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A B S T R A C T

In this study we propose a novel phase-field theory based on non-equilibrium thermodynamics
that resolves both the macroscopic deformations and the internal structure of a polyelectrolyte
gel immersed in an ionic solution. The governing equations for the gel account for its electro-
chemical response, the nonlinear elasticity of its polyelectrolyte network, multi-component
Stefan–Maxwell diffusion and the energy cost of internal interfaces that form upon phase
separation. These equations are coupled to a hydrodynamic model for the surrounding ionic
solution. The full time-dependent model describes the evolution of the gel-solution system
across multiple time and spatial scales revealing the mechano-electro-chemical mechanisms
that regulate phase separation of the gel, which results in the emergence of complex spatial
patterns. The rich dynamics of this system are investigated for a constrained gel undergoing
uni-axial deformations. We find that the regulation of phase separation in the gel-bath system is
dependent on the competition between two physical length scales: the Debye and Kuhn lengths
which characterise the thickness of electric double layers and diffuse interfaces, respectively.
When the Kuhn length is much larger than the Debye length, the standard electroneutral
assumption can be invoked. In this case, we show that large-scale solvent flux can result in
the phase separation of the gel. Depending on the concentration of ions in the surrounding
bath, swelling/deswelling of the gel occurs either via propagation of a front from the gel-bath
interface or via front propagation combined with spinodal decomposition. In the limit where the
Kuhn and Debye length are commensurate, our model predicts a novel mode of phase separation
which results in the gel bulk organising into spatially localised stable charged domains that
emanate from the Debye layer and propagate through the whole gel.

. Introduction

A polyelectrolyte gel is a network of covalently cross-linked polyelectrolyte macromolecules that is swollen with a fluid. The
olyelectrolyte chains are electrically charged and they interact with dissolved ions in the imbibing fluid. If placed in a salt solution,
ereafter referred to as an ionic bath, chemical, electrical, and mechanical interactions occur within the gel that drive it towards an
quilibrium state. Applying a stimulus such as an electric field or a temperature change enables the equilibrium state of the gel to
e finely controlled. The evolution of the gel towards its equilibrium has been the subject of numerous theoretical and experimental
tudies (Tanaka, 1978; Dobrynin, 2008; Dimitriyev et al., 2019; Mccoy and Muthukumar, 2010; Mussel and Horkay, 2019; Horkay
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et al., 2001; Bertrand et al., 2016) which have unveiled a plethora of phenomena including the volume phase transition (Dusek
and Patterson, 1968; Matsuo and Tanaka, 1992; Zubarev et al., 2004), super-collapse (Khokhlov and Kramarenko, 1996; Hua et al.,
2012a), and re-entrant swelling (Sing et al., 2013). The volume phase transition, which leads to enormous and discontinuous changes
in the gel volume, has received considerable attention due to its relevance in stimuli-responsive smart materials and sensors (Buenger
et al., 2012; Chaterji et al., 2007; Hong, 2012; Stuart et al., 2010).

When considering the transient evolution of the gel between different equilibria, internal structures can emerge via phase
eparation, whereby regions of highly swollen and collapsed gel spontaneously appear and co-exist. These highly and weakly swollen
hases are separated by diffuse interfaces with a small thickness that is characterised by the Kuhn length of the macromolecules.
s shown experimentally by Matsuo and Tanaka (1992) and Tanaka et al. (1987), phase separation gives rise to surface instabilities
hich can transiently or permanently affect the gel morphology and its resulting properties. Environmental changes of the gel may
lso result in micro- or nano-phase separation (Shibayama, 1998; Wu et al., 2010) or reverse Ostwald ripening (Rosowski et al.,
020a,b). These features play an important role in many biological processes such as in subcellular organelle formation (Brangwynne
t al., 2015; Style et al., 2018).

Near the interface between a polyelectrolyte gel and an ionic bath, ions from the bath accumulate to screen the electric charges
n the polyelectrolyte macromolecules. This gives rise to a diffuse layer of charge known as the electric double layer. However, due
o the porous nature of the gel, ions in the imbibing fluid will, in turn, accumulate to screen the diffuse layer of charge outside of the
el. Thus, the electric double layer in a gel-bath system is doubly diffuse (Wang et al., 2010). Furthermore, due to the concentration
f ions being different inside and outside of the gel, the electric double layer is asymmetric. In particular, the thickness of the
harged layer, as characterised by the Debye length, is often greater in the gel than in the bath. The charge density at a point in
he electric double layer typically decreases with distance from the gel-bath interface until the gel and the bath become electrically
eutral.

