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a b s t r a c t 

We investigate the spherically symmetric dissolution of an initially cold alumina particle in a bath of 

molten cryolite. The cryolite initially freezes on the particle, forming a shell that must melt before the 

particle can dissolve. We derive asymptotic solutions valid in the limits of small-superheat and of small 

Stefan number. In the small-superheat limit, the evolution of the boundary exhibits a two-scale behaviour. 

In the small Stefan number limit, we find that the behaviour of a particle could be limited by either the 

dissolution (in the case where the temperature differences are small) or by heat transfer (when the latent 

heat is large and the temperature gradients are large). Our asymptotic predictions are validated by a front 

fixing numerical scheme that we initiate using the early-time asymptotics. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since its introduction in 1886, the Hall-Héroult process has

ade aluminium metal into a commodity product. In this contin-

ous process, alumina is dissolved in a cryolite bath from which

luminium is produced by electrolysis [1] . Key economic factors

re the high energy consumption and the competitive price of alu-

inium – the process must be run continuously and efficiently. To

chieve a stable process, the alumina concentration has to be kept

n a narrow band, which requires a good alumina feeding strategy

nd rapid dissolution in the bath. In recent years, the electrolyte

olume has decreased (because of reduced anode-cathode distance

nd larger anodes are being used), and the trend has been to in-

rease the amount of aluminium produced per unit time. A deeper

nd more fundamental understanding of the feeding and dissolu-

ion process is needed if further improvements are to be made to

he process efficiency. 

The industrial process [2] involves several complex steps includ-

ng the way the alumina is fed into the bath, and the thermochem-

cal reactions between the alumina and the bath. Feeding is typi-
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ally carried out by breaking the crust that forms at the top of

he cell and then pouring alumina as a granular material into the

ath, where ideally it sinks and dissolves. However, experimental

esearch [3–7] on both the laboratory and industrial scale indi-

ate that, in some circumstances, the alumina particles may form

 floating structure of undissolved alumina at the surface of the

ath. These rafts may remain afloat for much longer times than

he feeding cycle [7] , ultimately disrupting the process. 

Experimental research [8,9] on the feeding and dissolution pro-

ess investigates, for example, how the particle dissolution time

epends on the bath concentration, the size of the alumina parti-

les, and the initial heating of the particles. Haverkamp and Welch

10] include the effect of stirring of the cryolite bath which accel-

rates the dissolution by dispersing the alumina particles; this is

onfirmed by simulations of a mathematical model for the alumina

oncentration in the bath, and by small sized experiments. An ex-

ensive description of various experimental factors influencing the

eeding has been covered in a review [2] . 

Since experiments using molten cryolite are extremely chal-

enging, advanced numerical simulations have proven to be a vi-

ble supplement to experiments. For example, Hofer [11] uses a

nite element formulation for a model for the Hall-Héroult cell

n which the fluid velocity and pressure, the concentration of dis-

olved alumina, and the position and sizes of the alumina parti-

les are tracked, in order to determine the influence of the flow on
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Fig. 1. Geometry of the phase-change problem for a spherical particle of radius a 

with a frozen shell located at a < r < R ( t ). 
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the dispersion of both the alumina particles and the dissolved alu-

mina. The finite element framework has also been used by other

authors to investigate various aspects of the Hall-Héroult cell [12–

14] . In order to be computationally tractable, all these simulations

rely upon sub-grid models which in turn depend upon closure laws

formulated on a rigorous mathematical basis. 

In contrast to previous experimental studies, which focus on

the dissolution of clumps of alumina particles, we consider the be-

haviour of a single particle since this will be an important ingre-

dient in the closure laws for bath-level simulations. The low tem-

perature of the feedstock compared to the bath, which is main-

tained only slightly above the melting point to save energy, leads

to three distinct process stages in the single particle case: first,

some of the bath freezes into a shell around the particle; second,

this shell melts; third, after the shell has vanished, the alumina

particle dissolves into the cryolite. The first two stages are heat-

transfer-driven phase changes and are observed in experiments in

which porous alumina lumps are inserted into cryolite [3] . 

Moving boundary problems are ubiquitous in many disciplines

such as materials science, geosciences, biology, or even finance.

There is a considerable amount of mathematical literature on

spherically symmetric moving boundary problems dealing with

bubble nucleation [15] , bubble dissolution [16] , or mass-transfer-

controlled dissolution of an isolated sphere [17] . Due to its rich

mathematical structure, the inward solidification of a suddenly

cooled liquid sphere has been extensively studied for example

in [18–24] . The analysis in [18] breaks down as the freezing front

approaches the centre of the sphere, but this issue was rectified

in [19] , and improved in [20] by considering the region close to

the centre of the sphere when freezing is nearly complete. Simi-

lar issues arise in solidification problems in a cylindrical geome-

try, which was analysed in [22] , and for an N -dimensional sphere

in [21] . In contrast, the previously mentioned models, which are all

one-phase, [23,24] included temperature evolution in both phases,

leading to a two-phase Stefan problem. Furthermore, [25] inves-

tigated the integral forms of the equations to calculate bounds for

the evolution of the radius. Additionally, the coupling of heat trans-

fer and fluid flow is investigated in [26] by analysing the behaviour

of a hot fluid flowing over a cold solid plane. 

The paper most relevant to our analysis is [27] in which the

problem of a metal particle immersed in its melt is considered.

They formulate a two-phase Stefan problem similar to our model,

with the difference that the contribution of the melt is lumped

into the boundary condition using Newton’s law of cooling with

a constant convective coefficient. We will comment on the differ-

ences and similarities as they arise. Our aim in this paper is to

formulate and solve a mathematical model to describe the freez-

ing, melting and dissolution process for a single alumina parti-

cle, which is an essential building block for understanding alumina

feeding and distribution in the Hall-Héroult process. 

We will present the mathematical model in Section 2 . We

then nondimensionalise and analyse the thermal problem in

Section 3 and present the analysis for the dissolution problem in

Section 4 . Finally, we summarise the results and present the con-

clusions in Section 5 . 

2. Mathematical model 

We consider a spherically symmetric geometry in which a solid

spherical alumina particle is immersed in a stationary cryolite

bath. We suppose that the initial temperature, T ∗p , of the particle

is much lower than the liquidus temperature, T m 

, of the cryolite.

The cryolite is initially at a temperature T ∗c , which is slightly higher

than the liquidus temperature. Thus, a frozen shell of cryolite will

form on the surface of the particle, which will then melt away

as the temperature equilibrates. We neglect bulk cryolite flow for
implicity and we also neglect the radial flow caused by the phase

hange during the freezing and melting stages, motivated by the

mall difference (1%) in the densities between frozen and molten

ryolite; we revisit this assumption in Section 5.2 . 

.1. Thermal problem 

We denote by t the time since the instantaneous immersion of

he particle in the bath and by r the radial coordinate from the

entre of the particle. We split the domain into three regions as

hown in Fig. 1 : the solid alumina particle of radius a occupies

 < r < a ; the frozen cryolite shell occupies a < r < R ( t ), where

 ( t ) is the position of the interface between the frozen and un-

rozen region; and finally the molten cryolite resides in r > R ( t ). 

Conservation of heat energy and Fourier’s law for heat conduc-

ion [28] give the governing equations in each region, namely 

p c p 
∂T p 

∂t 
= 

k p 

r 

∂ 2 

∂r 2 
( rT p ) in 0 < r < a, (2.1a)

s c s 
∂T s 

∂t 
= 

k s 

r 

∂ 2 

∂r 2 
(rT s ) in a < r < R (t) , (2.1b)

c c c 
∂T c 

∂t 
= 

k c 

r 

∂ 2 

∂r 2 
(rT c ) in r > R (t) , (2.1c)

here T i ( r, t ) are the temperatures, ρ i are the densities, c i are the

pecific heat capacities at constant pressure, and k i are the thermal

onductivities; here i ∈ { p, s, f }, where p denotes the particle, s de-

otes the frozen shell of cryolite and c denotes the molten cryolite .

We assume that the temperature and the heat flux are contin-

ous at the boundary between the particle and the frozen cryolite

hell, so that 

 p = T s , k p 
∂T p 

∂r 
= k s 

∂T s 

∂r 
on r = a. (2.2)

On the moving boundary between the frozen and molten cry-

lite, r = R (t) , we assume that the temperature is continuous and

qual to the cryolite liquidus temperature T m 

. We further assume

hat there is a jump in the thermal flux caused by the phase

hange. Thus, we write 

 s = T c = T m 

, k s 
∂T s 

∂r 
− k c 

∂T c 

∂r 
= ρs L ̇ R on r = R (t) , (2.3)

here L is the latent heat of solidification of the cryolite, which is

ssumed to be constant, and 

˙ R = d R/ d t . The Stefan condition given

n (2.3) is different from the condition used in [27] , where they as-

ume Newton’s law of cooling at the edge of frozen cryolite rather

han modelling the heat transfer in the fluid. 

