̄s (X)

detFs (h,X)
)

det Fs(h,X) − E
(
X, φ̄s(X)) ]dX

=

∫
Ω̄

(∇xE) · us +

[
(∂φs E)

(
− φ̄s

det Fs

)
+ E

]
(∂h det Fs)h=0 dX

=

∫
Ω̄

(∇xE) · us + (E − φs∂φs E)∇ · us dx

where at h = 0 we have x ≡ X . We used a simple version of Jacobi’s formula
∂h det Fs = (det Fs) tr(F−1

s ∂hFs), det Fs = 1, and tr∂hFs = ∇ · us for h = 0. The
result remains valid for arbitrary q if the final integral is expressed in x-coordinates.

To 2.: We use again change of variables to express the integrals

Esurf(q(h)) =
∫
Γ(h)
ϑ(x) dH d−1 =

∫
Γ̄

ϑ(χi(t,X))‖Cof(Fi(t,X)) · n‖ dH d−1,

where CofFi = (det Fi)(F−1
i )� is the cofactor of the Jacobian. The differentiation

of this term is slightly more technical and can be found, for instance, in [30]. The
resulting expression is

〈Esurf, q〉 =
∫
Γ

(u · ∇xϑ + ϑ divΓ u) dH d−1,

where we used the surface divergence divΓ u. Observe that via the divergence theorem
on manifolds one can rewrite∫

Γ

divΓ u ds = −
∫
Γ

H · u ds , (3.31)

where H = Hn ≡ −n(∇Γ · n) is the mean curvature vector and H the scalar mean
curvature (with respect to n). Also note that u can be replaced with us or u� since
by (3.6d) they all agree on Γ for a given variation q. �
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3.3 PDE system obtained by the gradient flow formulation

In this section we combine the results of Propositions 3.1 & 3.2 in order to obtain
formulation of the force balance (3.1b) for the problem.

Weak formulation of the problem.

Force balance (3.1b)
−DE(q) ∈ ∂R( q) in V∗

is now directly obtained from the results of Propositions 3.1 & 3.2. For shorter
notation we observe that the gradient terms arising in the differential of the bulk
dissipation, cf. (3.20), define viscous stresses of solid and liquid phase. We here
gather them in terms of the stress tensors σs, σ� given by

σ� = μ̃�1 dev(e(u�)) + μ̃�2 tr(e(u�))I, (3.32a)
σs = μ̃sα dev(e(us)) +

[
β̂+( tre(us))+ + β̂−( tre(us))− + μ̂1 |e(us)|

]
I + σ∗

s , (3.32b)
σ∗
s = μ̂2(e(us))( tre(us))−, (3.32c)

where the coefficient functions β̂±, μ̂1, μ̂2 are defined in (3.20c). In this way, the weak
formulation induced by (3.1b) reads as follows:

〈(ξs + ζs, ξ� + ζ�), (ũs, ũ�)〉V
=

∫
Ω(t)
σ� : e(ũ�) + σs : e(ũs) + μ̃s�(u� − us) · (ũ� − ũs) + π divx(φsũs + φ� ũ�) dx

= −
∫
Ω(t)

(∇xE) · ũs − πs divx ũs dx −
∫
Γ(t)
ϑ divΓ ũ dH d−1 = −〈DE(q), (ũs, ũ�)〉V ,

(3.33)

for all (ũs, ũ�) ∈ V, with πs := −(E − φs∂φs E) as an effective pressure of the solid
phase, ũ = φsũs + φ� ũ�, and with (ξs + ζs, ξ� + ζ�) ∈ ∂R(q, q).

Pointwise formulation of the problem.

Suppose now that all the functions involved in (3.33) are sufficiently smooth, so
that we can integrate by parts in (3.33) in order to move the gradients from the
test functions to the stress and pressure terms. This leads to the classical, pointwise
formulation of the problem, again involving the stresses σ�, σs from (3.32).