Although extensive theoretical and experimental studies have revealed key insights into the behaviour of polyelectrolyte gels,
everal important questions remain unanswered. For example, it is not clear how the structure of a polyelectrolyte gel self-organises
uring the volume phase transition, as experiments often focus on the time evolution of bulk properties such as the gel size (Horkay,
021). Similarly, the link between microscopic pattern formation and macroscopic observables is not established. There are also
ery few studies of the electric double layer in gel-bath systems (Hong et al., 2010; Wang et al., 2010). The conventional view is that
he double layer plays a passive role in the gel dynamics; as a result, it is often neglected in modelling studies. However, the stimuli
hat trigger the volume phase transition are often applied to the bath and are therefore transmitted to the gel via the electric double
ayer. From this point of view, the double layer should play a fundamental role in setting the global structure of the gel. Moreover,
f the Debye and Kuhn lengths are commensurate, then a non-trivial interplay could arise between the Coulomb interactions that
tructure the electric double layer and the intermolecular interactions responsible for phase separation. Such an interplay has the
otential to drive a novel mode of pattern formation within the gel, but this is yet to be explored.

Motivated by these questions, we use non-equilibrium thermodynamics to derive a novel phase-field model for a polyelectrolyte
el that can capture the spontaneous formation of internal interfaces due to the onset of phase separation. Moreover, we present
thermodynamically consistent model of the surrounding ionic bath. Coupling the gel and bath models via appropriate interfacial

onditions provides a means of resolving the electric double layer and elucidating the role it plays in the gel dynamics. In addition,
ur model captures multi-component diffusive transport using the Stefan–Maxwell formulation (Stefan, 1871; Maxwell, 1867) to
void anomalous diffusivities which can arise when the diffusive flux of a species is solely driven by the gradient of its own chemical
otential (Krishna and Wesselingh, 1997). The Stefan–Maxwell approach correctly captures the hydrodynamic drag between different
omponents of the mixture by balancing the friction forces between the different species (Bothe and Druet, 2020). While having
een previously ignored for polyelectrolyte gels (Hong et al., 2010), the recent work by Zhang et al. (2020) has highlighted the role
f cross-diffusion in modelling effects such as a temporary excess of salt entering the gel during swelling, which is subsequently
ejected as the gel approaches its new equilibrium.

Our analysis reveals that the structure of the gel is crucially dependent on the ratio of the Debye length to the Kuhn length. When
he Debye length is much smaller than the Kuhn length, then the equilibrium states correspond to a gel that has a homogeneous
nd electrically neutral bulk with a thin electric double layer at its free surface. In this case, the electric double layer is passive and
oes not affect the dynamics, in line with previous studies. By simulating the volume phase transition in this regime, we find that it
an occur via two distinct routes, either solely via the propagation of a swelling/deswelling front from the gel-bath interface or in
ombination with spinodal decomposition ahead of the main transition front. When the Debye and Kuhn lengths are commensurate,
ur model predicts a novel mode of pattern formation, resulting in stable, spatially localised structures that emanate from the electric
ouble layer and invade the gel. In this case, the equilibrium states of the gel can be non-homogeneous and electrically charged. We
how that this novel model of pattern formation arises due to the interplay between phase separation and the formation of electric
ouble layers and can be detected through measurements of the gel size.

The paper is organised as follows. In Sections 2 and 3, we present the governing equations for a polyelectrolyte gel and the
urrounding ionic bath, respectively. The interfacial conditions that couple these models are discussed in Section 4. In Section 5 we
se one-dimensional simulations to analyse and interpret structure formation within the gel. Finally, we provide a conclusion and
utlook in Section 6.
2
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Fig. 1. Schematic representation of a polyelectrolyte gel in contact with an ionic bath. The gel is a three-phase material, composed of a solid polymer network
ith fixed charges, solvent, and freely moving ions. The ionic bath consists of solvent and freely moving ions.

Fig. 2. Sketch of the reference, initial and current state of the gel.

2. Model derivation for a polyelectrolyte gel

We consider the gel as a multi-component material composed of a solid polymer network with fixed charges and a solution
consisting of solvent, such as water, and 𝑁 freely moving ionic species (i.e. solutes), see Fig. 1. We assume all phases are intrinsically
ncompressible and isotropic. Throughout the model derivation, we use subscripts 𝑛, 𝑠 to denote the solid polymer network and

solvent respectively, the index 𝑖 ∈ {1,… , 𝑁} to denote the ionic species, and the index 𝑚 ∈ {𝑠, 1,… , 𝑁} to refer to the species
that are mobile relative to the network, i.e. both the solvent and solutes. For later convenience, we introduce the set notation
I = {1,… , 𝑁} and M = {𝑠, 1,… , 𝑁}.

The model is derived using standard arguments from thermodynamics. We start by setting up the kinematics, followed by the
conservation laws and electrostatics for the system; we then construct the free energy of the system and use the energy imbalance
inequality of Gurtin et al. (2010) to obtain thermodynamically consistent expressions for the constitutive equations. The mass fluxes
are then determined assuming the system is near equilibrium and that Stefan–Maxwell cross-diffusion takes place.