Finally, we assume that the temperature at the centre of the

article is finite, and that the temperature far away from the par-

icle is given, so that 

 p = O (1) as r → 0 , (2.4a)

 c → T ∗c as r → ∞ , (2.4b)
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Table 1 

Table showing the key material and physical parameters in the Hall-Héroult process. 

Parameter Symbol Value Sources 

Alumina 

initial temperature T A 373K [29] 

melting temperature T A m 2300K [30] 

heat conductivity k p 4-16W m 

–1 K –1 [29,30] 

specific heat capacity c p 1200J kg –1 K –1 [29,30] 

density ρp 2-2.5kg dm 

–3 [29] [31, p. 47] 

diffusivity in cryolite D 1.5 × 10 –9 m 

2 s –1 [29] 

far-field concentration C f 62kg m 

–3 [29] 

saturation concentration C s 165kg m 

–3 [29] 

Frozen cryolite 

melting point T m 1200-1230K [31, p. 43] [32, p. 52] 

heat conductivity k s 1.5W m 

–1 K –1 [29] 

specific heat capacity c s 1450J kg –1 K –1 [29] 

density ρs 2090kg m 

–3 [29] [31, p. 54] 

Molten cryolite 

bath temperature T c 1223-1243K [3,4,33] 

heat conductivity k c 0.8W m 

–1 K –1 [29] 

specific heat capacity c c 1900J kg –1 K –1 [34] 

density ρc 2070kg m 

–3 [31, p. 45] 

latent heat of solidification L 530 × 10 –3 J kg –1 [29] 

dynamic viscosity μc 2.7 × 10 –3 Pas [31, p. 56] 

Environment 

typical particle size a 50 × 10 –6 m [29] [31, p. 65] 

agglomerate size s 10 × 10 × 5cm [29] 

top temperature T top 1000K [29] 

addition rate Q 1kg min –1 [29] 

porosity φ 0.3–0.45 [35, T 2.1] [31, p. 66] 
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Fig. 2. Schematic of the heat conduction and dissolution problems. The freezing 

model (in Section 2.1 ) is valid for 0 < t < t M , while the dissolution model (in 

Section 2.2 ) is valid for t M < t < t D . 
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here T ∗c is the far-field cryolite temperature, which we note is

ormally a few degrees above T m 

. 

Initially, the temperatures in the particle and the cryolite are

patially homogeneous and there is no frozen shell so that the ini-

ial conditions are given by 

 p = T ∗p for 0 < r < a at t = 0 , (2.5a) 

 c = T ∗c for r > a at t = 0 , (2.5b) 

R = a at t = 0 , (2.5c) 

here T ∗p is the initial temperature of the particle (slightly above

oom temperature). The equations (2.1)–(2.5) form a classical two-

hase Stefan problem [24,36,37] in the cryolite, with an added re-

ion for the particle. We note that, in contrast, the model of [27] is

 one-phase Stefan problem involving two domains (particle and

hell). We present the key material and physical parameters in

able 1 . 

We are interested in determining the thickness of the frozen

hell. We define the freezing time t F to be the time at which the

hickness of the frozen shell is maximal and the melting time t M 

o be the time at which the frozen shell has melted away to zero

hickness. We are also interested in the time of complete dissolu-

ion of the particle, denoted by t D . A schematic of the process, indi-

ating the timescales, is shown in Fig. 2 . Our phase change model

s only valid up to t M 

, after which the frozen shell region and the

oving boundary disappears. After t M 

we have to solve a standard

eat conduction problem in the particle and the cryolite and our

nterest turns to how the particle dissolves. 

.2. Dissolution problem 

As soon as the frozen shell has melted, the behaviour of the

article is described by a well-known mass-transfer based prob-

em. The pure dissolution of a particle has been investigated before

y e.g. [16,17] , and here we summarise concisely the argument. 
The alumina dissolved in the molten cryolite makes up about

% (by mass) of the bath, so we define the dilute concentration

f alumina in the bath as C ( r, t ) (with units kg m 

−3 ). Assuming

pherical symmetry and that the transport of dissolved alumina is

ue to diffusion and advection, the governing conservation of mass

quation is given by 

∂C 

∂t 
+ 

1 

r 2 
∂ 

∂r 

(
r 2 u r C − r 2 D 

∂C 

∂r 

)
= 0 in r > R (t) , (2.6)

here u r ( r, t ) is the radial velocity of the molten cryolite caused

y the motion of the edge of the dissolving particle, and D is the

lumina diffusivity in the molten cryolite. Assuming that the cry-

lite has constant density, the velocity field in the molten cryolite

atisfies the conservation of mass equation given by 

1 

2 

∂ (
r 2 u r 

)
= 0 in r > R (t) , (2.7)
r ∂r 
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Table 2 

Dimensionless parameters, and ranges of values, with mean physical properties 

written in parentheses, calculated from Table 1 . 

Parameter Sym. Value 

Diffusivity ratio κ2 0.074-0.37 (0.13) 

Diffusivity ratio κ3 0.03-0.15 (0.05) 

Melting temperature θm 0.95-1 (0.98) 

Conduction of particle β 2.7-10.7 (7) 

Conduction of melt ν (0.5) 

Stefan number St 0.19-0.95 (0.34) 

Dissolution number σ 0.05 

Density ratio ρr 0.97-1.2 (1.1) 
which can be immediately integrated to give 

u r = 

A (t) 

r 2 
, (2.8)

for some function A ( t ), which we will determine later. 

We note that, in this dissolution model, we include the velocity

due to the movement of the boundary because the density differ-

ence between the alumina and the molten cryolite is substantial

(see Table 1 ). 

At the surface of the particle, we assume that the alumina in

the cryolite is in thermodynamic equilibrium with the particle and

that the concentration of alumina in the cryolite is equal to a given

saturation concentration C s . Far away from the particle, we also as-

sume that the concentration is at a known value C f . These condi-

tions read 

 = C s on r = R (t) , (2.9)

 = C f as r → ∞ . (2.10)

We note that, in general, the saturation concentration is a function

of temperature. However, for simplicity we take it to be a constant.

We have two more conditions due to the moving boundary.

They can be derived [15] by considering the conservation of to-

tal mass and alumina mass relative to the moving boundary, and

are given by 

(u r − ˙ R ) ρc = − ˙ R ρp on r = R (t) , (2.11)

(u r − ˙ R ) C s − D 

∂C 

∂r 
= − ˙ R ρp on r = R (t) , (2.12)

where ρc is the density of the molten cryolite, ρp is the density

of the alumina particle. Solving (2.11) and (2.12) for the two un-

knowns, u r and 

˙ R , we obtain 

u r = 

˙ R 

(
1 − ρp 

ρc 

)
on r = R (t) , (2.13)

˙ R = 

D 

ρp (1 − C s /ρc ) 

∂C 

∂r 
on r = R (t) . (2.14)

We note that these conditions are valid even when the density of

the molten cryolite is not uniform. Finally, the initial concentration

in the bath and the position of the boundary are given by 

 = C f in r > a at t = t M 

, (2.15a)

R = a at t = t M 

. (2.15b)

Before proceeding, we use (2.13) to find A ( t ) in (2.8) and hence

the velocity distribution in the cryolite, which reads 

u r = 

(
1 − ρp 

ρc 

)
R 

2 ˙ R 

r 2 
. (2.16)

We see that, since the density of the particle ρp is greater than

that of the cryolite, decreasing the radius induces outward flow. 