In order to reconstruct the pointwise PDE formulation we first rewrite the deriva-
tive of Ebulk as
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〈DqEbulk(q), ̃q〉 =
∫
Ω

(∇xE) · ũs + (E − φs∂φs E)(∇ · ũs) dx

=

∫
Ω

(∇xE + ∇p∗) · ũs dx +
∫
∂Ω

(−p∗)ũs · n dH d−1, (3.34a)

where the effective pressure is defined

p∗(x, φs) = φs∂φs E(x, φs) − E(x, φs). (3.34b)

The derivative of Esurf we already characterized in (3.31) using the mean curvature.
In particular, for all t ∈ [0,T], a.e. in Ω(t) the following PDE-system has to be

satisfied:

− divx σs + μ̃s�(us − u�) = −φs∇(π + πs), (3.35a)
− divx σ� − μ̃s�(us − u�) = −φ�∇π, (3.35b)

divx

(
φsus + φ�u�

)
= 0, (3.35c)

together with the following boundary conditions:

(σs + σ�)n = (d − 1)ϑκ + π + πs on Γ(t) , (3.35d)
u� = us on Γ(t) , (3.35e)
u� = us = 0 on ∂Ω(t)\Γ(t) . (3.35f)

Comparison of models.

Even though the model in (3.35) already appears very similar to the one in (2.1),
we perform a short discussion on the terms in the stress and the pressures. Firstly,
the gradient flow model (3.35) offers a systematic way to include forces due to bulk
energies Ebulk and surface energies and Esurf , leading to the coupling term p∗, ps and
the corresponding boundary terms in (3.35d). The easiest to identify are the pressure
terms in (3.35), if we decompose the contribution σs − σ∗

s to the solid stress into a
volumetric and a deviatoric part

σs − σ∗
s := −psI + 2μ∗s devDus (3.36a)

with

μ∗s =
1
2
μ̃sα, (3.36b)

ps = −β+(divx us)+ − β−(divx us)− − μ̂1 |Dus | divx us=0
=

γ

2
μ̃s(φs)|Dus |H(− divx us),

(3.36c)

where we used the material law μ̂1 = −γ
2 μ̃sH(− divx us) with the Heaviside function

H as defined in (3.21). Note that H is mutli-valued in divx us = 0 with H(0) ∈ [0,1].
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In order to compare this with stresses pc, τs in (2.1) we have to identify

−pcI + φsτs
!
= −psI + 2μ∗s devD(us). (3.37)

with ps, μ∗s from (3.36). This shows how the normal pressure pc emerges from ps in
(3.36c) and also gives rise to a novel coupling term σ∗

s from (3.32c), i.e.,

σ∗
s =

{
es
|es |

μ̃s (φs )γ
4 ( tres)− if |es | > 0,

0 ∈ Rd×dsym if |es | = 0.
(3.38)

The comparison for liquid stresses is entirely similar.

4 Conclusion

This paper focusses on a two-phase model that was derived in [1] using the general
averaging approach introduced in [10, 11]. The key ingredient is a stress-strain
relation that features a normal pressure pc which is proportional to the solid shear
rate |D(us)| and becomes singular as the solid volume fraction approaches a critical
value φs → φcrit. In stationary shear flow situations with prescribed normal pressure
pc this produces a yield threshold due to zones where φs = φcrit. This law extends
a rheological relation inferred by [5] from scaling arguments and experimental
measurements of constant shear flow to the general case where the average liquid
and solid phase flow fields can be different. Unfortunately, previous investigations
also showed that even in these simple flow situations the equations are not well-posed
suggesting that some physics is missing.

In this paper, we reformulate the model within a variational framework based
on the concepts of gradient flows and energy dissipation. This allows us to infer
useful properties about the model and, as a long-term goal, access the rich analytical
machinery that has been developed for models formulated within this framework.
For example, we can deduce a general form of the normal pressure which includes
the relation formulated in [1]. In fact, we observe that the model creates a novel
contribution σ∗

s to the solid shear stress σs . The dissipation potential is only ensured
to be convex for certain parameter ranges (α, β±, γ), thus offering an analytical reason
for the loss of well-posedness that may provide clues which kind of additional physics
is required. Thus, we provide an alternative route for discussing this phenomenon
which has also been observed for granular flow models based on the similar μ(I)
rheology [2,3]. Moreover, the variational framework provides appropriate boundary
conditions for free interfaces of the suspension.
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