2.1. Kinematics

The motivation for this study is to understand the swelling/deswelling behaviour of a polyelectrolyte gel in contact with an
ionic bath. By changing the conditions in the bath, such as the concentration of ions, the polyelectrolyte gel will swell or shrink. To
capture this behaviour, we consider a gel that is initially pre-swollen and in equilibrium with the surrounding bath. We then alter
the conditions in the bath to drive the gel towards a new equilibrium state. The initial configuration will differ from the reference
state, the latter of which is stress free and assumed to be the dry gel, i.e. with only the solid phase is present; see Fig. 2.

We adopt standard notation in continuum mechanics. The smooth function 𝝌 is a one-to-one map between material points in
the reference configuration 𝑿 ∈ 𝑅 to points 𝒙 = 𝝌(𝑿, 𝑡) (Eulerian coordinates) in the current configuration 𝑡. The deformation
gradient tensor is then defined by 𝗙 = 𝜕𝝌∕𝜕𝑿, where 𝐽 = det 𝗙 > 0 encodes information about the change in volume during
deformation. We further introduce the displacement vector 𝒖 = 𝒙 − 𝑿. As the gel deformation is determined by the displacement
of the solid phase, the solid phase velocity, 𝒗𝑛, and displacement are related, so that 𝒗𝑛 = �̇�, where dots denote derivatives with
respect to time in the reference configuration, i.e. 𝜕∕𝜕𝑡 𝒖.
3
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2.2. Conservation equations and electrostatics

As the solid phase is incompressible, any change in volume during deformation is due to the migration of solvent and solute
olecules, whose nominal concentrations (i.e. number of molecules per unit volume in 𝑅) are denoted by 𝐶𝑚 = 𝐶𝑚(𝑿, 𝑡) (𝑚 ∈ M).

This leads to the molecular incompressibility condition:

𝐽 = 1 +
∑

𝑚∈M
𝜈𝑚𝐶𝑚, (1a)

where 𝜈𝑚 (𝑚 ∈ M) is the molecular volume of each species in the solution.
Conservation of each mobile species in the reference configuration reads as

�̇�𝑚 + ∇𝑅 ⋅ 𝑱𝑚 = 0, (1b)

where 𝑱𝑚 = 𝑱𝑚(𝑿, 𝑡) is the nominal flux per unit area in the reference state and ∇𝑅 denotes the gradient with respect to the
Lagrangian coordinates 𝑿.

When considering gels, inertial and gravitational effects are commonly neglected, so that the conservation of momentum is given
by

∇𝑅 ⋅ 𝗦 = 𝟎, (1c)

where 𝗦 = 𝗦(𝑿, 𝑡) is the first Piola–Kirchhoff stress tensor, which represents the stress state of the polyelectrolyte gel in the reference
configuration.

The accumulation of electric charges generates an electric field which is denoted by 𝑬 = 𝑬(𝑿, 𝑡) in the reference configuration.
While the gel as whole is a conductor due to the motion of the free ions in the solution, following Drozdov (2015), Drozdov and
deClaville Christiansen (2015), Hong (2012) and Yu et al. (2017), we treat the solid network and the solvent as linear dielectric
materials. Consequently, Maxwell’s equations in the reference configuration read as:

𝑬 = −∇𝑅𝛷, (1d)

∇𝑅 ⋅𝑯 = 𝑄, (1e)

where 𝛷 = 𝛷(𝑿, 𝑡) is the electrostatic potential, 𝑯 = 𝑯(𝑿, 𝑡) is the nominal electric displacement, and 𝑄 = 𝑄(𝑿, 𝑡) is the nominal
total charge density. The latter accounts for both fixed and moving charges and it is therefore defined as

𝑄 = 𝑒

(

∑

𝑖∈I
𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓

)

, (1f)

where 𝑒 is the elementary charge; 𝐶𝑓 is the nominal concentration of fixed charges on the polyelectrolyte chains; and 𝑧𝑖 is the
valence of the corresponding charged species.

2.3. Free energy

Equations of state that are consistent with the second law of thermodynamics can be derived by specifying the free energy per
unit volume in the reference configuration 𝛹 . We assume that the free energy is separable into five contributions as follows:

𝛹 = 𝛹1(𝗙,𝑯) + 𝛹2(𝐶𝑚) + 𝛹3(𝐶𝑚) + 𝛹4(𝑭 ) + 𝛹5(∇𝑅𝐶𝑠,∇𝑅𝐽 ). (2)

The free energy of polarisation, 𝛹1, is given by Drozdov (2015), Drozdov and deClaville Christiansen (2015) and Hong (2012):

𝛹1 =
1

2𝜖𝐽
𝗙𝑯 ⋅ 𝗙𝑯 . (3)

n Eq. (3) the permittivity 𝜖 is in general a function of the solvent concentration (Hong et al., 2010). However, we assume that the
ermittivity is dominated by the contribution from the solvent so that 𝜖 is independent of the gel composition.