3. Analysis of the thermal problem 

3.1. Nondimensionalisation 

We nondimensionalise (2.1)–(2.5) using the scalings 

r = a ̃ r , t = 

ρp c p a 
2 

k p 
˜ t , R = a ̃  R , T i = T ∗p + (T ∗c − T ∗p ) ̃  T i . (3.1)

We note that the temperature scale is chosen so that the dimen-

sionless temperature varies between 0 and 1 initially, while the
ime scale is chosen to be the diffusive time scale inside the parti-

le. Dropping the tildes, the heat equations in (2.1) become 

∂T p 

∂t 
= 

1 

r 

∂ 2 

∂r 2 
( rT p ) in 0 < r < 1 , (3.2a)

∂T s 

∂t 
= 

κ2 

r 

∂ 2 

∂r 2 
( rT s ) in 1 < r < R ( t ) , (3.2b)

∂T c 

∂t 
= 

κ3 

r 

∂ 2 

∂r 2 
( rT c ) in r > R ( t ) . (3.2c)

The boundary and interface conditions (2.2)–(2.4) become 

 p = O (1) as r → 0 , (3.3a)

 p = T s , β
∂T p 

∂r 
= 

∂T s 

∂r 
on r = 1 , (3.3b)

 c = T s = θm 

, 
∂T s 

∂r 
− ν

∂T c 

∂r 
= 

˙ R 

St 
on r = R, (3.3c)

 c = 1 as r → ∞ . (3.3d)

The initial conditions (2.5) become 

 p = 0 in 0 < r < 1 at t = 0 , (3.4a)

 c = 1 in r > 1 at t = 0 , (3.4b)

 = 1 at t = 0 . (3.4c)

The dimensionless parameters are given by 

2 = 

ρp c p k s 

ρs c s k p 
, κ3 = 

ρp c p k c 

ρc c c k p 
, θm 

= 

T m 

− T ∗p 
T ∗c − T ∗p 

, 

β = 

k p 

k s 
, ν = 

k c 

k s 
, St = 

ρp c p (T ∗c − T ∗p ) k s 
ρs k p L 

. (3.5)

ere, κ2 is the ratio of thermal diffusivities of the frozen cryolite

hell and the alumina particle, κ3 is the ratio of thermal diffusivi-

ies of the molten cryolite and the alumina particle, θm 

is the di-

ensionless liquidus temperature of the cryolite, β is the ratio of

he thermal conductivity of alumina to that of the frozen cryolite,

is the ratio of the thermal conductivity of the molten cryolite to

hat of the frozen cryolite, and St is the Stefan number, which is

he ratio of the heat required to warm up a unit volume of cry-

lite from the particle temperature to the cryolite temperature to

he heat required to change the phase of a unit volume of cryolite

rom liquid to solid. 

The typical values for each parameter are given in Table 2 , cal-

ulated using the data in Table 1 . We see that the Stefan number

nd the diffusivity ratios, κ2 and κ3 , are small, while the dimen-

ionless liquidus temperature θm 

is close to 1. 

We will consider three different scenarios. First, we will inves-

igate the model as t → 0 to gain insight into the early-time be-

aviour and derive an appropriate initial condition with which to

nitiate our numerical scheme. We will then use asymptotic anal-

sis to explore the small superheat limit (0 – 1 �1), and the small

tefan number limit (St � 1). 
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Fig. 3. Left: Graph showing how the temperature varies with r , given by (3.9) and 

(3.10) for t = { 10 −4 , 10 −3 , 10 −2 } . The kink denotes the position of the frozen shell. 

Right: Graph showing λ vs Stefan number given by (3.10) for three different 1 −
θm = { 10 −1 , 10 −2 , 10 −3 } with all other parameters equal to 1. Red lines are given by 

(3.12) and (3.13) . 
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Fig. 4. Left: Graph showing the temperature versus radius, given by solving (3.2)–

(3.4) numerically at times t = { 10 −2 , 10 −1 . 5 , 10 −1 , 10 −0 . 5 , 2 } . Right: Graph showing 

how the shell thickness varies with time. The points marked with a circle corre- 

spond to the curves in the temperature plot. θm = 0 . 95 ; all other parameters set 

equal to 1. The inset in the left figure shows a zoom in near r = 1 , meanwhile the 

inset in the right figure shows the boundary evolution on a logarithmic scale. 
.2. Early-time behaviour 

Anticipating that, for early-time, the frozen shell is thin and

hat temperature changes will be restricted to small regions near

he interfaces, we seek the asymptotic self-similar solution given

y 

 i ∼ f i (η) , R ∼ 1 + 2 λ
√ 

t , (3.6)

here η = (r − 1) / 2 
√ 

t = O (1) as t → 0 + , and λ is a constant.

t leading order as t → 0 the Stefan problem (3.2)–(3.4) reduces

o the similarity formulation given by 

f ′′ p + 2 η f ′ p = 0 in η < 0 , (3.7a) 

f ′′ s + 

2 η

κ2 

f ′ s = 0 in 0 < η < λ, (3.7b) 

f ′′ c + 

2 η

κ3 

f ′ c = 0 in η > λ, (3.7c) 

ith boundary conditions 

f p → 0 as η → −∞ , (3.8a) 

f p = f s , β f ′ 1 = f ′ 2 on η = 0 , (3.8b) 

f s = f c = θm 

, f ′ 2 − ν f ′ 3 = 

λ

St 
on η = λ, (3.8c) 

f c → 1 as η → ∞ . (3.8d) 

We note that the boundary conditions (3.8a) and (3.8d) follow

rom matching with outer regions (away from the inner boundary

ayer regions near r = 1 ) in which T p and T c − 1 are exponentially

mall as t → 0. The solution to (3.7) and (3.8) is given by 

f p (η) = θm 

1 + erf ( η) 

1 + 

√ 

κ2 βerf ( λ/ 
√ 

κ2 ) 
, (3.9a) 

f s (η) = θm 

1 + 

√ 

κ2 βerf ( η/ 
√ 

κ2 ) 

1 + 

√ 

κ2 βerf ( λ/ 
√ 

κ2 ) 
, (3.9b) 

f c (η) = 

(θm 

− 1)erf ( η/ 
√ 

κ3 ) + erf ( λ/ 
√ 

κ3 ) − θm 

erf ( λ/ 
√ 

κ3 ) − 1 

, (3.9c) 

n η < 0, 0 < η < λ and η > λ, respectively, with the Stefan con-

ition (3.8c) providing a transcendental equation for λ, which we

nd to be 

= 

St βθm √ 

π

(
e −λ2 /κ2 

1 + β
√ 

κ2 erf ( λ/ 
√ 

κ2 ) 
− ν(1 − θm 

) 

βθm 

√ 

κ3 

e −λ2 /κ3 

1 − erf ( λ/ 
√ 

κ3 ) 

)
.

(3.10) 

We require λ to be positive for the boundary to move outwards

nitially. This places a restriction on the possible parameter values

or which freezing is possible. From (3.10) we find that λ > 0 if 
√ 

κ3 βθm 

ν(1 − θm 

) 
> 1 . (3.11) 

n the limit St → 0, equation (3.10) gives 

∼ St 
βθm √ 

π

(
1 − ν(1 − θm 

) √ 

κ3 βθm 

)
. (3.12) 

We will compare this prediction with the small- t limit of a

mall-St solution in Section 3.5 . 

In the limit St → ∞ , we find that λ → λ∞ 

, where λ∞ 

is the

nique positive root of the equation 

βθm 

√ 

κ3 

ν(1 − θm 

) 
= e −λ2 

∞ ( 1 /κ3 −1 /κ2 ) 
1 + β

√ 

κ2 erf ( λ∞ 

/ 
√ 

κ2 ) 

1 − erf ( λ∞ 

/ 
√ 

κ3 ) 
, (3.13) 

nd thus, in this limit, the interface speed is independent of St. 
In Fig. 3 (left) we show a representative early-time solution

iven by (3.9) and (3.10) for three different (early) times. We see

hat, as time increases, the temperature in the particle increases

nd the temperature in the molten cryolite decreases, as expected.

e see that a “kink” develops in the temperature profile at the

uter edge of the frozen shell because of the jump in the heat

ux due to the latent heat requirement. In Fig. 3 (right) we show

ow λ varies with the Stefan number and we compare the solu-

ion from (3.10) with the asymptotic solutions for small and large

tefan numbers given by (3.12) and (3.13) , for three values of θm 

.

e see excellent agreement in the appropriate limits. 

.3. Numerical results 

We solve (3.2)–(3.4) numerically using method of lines. We ap-

ly boundary fixing transformations given by 

 = 1 + ξR (t) (0 < ξ < 1) , r = 1 + R (t) + ζ (ζ > 0) , 

n regions 1 < r < R ( t ) and r > R ( t ), respectively. Our spa-

ial discretisation uses central differences and we solve the re-

ulting system of nonlinear ODEs using NDSolve in Wolfram
athematica 12.0 with the inbuilt adaptive backward differ-

ntiation method in time. We initialise the simulation using the

symptotic solutions given by (3.9) and (3.10) , setting t = 10 −4 . The

arly-time asymptotics agree with our numerical predictions over

t least a decade, as shown in Fig. 5 . We checked convergence in

he usual manner by increasing the spatial resolution and decreas-

ng the error tolerances. 

To see the overall behaviour of the model we present re-

ults for a range of parameters (in Fig. 4–7 ). We will then

resent the behaviour for the typical operating parameters given

n Table 1 (in Fig. 9 ). In Fig. 4 , we present the solution for the
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Fig. 5. Left: Scaled shell thickness vs time. The solid lines show the numerical solu- 

tions given by (3.6) and (3.10) for St = 10 −2 , 10 −1 , 1 ; the dashed lines represent the 

early-time solutions found in Section 3.2 . Right: Scaled shell thickness as a func- 

tion of time for different values of θm . The lines correspond to logarithmically dis- 

tributed 1 − θm values between 10 −4 and 10 −1 , with all other parameters set equal 

to 1. The thick black line corresponds to θm = 1 . 

Fig. 6. Graphs showing the shell thickness as a function of time for different β and 

ν values ranging from 10 −2 to 10 2 . θm = 0 . 99 , with all other parameters set equal 

to 1. 

Fig. 7. Left: Melting time as a function of the superheat. For small values the be- 

haviour is t ∼ 1 / (1 − θm ) (black line). Right: Freezing time vs superheat. All other 

parameters are set equal to 1. 
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temperature T and for the shell thickness R in the case in which

θm 

= 0 . 95 , with all other parameters set equal to unity. We see

that a frozen shell immediately forms around the particle and that

the particle heats up. We see that the cryolite is cooled slightly

in a region close to the particle. We also see that the frozen shell

thickness reaches a maximum and then begins to thin. When the

shell has completely melted, the temperature in the particle is ap-

proximately constant. 

Next we examine the effect of varying the Stefan number. In

Fig. 5 (left) we show log-log plots of the frozen shell thickness

varying in time for three different Stefan numbers. We note that,

motivated by (3.56) which we will derive in Section 3.5 , an appro-

priate scaled shell thickness is given by 3(R − 1) / ( St βθm 

) , which

bounds the scaled thickness by 1. We see that the numerical solu-

tions converge to the small Stefan number solution in the appro-

priate limit, and that the early-time solution (3.9) and (3.10) holds

for multiple decades. We see that there is a small increase in the

scaled shell thickness as we decrease the Stefan number. How-

ever, the actual radius decreases as the Stefan number decreases,
hich motivates the investigation of the small Stefan number

imit. 

In Fig. 5 (right), we see that increasing θm 

(the dimensionless

iquidus temperature) significantly increases the melting time, in-

roducing a two-timescale behaviour, namely rapid freezing fol-

owed by slow melting. In Fig. 6 , we see that decreasing ν has

he same effect as increasing θm 

; meanwhile increasing β signif-

cantly increases both the thickness of the frozen shell and the

elting time. Physically, these correspond to making the cryolite

egion non-conductive, decreasing the superheat and making the

article very conductive, respectively. 

Finally, we investigate the behaviour of the melting and freez-

ng times, t M 

and t F , as θm 

changes for St = 1 . In Fig. 7 , we show

raphs of the behaviour as 1 − θm 

changes. We see that as θm 

→
 

−, the melting time t M 

scales with 1 / (1 − θm 

) (shown as a black

ine in Fig. 7 (left)). We note that the freezing time t F depends

nly weakly on the superheat, which means that the freezing is

overned mainly by the time it takes for the temperature to equi-

ibrate inside the particle. 

.4. Small superheat limit 

As noted earlier, the temperature in the bath is near to the

iquidus temperature so that we can write θm 

= 1 − ε, where

 < ε � 1. In this limit, motivated by the behaviour in

ig. 5 (right), we expect the problem to separate into two differ-

nt timescales. First, the freezing timescale, in which t = O (1) , and

hen the melting timescale, in which t = O (1 /ε) . In the limit ε � 1,

e expand the dependent variables, and on the freezing timescale

ave that T (0) 
c = 1 and that T (0) 

p and T (0) 
s satisfy the same problem

s (3.2)–(3.4) , but with T (0) 
c = 1 everywhere in r > R ( t ). In gen-

ral there is no analytical solution for this problem. However, we

an make progress because we are mainly interested in the steady

tate the system achieves on the freezing timescale so that we can

atch to the melting timescale. Crossing out the time derivatives

n (3.2a) and (3.2b) , we can solve for T̄ p , T̄ s , and R̄ where bars de-

ote the steady state versions of T p , T s , and R . By integrating the

ight-hand side of (3.2a) and (3.2b) , and applying the boundary

onditions (3.3) we deduce that, in steady state, 

 ̄p = 1 in 0 < r < 1 , T̄ c = 1 in 1 < r < R̄ , (3.14)

hich means that the particle and the shell heats up to the bath

emperature, as we would expect intuitively. The leading-order lo-

ation of the boundary, R̄ , is determined using the total energy of

he system. As described in [27] for a similar model, integrating

3.2a) and (3.2b) gives 

d 

d t 

[
β

∫ 1 

0 

T (0) 
p r 2 dr + 

∫ R (0) 

1 

T 

(0) 
s r 2 

κ2 

dr − R 

(0) 3 
1 
κ2 

+ 

1 
St 

3 

]
= 0 . (3.15)

e can then integrate (3.15) and apply the initial conditions

3.4) and the steady state of the system given by (3.14) to solve

or the maximum shell radius R̄ as 

¯
 = 

3 
√ 

1 + βSt . (3.16)

e note that the maximum shell size given by (3.16) is identical

o that predicted in [27] , which is to be expected since energy is

onserved in both models. This solution is, however, only valid for

 � 1/ ε; on the timescale t = O (1 /ε) the boundary shrinks due to

eat transfer from the cryolite. To resolve this late-time behaviour,

e introduce the scalings 

 c = 1 − ε ̂  T c (r, τ ) , R = 

ˆ R (τ ) (3.17)

nto (3.2)–(3.4) using the long timescale given by 

= tε = O (1) . (3.18)
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∂r − πt 
xpanding the dependent variables in powers of ε, the leading-

rder problem for ˆ T c is given by 

 

∂ ̂  T (0) 
c 

∂τ
= 

κ3 

r 

∂ 2 

∂r 2 
(r ̂  T (0) 

c ) in r > 

ˆ R 

(0) (τ ) , (3.19)

ˆ T (0) 
c = 1 on r = 

ˆ R 

(0) (τ ) , (3.20)

ˆ T (0) 
c → 0 on r → ∞ , (3.21)

R = R̄ at τ = 0 , (3.22)

∂ ̂  R 

(0) 

∂τ
= ν

∂ ̂  T (0) 
c 

∂r 
at r = 

ˆ R 

(0) (τ ) , (3.23)

here we have used the fact that T (0) 
s = 1 (because the particle

nd the shell temperature are already equilibrated on this longer

imescale) in order to simplify (3.23) . The leading-order problem

an be solved readily to give 

ˆ 
 

(0) 
c = 

ˆ R 

(0) (τ ) 

r 
. (3.24) 

ubstituting (3.24) into (3.23) gives the boundary evolution at long

imes as 

ˆ 
 

(0) (τ ) = 

√ 

R̄ 

2 − 2 ντ ; (3.25) 

hich gives the melting time as 

 M 

∼ R̄ 

2 

2 εν
as ε = 1 − θm 

→ 0 

+ . (3.26)

ence, we have an expression that is valid for calculating the melt-

ng time in the limit of small superheat. Since [27] do not con-

ider superheat, they present no expression for the melting time

 M 

, though they do provide expressions in the large diffusivity limit

nd find that the radius decreases linearly with time. 

.5. Small Stefan number limit 

In the small Stefan number limit, the thickness of the frozen

hell is small (as is shown in Fig. 5 ) because the interface speed

ound in (3.12) is of O(St) as St → 0, the cryolite being hard to

reeze in this limit. From the Stefan condition (3.3c) , we see that

n this limit R is constant at leading order. Thus, when St � 1, we

ntroduce a local coordinate in the thin shell by defining 

 = 1 + St R 

(1) , r = 1 + St ̄r . (3.27)

ubstituting (3.27) into (3.2)–(3.4) and assuming that the depen-

ent variables can be expanded in the form T i ∼ T (0) 
i 

+ St T (1) 
i 

as

t → 0, we find that conduction of heat across the frozen layer is

ominant so that, at leading order, 

∂ 2 T (0) 
s 

∂ ̄r 
= 0 for 0 < r̄ < R 

(1) , (3.28)

ith leading-order boundary conditions given by 

 

(0) 
s = θm 

on r̄ = R 

(1) , 
∂T (0) 

s 

∂ ̄r 
= 0 on r̄ = 0 . (3.29)

he solution to (3.28) and (3.29) is simply 

 

(0) 
s = θm 

, (3.30) 

.e. the temperature through the frozen shell is equal at leading

rder to the liquidus temperature. To obtain an equation for the

nterface position, we have to consider the O(St) problem in the

hell, which reads 

∂ 2 T (1) 
s 

2 
= 0 for 0 < r̄ < R 

(1) , (3.31)

∂ ̄r 
ith boundary conditions 

 

(1) 
s = 0 on r̄ = R 

(1) , (3.32)

∂T (1) 
s 

∂ ̄r 
= β

∂T (0) 
p 

∂r 

∣∣∣∣
r=1 

on r̄ = 0 . (3.33) 

The solution for T (1) 
s is 

 

(1) 
s = β

∂ 2 T (0) 
p 

∂r 2 

∣∣∣∣
r=1 

(
r̄ − R 

(1) 
)
, (3.34) 

nd we see from (3.34) that the flux is preserved through the shell

nd so we can write (3.3c) as 

˙ 
 

(1) (t) = β
∂T (0) 

p 

∂r 

∣∣∣∣
r=1 −

− ν
∂T (0) 

c 

∂r 

∣∣∣∣
r=1 + 

(3.35) 

ith 

 

(1) = 0 at t = 0 . (3.36)

hus, at leading-order, the temperatures of the particle and cryolite

ath are equal to the liquidus temperature at the boundary, which

s linearised onto R = 1 , while the flux of heat out of each of these

egions controls the evolution of the thickness of the frozen shell. 

.5.1. Leading-order solution in the alumina particle 

In the particle, the leading-order problem is given by 

∂T ( 
0 ) 

p 

∂t 
= 

1 

r 

∂ 2 

∂r 2 

(
rT ( 

0 ) 
p 

)
in 0 < r < 1 for t > 0 , (3.37)

ith the boundary and initial conditions given by 

 

(0) 
p bdd as r → 0 for t > 0 , (3.38a) 

 

(0) 
p = θm 

on r = 1 for t > 0 , (3.38b) 

 

(0) 
p = 0 in 0 ≤ r ≤ 1 at t = 0 . (3.38c) 

Noting that rT (0) 
p satisfies a one-dimensional problem in Carte-

ian variables, we can use Fourier theory to find that the solution

s given by 

 

(0) 
p (r, t) = θm 

( 

1 + 2 

∞ ∑ 

j=1 

(−1) 
j 

jπ r 
sin ( jπ r)e −j 2 π2 t 

) 

. (3.39)

ence, the heat flux at the boundary is given by 

β
∂T (0) 

p 

∂r 

∣∣∣∣
r=1 −

= 2 βθm 

∞ ∑ 

j=1 

e −j 2 π2 t for t < t < t M 

. (3.40)

he infinite sum is a strictly decreasing function of time, which

ends to 0 as t → ∞ . As t → ∞ , T (0) 
p → θm 

although we note that

he solution is only physically relevant for t < t M 

. For early-times,

otivated by [24, Eq. 2.12] we use the transformation given by 

 (z) = 

∞ ∑ 

n =1 

e −n 2 πz , 1 + 2w(z) = z −1 / 2 (1 + 2w(1 / z)) , (3.41)

o rewrite the right-hand side of (3.40) using the fact that it is

qual to 2 βθm 

w ( π t ); hence as t → 0, the heat flux is more conve-

iently written as 

β
∂T (0) 

p 

∂r 

∣∣∣∣
r=1 −

= βθm 

( 

−1 + 

1 √ 

πt 

( 

1 + 2 

∞ ∑ 

j=1 

e −j 2 / t 

) ) 

. (3.42) 

hus, the leading-order behaviour of the heat flux at small times

s given by 

β
∂T (0) 

p 

∣∣∣∣ ∼ βθm √ as t → 0 . (3.43) 

r=1 
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Fig. 9. Graph showing the scaled shell thickness given by (3.50) as a function of 

time (black). Fast freezing given by (3.55) (blue) tends to a constant value given by 

(3.56) , while the slow melting effect given by (3.58) (red) can be used to provide 

an approximation for the melting time given by (3.60) as θm → 1. t F is given by 

(3.64) . The parameters are β = 7 , ν = 0 . 5 , κ3 = 0 . 05 , θm = 0 . 98 . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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3.5.2. Leading-order solution in the molten cryolite 

The leading-order problem for T (0) 
c is given by 

∂T (0) 
c 

∂t 
= 

κ3 

r 

∂ 2 

∂r 2 

(
rT (0) 

c 

)
in r > 1 for t > 0 , (3.44)

with the following boundary and initial conditions 

T (0) 
c = θm 

on r = 1 for t > 0 , (3.45a)

T (0) 
c → 1 as r → ∞ for t > 0 , (3.45b)

T (0) 
c = 1 in r ≥ 1 at t = 0 . (3.45c)

This problem admits the similarity solution given by 

T (0) 
c (r, t) = 1 + 

(1 − θm 

) 
(

erf 

(
r −1 

2 
√ 

κ3 t 

)
− 1 

)
r 

, (3.46)

for r > 1 and 0 < t < t M 

. 

The flux through the phase boundary r = 1 is 

ν
∂T (0) 

c 

∂r 
(1 

+ , t) = ν(1 − θm 

) 

(
1 √ 

κ3 πt 
+ 1 

)
for t > 0 . (3.47)

Since all the parameters are positive and θm 

< 1, the heat flux is

positive for all time with 

ν
∂T (0) 

c 

∂r 
(1 

+ , t) ∼ ν
1 − θm √ 

κ3 πt 
as t → 0 . (3.48)

In Fig. 8 , we show the temperature distributions in the particle

and in the cryolite, found by solving (3.2)–(3.4) , for various times

while the frozen region exists. We see from (3.39) that the particle

warms up and the cryolite cools, as expected. 

We note that if we move away from the boundary by 5–

10 particle diameters, the cryolite temperature is close to the

undisturbed bath temperature. This suggests a critical length scale

which distinguishes between well distributed and closely packed

particles. 

3.5.3. Motion of the freezing surface 

Now that we have expressions for the fluxes, namely (3.42) and

(3.47) , we can substitute them into the Stefan condition (3.36) , to

find that 

˙ R 

(1) (t) = 2 βθm 

∞ ∑ 

j=1 

e −π2 j 2 t − ν(1 − θm 

) 

(
1 √ 

πκ3 t 
+ 1 

)
. (3.49)
Fig. 8. Graphs showing the temperature distribution in the particle given by equa- 

tion (3.39) (on left) and cryolite given by equation (3.46) (on right) at different 

times (uniformly logarithmically distributed between t = 10 −3 and t = 164 ). The pa- 

rameters are β = 7 , ν = 0 . 5 , κ3 = 0 . 05 , and θm = 0 . 98 . Note that both figures have 

the same number of lines at the same times, but on the left multiple lines collapse 

onto the spatially uniform state. 
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e integrate (3.49) and apply the initial condition R 1 = 0 to obtain

 

(1) = βθm 

( 

1 

3 

− 2 

∞ ∑ 

j=1 

e −π2 j 2 t 

π2 j 2 

) 

− ν(1 − θm 

) 

(
t + 

2 

√ 

t √ 

πκ3 

)
. 

(3.50)

e plot R 1 ( t ) in Fig. 9 . We see that the frozen shell grows on a

hort timescale, reaches a maximum and then melts away again

ver a longer timescale. Using (3.49) and (3.50) , we find t F and t M 

re given implicitely by 

 = 2 βθm 

∞ ∑ 

j=1 

e −π2 j 2 t F − ν(1 − θm 

) 

(
1 √ 

πκ3 t F 
+ 1 

)
, (3.51)

 = βθm 

( 

1 

3 

− 2 

∞ ∑ 

j=1 

e −π2 j 2 t M 

π2 j 2 

) 

− ν(1 − θm 

) 

(
t M 

+ 

2 

√ 

t M √ 

πκ3 

)
. (3.52)

If we consider the special case θm 

= 1 , in which the bath is

verywhere at the liquidus temperature, then the second term in

3.50) disappears and the liquid will freeze and form a shell which

ill grow until its thickness reaches β/3. On the other hand, if

m 

= 0 , the alumina particle is added at the liquidus temperature

f the cryolite, and the molten cryolite will not freeze - the par-

icle will simply heat up to the temperature of the bath as seen

n Section 3.4 . 

It is useful to rearrange the terms in (3.49) to further investi-

ate the behaviour by writing 

3 ̇

 R 

(1) 

βθm 

= 6 

∞ ∑ 

j=1 

e −π2 j 2 t − 3 δ

(
1 √ 

πκ3 t 
+ 1 

)
, (3.53)

ith 

= 

ν(1 − θm 

) 

βθm 

. (3.54)

ubstituting in the parameters in Table 1 , we find that δ ≈ 10 −3 

nd that the solution to (3.53) in the limit δ � 1, with initial con-

ition given by R (1) = 0 , is 

3 R 

(1) 

βθm 

= 1 − 6 

π2 

∞ ∑ 

j=1 

e −π2 j 2 t 

j 2 
. (3.55)
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Fig. 10. Graph showing the scaled shell thickness as a function of time for different 

Stefan numbers The black curves correspond to numerical solutions and the small- 

St limit in red from Section 3.5 . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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his gives us the maximum radius in the large-time limit of the

 = O (1) problem as 

 

(1) = 

βθm 

3 

, (3.56) 

nd thus we predict that 

 max ∼ 1 + 

St βθm 

3 

as δ → 0 , St → 0 . (3.57)

his expression is the same if we take the small Stefan num-

er limit of (3.25) . For large time, we rescale t = T / 3 δ, so that

3.53) becomes, at leading order in δ, 

3 

βθm 

d R 

( 1 ) 

d T 
= −1 . (3.58) 

e solve (3.58) and match with the long-time behaviour of the

horter time problem, to find that 

3 R 

(1) 

βθm 

= 1 − T , (3.59) 

hich gives us an explicit estimate for the melting time as 

 M 

= 

1 

3 δ
= 

βθm 

ν(1 − θm 

) 
, (3.60) 

hich is consistent with (3.26) . For t � 1 the behaviour of (3.49) is

˙ 
 

(1) ∼ θm 

β√ 

πt 

(
1 − ν

β
√ 

κ3 

1 − θm 

θm 

)
> 0 as t → 0 , (3.61)

here again we have made use of (3.41) . Since all the parameters

re positive, in order for the cryolite to freeze, we require 
√ 

κ3 βθm 

ν(1 − θm 

) 
> 1 , 

√ 

κ3 

δ
> 1 . (3.62)

We find a simple upper bound for the freezing time by notic-

ng that the cryolite temperature distribution results in a constant

teady-state heat flux. As the sum in (3.50) rapidly decreases, we

alance 

(1 − θm 

) ≈ 2 βθm 

e −π2 t , (3.63)

hich yields 

 F ≈ 1 

π2 
log ( 

2 

δ
) . (3.64) 

e note that, in (3.62) and (3.64) , the main parameters are κ3 (see

3.5) ) and δ which represents the ratio of the heat transfer rates in

he cryolite and the alumina particle, and describes how intensive

he heat flow is between the regions. If δ is small, the timescale

or solidification is much smaller than the melting and so we ex-

ect a shell to form. Conversely, if δ is large then the temperatures

quilibrate fast and no freezing is possible. 

In Fig. 10 , we compare the numerical solutions of the full sys-

em (3.2)–(3.4) with the asymptotic solutions given by (3.50) . We

ee that the numerical solutions converge to the small Stefan num-

er solution in the appropriate limit. 

. Analysis of the dissolution problem 

.1. Nondimensionalisation 

Since we assume that dissolution can only start after complete

elting of the frozen shell, we nondimensionalise 1 the system

2.6), (2.10) and (2.14)–(2.16) using the scalings 
1 It is worth noting that there are two natural choices for the timescale: the dis- 

olution timescale that we used in (4.1) , which balances the two terms in the sec- 

nd boundary condition in (2.14) , and the diffusive timescale a 2 / D , representing the 

alance in the governing equation (4.2a) . 

c  

s  

t

2  
 = a ̂ r , R = a ̂  R , t − t M 

= 

a 2 

Dσ
τ, C = C f + (C s − C f ) ̂  C . (4.1)

liminating the liquid velocity, the full dimensionless system can

e written as 

∂C 

∂τ
= 

1 

r 2 
∂ 

∂r 

(
r 2 

σ

∂C 

∂r 
− ( 1 − ρr ) R 

2 d R 

d τ
C 

)
in r > R ( τ ) , (4.2a) 

ith 

 = 1 , 
d R 

d τ
= 

∂C 

∂r 
on r = R (τ ) , (4.2b) 

 → 0 as r → ∞ , (4.2c) 

 = 0 in r > R (τ ) , (4.2d) 

 = 1 at τ = 0 , (4.2e) 

here we have introduced the dimensionless parameters 

= 

C s − C f 

ρp (1 − C s /ρc ) 
, ρr = 

ρp 

ρc 
, (4.3) 

here σ is the dissolution Stefan number, and ρr is the density

atio of the alumina to the cryolite. We see in Table 2 that σ =
 . 05 and ρr = 2 . We will now investigate the early-time behaviour

f (4.2) analytically, then numerically in Section 4.3 and finally in

he small- σ limit in Section 4.4 . 

.2. Early-time behaviour 

To initiate our the numerical simulations, it is necessary to de-

ive the early-time behaviour (as C is discontinuous initially at

 = R ). The analysis is similar to that for the temperature problem

resented in Section 3.2 . The concentration is exponentially small

xcept in a boundary layer in which we find that the asymptotic

imilarity solution is given by 

 ∼ f (η) , R ∼ 1 − 2 λ
√ 

τ/ 
√ 

σ (4.4)

ith η = 

√ 

σ (r − 1) / (2 
√ 

τ ) = O (1) as τ → 0 + , where λ is a

onstant that needs to be found as part of the solution. After sub-

tituting (4.4) into (4.2) and expanding for small τ , we find that

he leading-order equation for f is given by 

 η f ′ (η) + f ′′ (η) = 0 , (4.5)
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Fig. 11. Graph showing λ given by (4.8) as σ varies, along with the two asymptotic 

limits (4.10) . 

Fig. 12. Left: R ( τ ) for varying σ for ρr = 1 . The lines range between σ = 

{ 10 −4 , 10 5 } . The red dashed line is the small-time solution, while the blue dashed 

line is the small- σ solution given by (4.13) . Right: Dissolution time for varying Ste- 

fan number ( σ ) for different ρr values showing the non-monotonicity at σ ≈ 1/ ρr . 

Note that the two asymptotic limits are denoted with dashed red lines. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Graph showing t F , t M and t D given by (3.51), (3.52) and (4.14) as a function 

of βθm 
√ 

κ3 /ν(1 − θm ) , coloured blue, red and green, respectively. The parameters 

are St = 0 . 34 , β = 7 , ν = 0 . 5 , κ3 = 0 . 05 , and θm = 0 . 98 . Dashed lines are given by 

(3.64) and (3.60) and are valid as δ → 0. The dotted vertical line indicate the op- 

erating regime of the Hall-Héroult cell, and the freeze limit is given by (3.11) . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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(  
while the boundary and matching conditions are given by 

f (−λ) = 1 , f (η) → 0 as η → ∞ . (4.6)

The solution to (4.5) and (4.6) is 

f (η) = 

1 − erf(η) 

1 + erf(λ) 
, (4.7)

where λ is the unique positive root of the transcendental equation

λ
√ 

π(1 + erf(λ)) = σe −λ2 

. (4.8)

Equation (4.7) is often referred to as the Neumann Solution. The

asymptotic behaviour of λ for small and large σ are given by 

λ ∼ σ/ 
√ 

π as σ → 0 , (4.9)

λ ∼ log 
1 / 2 

(σ / 
√ 

2 π) as σ → ∞ . (4.10)

These limits are shown in Fig. 11 , along with the solution to (4.8) ,

showing excellent agreement in both limits. 

4.3. Numerical results 

We use (4.4), (4.7) and (4.8) to initiate our numerical simula-

tions to (4.2) . We solve the model by the method of lines using

a discretisation analogous to the one described in Section 3.3 . We

show how the radius of the particle varies with time for various

values of σ in Fig. 12 (left). We see that, for small σ , the numerical

results agree with the small- σ asymptotic result that we will de-

rive in (4.13) . For large σ , we see that the numerical results agree

with the small-time solution presented in (4.4) and (4.10) . 

The dissolution time is also an important prediction of our

model. In Fig. 12 (right), we plot the dissolution time for differ-

ent σ values. We note that, in the small- σ limit, the dissolution
ime t D tends to a constant, while the behaviour for large σ is

ore complicated. At first sight the scaling looks like σ , however

/log ( σ ) (shown with a thick black line in Fig. 12 (right)) looks

ike a more appropriate candidate, hinting at logarithmic behaviour

n this limit. The final observation that we make is that the t D - σ
urve is non-monotonic when ρr < 1; there is a minimum disso-

ution time which occurs when σ ≈ 1/ ρr . 

In Fig. 12 , we also see that, in the small- σ limit, the depen-

ence on the density disappears. Physically this means that, if

he boundary is moving slowly, then the induced fluid movement

ue to the phase change is also small and the density ratio only

hanges the higher-order dynamics. 

.4. Small- σ limit 

In this section, we will consider the physically relevant limit of

mall σ by expanding 

 ∼ R 

(0) + σR 

(1) , C ∼ C (0) + σC (1) as σ → 0 . (4.11)

 regular perturbation analysis shows that the leading-order solu-

ion is quasi-steady with (4.2) giving 

 

( 0 ) = 

R 

( 0 ) 

r 
, 

d R 

( 0 ) 

d τ
= − 1 

R 

( 0 ) 
; (4.12)

pplying the initial condition R (0) (0) = 1 then gives 

 

(0) = 

√ 

1 − 2 τ . (4.13)

e can see from (4.13) that complete dissolution occurs at

D ~ 1/2 as σ → 0, after which the particle ceases to exist. This

esult has been calculated by many authors, e.g. [17] . By undoing

he nondimensionalisation, we see that the leading-order dissolu-

ion time t D is given by 

 D − t M 

∼ a 2 

2 Dσ
= 

a 2 ρp (1 − C s /ρc ) 

2 D (C s − C f ) 
as σ → 0 . (4.14)

. Conclusions 

.1. Summary of scales 

In Fig. 13 , we plot t F , t M 

and t D given by (3.51), (3.52) and

4.14) as a function of βθm 

√ 

κ3 /ν(1 − θm 

) , where δ is defined in
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3.54) . There are two qualitatively different regimes. Below the

reeze limit (shown by the vertical dot-dashed line given by (3.11) )

he particle simply dissolves, since the heat transfer in the cryo-

ite is fast enough that the cryolite temperature remains above the

reezing temperature and no freezing occurs. However, above this

imit freezing, melting, and dissolution all occur. The actual operat-

ng regime is shown as a vertical dotted line. We also see that the

issolution takes the largest amount of time, except in the limit

→ 0 corresponding to θm 

→ 1, where the melting takes over.

 similar behaviour is shown by [26] for the related problem of

urbulent flow of lava over a cold surface. 

We use the data to obtain analytical predictions for the dimen-

ional freezing time t F , melting time t M 

, and dissolution time t D for

 50μm particle, which we find to be 

 F ≈
a 2 c p ρp 

π2 k p 
log ( 

2(T m 

− T ∗p ) k p 
(T ∗c − T m 

) k c 
) ≈ 500 μs , (5.1) 

rom (3.64) , 

 M 

∼ a 2 c p ρp 

3 k p 

(T m 

− T ∗p ) k p 
(T ∗c − T m 

) k c 
≈ 100 ms , (5.2) 

rom (3.60) and 

 D ∼
a 2 ρp (1 − C s /ρc ) 

2 D (C s − C f ) 
≈ 17 s , (5.3) 

rom (4.14) . The ratios of these three timescales are independent

f a and, for the parameters given in Table 1 , are t D / t M 

≈ 170 and

 M 

/ t F ≈ 200. We note that the approximations for the melting and

reezing times are only strictly valid when the liquidus tempera-

ure is close to the cryolite temperature, i.e. 1 − θm 

is small (as is

rue in our case), and that our results only depend on one prop-

rty of the frozen cryolite, namely the liquidus temperature T m 

. We

lso note that the dissolution timescale t D is a factor of 10 smaller

han that observed by Haverkamp and Welch [10] , which is likely

ue to the difference between dissolving one particle rather than

issolving a powder. 

.2. Bulk flow 

We now revisit our modelling assumption concerning the ne-

lect of the bulk flow. If we consider a stationary solid alumina

article of radius a in a background cryolite flow with average

peed U , with dynamic viscosity μc , then the particle Reynolds

umber is given by 

e = 

aUρc 

μc 
. (5.4) 

ssuming a bulk velocity of 10 cms −1 and using the other parame-

ers in Table 1 , we find that Re ≈ 4, which means that the particle

s in the “Stokes drag” regime. The dimensionless governing equa-

ion for the location r of the particle, assuming Stokes drag, is 

tk ̈r = u − ˙ r − G k , (5.5) 

here u is the velocity of the cryolite and k is the unit vector in

he vertical direction and where 

tk = 

2 ρp Ua 2 

9 μc H 

≈ 10 

−5 , (5.6) 

 = 

2(ρp − ρc ) ga 2 

9 Uμc 
≈ 10 

−3 . (5.7) 

ince both Stk and G are small, we conclude that both inertia and

ravity can be neglected compared to drag, and hence the particles

ollow the flow. This also means that the relative velocity between

he flow and particle is small, so we are justified in neglecting

he influence of flow on the freezing, melting and dissolution, and
ence we are permitted to use spherically symmetric geometry.

hese assumptions break down when Stk and G are O(1), which

ccurs for particles with millimetre or bigger radii. 

.3. Summary 

In this article, we have examined the problem of adding a cold

lumina particle to a bath of hot cryolite. We developed a spheri-

ally symmetric model to describe heat and mass transfer between

he particle and the surrounding material, allowing for freezing

nd melting of the cryolite close to the particle and its subsequent

issolution. We solved this model numerically using the method

f lines by using the early-time asymptotic solution to initiate the

umerical scheme. We explored the behaviour as we varied the

ey dimensionless parameters. We also considered the problem in

he limits of small superheat and of small Stefan number. Using

hese asymptotic solutions, we found approximate expressions for

he freezing, melting, and dissolution timescales, with freezing be-

ng the fastest effect and dissolution the slowest. In addition, using

he early-time solution we determined constraints on the param-

ters for which shell growth is possible. Our results predict that

ncreasing the superheat or decreasing the particle size should de-

rease the time it takes for a particle to dissolve, in accordance

ith practical experience. Furthermore, the temperature perturba-

ion is localised to a 5–10 particle radii. 

.4. Limitations and outlook 

There are a number of assumptions that we have made that

ould be relaxed to extend the model. For example, we assumed

hat the density of the solid and molten cryolite are the same. We

ould investigate the effect of the density change when the cryolite

reezes. We could also include advection in situations where the

articles are larger, and we anticipate that this will break the radial

ymmetry that we have assumed in our analysis. Furthermore, we

ave neglected the effects of reaction-induced bubble generation,

lectromagnetic mixing, and turbulence in the bulk flow which all

ontribute to particle transport. Incorporating these effects into our

odel would make it more realistic. Finally, we could include ad-

itional particles, for example, by altering the far-field boundary

onditions in the case when the particles are far apart. Addressing

ll these issues will form part of our future work. 

The feeding and dissolution of alumina particles in the Hall-

éroult process involve several competing mechanisms which are

hallenging to couple in practical bath-scale numerical simula-

ions. The timescales illustrated in Fig. 13 provide valuable input

nto the fineness of the timesteps required in these simulations if

he particle-scale interactions are to be resolved. Furthermore, the

odels presented in this paper are useful as sub model or closure

odels in practical simulations if larger timesteps are used – as

s often the case. The conditions under which no freezing occurs,

ighlighted in Fig. 13 , indicate the optimal regime in which the

rocess should operate. Whether or not such conditions are possi-

le to obtain in practice will be addressed in future work where

ur goal will be to combine the insight we have found for the

ingle particle situation with state-of-the-art simulations and ex-

ensive industrial expertise to build a more realistic model for the

eeding of alumina particles into the Hall-Héroult process. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 



12 A. Kovács, C.J.W. Breward and K.E. Einarsrud et al. / International Journal of Heat and Mass Transfer 162 (2020) 120232 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

[
[

 

 

 

 

[  

 

CRediT authorship contribution statement 

A. Kovács: Formal analysis, Software, Visualization, Validation,

Writing - original draft. C.J.W. Breward: Writing - review & edit-

ing, Supervision, Conceptualization, Methodology, Funding acqui-

sition. K.E. Einarsrud: Writing - review & editing, Conceptualiza-

tion, Methodology, Supervision. S.A. Halvorsen: Writing - review

& editing, Conceptualization, Supervision, Project administration.

E. Nordgård-Hansen: Writing - review & editing, Conceptualiza-

tion, Supervision, Funding acquisition. E. Manger: Writing - review

& editing, Conceptualization, Supervision. A. Münch: Writing - re-

view & editing, Conceptualization, Methodology. J.M. Oliver: Writ-

ing - review & editing, Conceptualization, Methodology, Project ad-

ministration. 

Acknowledgements 

This publication is based on work supported by the EPSRC

Centre For Doctoral Training in Industrially Focused Mathemat-

ical Modelling (EP/L015803/1) in collaboration with Hydro Alu-

minium, NORCE and NTNU. Furthermore, this work is partly

funded by SFI Metal Production, Centre for Research-based Inno-

vation, 237738. Financial support from the Research Council of

Norway and the partners of SFI Metal Production is gratefully

acknowledged. 

References 

[1] K. Grjotheim , Aluminium electrolysis. Fundamentals of the Hall-Héroult pro-
cess, Aluminium-Verlag, 1982 . 

[2] P. Lavoie , M.P. Taylor , J.B. Metson , A review of alumina feeding and dissolution
factors in aluminum reduction cells, Metallurgical and Materials Transactions

B 47 (4) (2016) 2690–2696 . 

[3] D.I. Walker , Alumina in Aluminum Smelting and its Behaviour After Addition
to Cryolite-based Electrolytes, University of Toronto, 1993 Ph.D. thesis . 

[4] Y. Yang , B. Gao , Z. Wang , Z. Shi , X. Hu , Study on the Dissolution of Alumina in
Cryolite Electrolyte Using the See-Through Cell, Light Metals (2015) . 

[5] C. Kaszás , L. Kiss , S. Poncsák , S. Guérard , J.-F. Bilodeau , Spreading of alu-
mina and raft formation on the surface of cryolitic bath, Light Metals (2017)

473–478 . 
[6] S.E. Gylver , N.H. Omdahl , A.K. Prytz , A.J. Meyer , L.P. Lossius , K.E. Einarsrud , Alu-

mina feeding and raft formation: Raft collection and process parameters, in:

C. Chesonis (Ed.), Light Metals 2019, Springer International Publishing, Cham,
2019, pp. 659–666 . 

[7] S.E. Gylver , A. Solheim , H. Gudbrandsen , H. Follo , K.E. Einarsrud , Lab scale ex-
periments on alumina raft formation, in: A. Tomsett (Ed.), Light Metals 2020,

Springer International Publishing, Cham, 2020, pp. 659–663 . 
[8] J. Thonstad , F. Nordmo , J.B. Paulsen , Dissolution of alumina in molten cryolite,

Metallurgical and Materials Transactions B 3 (2) (1972) 407–412 . 

[9] J. Thonstad , A. Solheim , S. Rolseth , O. Skar , The dissolution of alumina in cry-
olite melts, Light Metals (1988) 105–111 . 

[10] R. Haverkamp , B. Welch , Modelling the dissolution of alumina powder in cry-
olite, Chem. Eng. Process. 37 (2) (1998) 177–187 . 
[11] T. Hofer , Numerical Simulation and Optimization of the Alumina Distribution
in an Aluminium Electrolysis Pot, École polytechnique fédérale de Lausanne,

2011 Ph.D. thesis . 
[12] H. Zhang , S. Yang , H. Zhang , J. Li , Y. Xu , Numerical simulation of alumina-mix-

ing process with a multicomponent flow model coupled with electromagnetic
forces in aluminum reduction cells, Jom 66 (7) (2014) 1210–1217 . 

[13] K.E. Einarsrud , I. Eick , W. Bai , Y. Feng , J. Hua , P.J. Witt , Towards a coupled mul-
ti-scale, multi-physics simulation framework for aluminium electrolysis, Appl

Math Model 44 (2017) 3–24 . 

[14] V. Bojarevics , Dynamic Modelling of Alumina Feeding in an Aluminium Elec-
trolysis Cell, in: C. Chesonis (Ed.), Light Metals 2019, Springer International

Publishing, Cham, 2019, pp. 675–682 . 
[15] L.E. Scriven , On the dynamics of phase growth, Chem Eng Sci 10 (1–2) (1959)

1–13 . 
[16] J.L. Duda , J.S. Vrentas , Mathematical analysis of bubble dissolution, AlChE J. 15

(3) (1969) 351–356 . 

[17] J.L. Duda , J.S. Vrentas , Heat or mass transfer-controlled dissolution of an iso-
lated sphere, Int J Heat Mass Transf 14 (3) (1971) 395–407 . 

[18] R.I. Pedroso , G.A. Domoto , Perturbation solutions for spherical solidification of
saturated liquids, J Heat Transfer 95 (1) (1973) 42 . 

[19] D.S. Riley , F.T. Smith , G. Poots , The inward solidification of spheres and circular
cylinders, Int J Heat Mass Transf 17 (12) (1974) 1507–1516 . 

[20] K. Stewartson , R.T. Waechter , On Stefan’s problem for spheres, Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences 348
(1655) (1976) 415–426 . 

[21] M.A. Herrero , J.J.L. Velázquez , On the melting of ice balls, SIAM J. Math. Anal.
28 (1) (1997) 1–32 . 

22] A.M. Soward , A unified approach to Stefan’s problem for spheres and cylinders,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences 373 (1752) (1980) 131–147 . 

23] S.W. McCue , J.R. King , D.S. Riley , Extinction behaviour for two-dimensional in-
ward-solidification problems, Proceedings of the Royal Society A: Mathemati-

cal, Physical and Engineering Sciences 459 (2032) (2003) 977–999 . 
[24] S.W. McCue , B. Wu , J.M. Hill , Classical two-phase Stefan problem for spheres,

in: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 464 (2096), 2008, pp. 2055–2076 . 

25] J.N. Dewynne , J.M. Hill , Integral formulations and bounds for two phase Stefan

problems initially not at their fusion temperature, Acta Mech 58 (3–4) (1986)
201–228 . 

26] H.E. Huppert , Phase changes following the initiation of a hot turbulent flow
over a cold solid surface, J Fluid Mech 198 (1989) 293 . 

[27] O. Ehrich , C. Yun-Ken , K. Schwerdtfeger , The melting of metal spheres involv-
ing the initially frozen shells with different material properties, Int J Heat Mass

Transf 21 (3) (1978) 341–349 . 

28] D.W. Hahn , M.N. Ozisik , Heat Conduction, John Wiley & Sons, Inc., 2012 . 
29] Hydro Aluminium, Internal Communications, 2019. 

[30] AzoMaterials, Azo Materials, 2019. 
[31] K. Grjotheim , H. Kvande , Introduction to Aluminium Electrolysis, 1993 . 

[32] A. Solheim, Aluminium Electrolysis Main Principles and Technology, 2009. 
[33] P.N. Østbø, Evolution of Alpha Phase Alumina in Agglomerates upon Addition

to Cryolitic Melts, Norwegian University of Science and Technology, 2002 Ph.D.
thesis . 

[34] S.W. Jessen , Mathematical Modeling of a Hall Héroult Aluminum Reduction

Cell, Technical University of Denmark, 2008 M.Sc. thesis . 
[35] M. Kaviany , Principles of Heat Transfer in Porous Media, Mechanical Engineer-

ing Series, 3, Springer New York, 1995 . 
36] J.M. Back , Stefan problems for melting nanoscaled particles, Queensland Uni-

versity of Technology, 2016 Ph.D. thesis . 
[37] F. Font , Beyond the classical Stefan problem, Universitat Politecnica de

Catalunya, 2014 Ph.D. thesis . 

http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0001
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0001
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0002
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0002
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0002
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0002
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0003
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0003
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0004
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0005
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0006
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0007
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0008
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0009
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0010
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0010
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0010
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0011
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0011
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0012
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0013
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0014
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0014
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0015
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0015
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0016
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0016
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0016
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0017
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0018
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0018
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0018
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0019
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0020
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0021
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0021
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0021
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0022
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0022
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0023
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0024
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0024
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0024
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0024
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0025
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0025
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0025
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0026
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0026
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0027
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0028
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0029
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0029
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0029
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0030
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0030
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0031
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0031
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0032
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0032
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0033
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0033
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0034
http://refhub.elsevier.com/S0017-9310(20)33168-9/sbref0034

	A heat and mass transfer problem for the dissolution of an alumina particle in a cryolite bath
	1 Introduction
	2 Mathematical model
	2.1 Thermal problem
	2.2 Dissolution problem

	3 Analysis of the thermal problem
	3.1 Nondimensionalisation
	3.2 Early-time behaviour
	3.3 Numerical results
	3.4 Small superheat limit
	3.5 Small Stefan number limit
	3.5.1 Leading-order solution in the alumina particle
	3.5.2 Leading-order solution in the molten cryolite
	3.5.3 Motion of the freezing surface


	4 Analysis of the dissolution problem
	4.1 Nondimensionalisation
	4.2 Early-time behaviour
	4.3 Numerical results
	4.4 Small-&#x03C3; limit

	5 Conclusions
	5.1 Summary of scales
	5.2 Bulk flow
	5.3 Summary
	5.4 Limitations and outlook

	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