The second term in the free energy, 𝛹2, captures the energetic contributions of the pure mobile species and has the standard
orm (Drozdov et al., 2016b):

𝛹2 =
∑

𝑚∈M
𝜇0𝑚𝐶𝑚, (4)

here 𝜇0𝑚 denotes the chemical potential of non-interacting mobile species.
The third term 𝛹3 describes the free energy of mixing. We assume that the leading contribution to the enthalpy is due to

isfavourable interactions between the solvent and the hydrophobic solid phase (Hua et al., 2012b). According to the Flory–Huggins
heory (Flory, 1942; Huggins, 1942) of solvent–polymer mixtures, the mixing energy 𝛹3 is then given by

𝛹3 = 𝑘𝐵𝑇

(

𝜒𝐶𝑠
1 +

∑

𝑗∈M 𝜈𝑗𝐶𝑗
+

∑

𝑚∈M
𝐶𝑚 ln

𝜈𝑚𝐶𝑚
1 +

∑

𝑗∈M 𝜈𝑗𝐶𝑗

)

, (5)

where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the temperature, and 𝜒 is the Flory interaction parameter (capturing the enthalpy of mixing
4

the solvent and solid phase).
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The elastic energy due to the stretching of the polymer network is described by 𝛹4. We assume that the elastic response of the
etwork is captured by a neo-Hookean strain energy density of the form

𝛹4 =
𝐺
2
(𝗙 ∶ 𝗙 − 3 − 2 ln 𝐽 ) . (6)

where 𝐺 is the shear modulus.
The fifth and final contribution to the free energy, 𝛹5, captures the energy cost associated with internal interfaces that form

within the gel due to phase separation. We assume that the ionic concentrations are dilute and that the dominant contribution
to the interfacial free energy arises from gradients in the solvent concentration. However, our theory could easily accommodate
more general forms of the interfacial free energy that depend on gradients of all of the species (Stinner et al., 2004). In the current
configuration, we consider the specific form of 𝜓5 = 𝛹5∕𝐽 = 𝛾∕2 |

|

∇𝑐𝑠||
2, where 𝑐𝑠 = 𝐶𝑠∕𝐽 and 𝛾 plays a role analogous to surface

tension (Onuki and Puri, 1999). Following Wu et al. (2012), we relate the parameter 𝛾 to the Kuhn length, 𝐿𝐾 , of the network via
the relation 𝛾 = 𝑘𝐵𝑇 𝜈𝑠𝐿2

𝐾 . By expressing 𝜓5 in the reference configuration, we find that 𝛹5 has the form

𝛹5 =
𝛾
2𝐽
𝐺𝑖𝐽𝐺𝑖𝑀

𝜕𝐶𝑠
𝜕𝑋𝐽

𝜕𝐶𝑠
𝜕𝑋𝑀

+
𝛾𝐶2

𝑠

2𝐽 3
𝐺𝑖𝐽𝐺𝑖𝑀

𝜕𝐽
𝜕𝑋𝐽

𝜕𝐽
𝜕𝑋𝑀

−
𝛾𝐶𝑠
𝐽 2

𝐺𝑖𝐽𝐺𝑖𝑀
𝜕𝐶𝑠
𝜕𝑋𝐽

𝜕𝐽
𝜕𝑋𝑀

, (7)

where 𝗚 = 𝗙−𝑇 and summation over repeated indices is implied. We note that Eq. (7) is just one of the possible choices for the
interfacial free energy in solid-like systems; for other formulations we refer the reader to Hong and Wang (2013).

2.4. Energy imbalance inequality

As derived by Gurtin (1996) when considering isothermal processes, the second law of thermodynamics can be rewritten in terms
of the Helmholtz free energy 𝛹 to lead to the so called energy imbalance inequality. More precisely, considering an arbitrary control
volume in the reference configuration, 𝑅, the energy imbalance inequality states that the rate of change of the net free energy in
𝑅 must be less or equal to the power expended on 𝑅 plus the energy increase due to the change in the species concentration
from transport. Here we augment the energy imbalance to weakly impose the incompressibility condition (1a) via the Lagrange
multiplier 𝑝, which plays the role of the thermodynamic pressure. For the specific system considered, we can write the energy
imbalance inequality as,

d
d𝑡

{

∫𝑅

[

𝛹 − 𝑝

(

𝐽 − 1 −
∑

𝑚∈M
𝜈𝑚𝐶𝑚

)]

𝑑𝑉𝑅

}

≤ −
∑

𝑚∈M
∫𝑅

𝜇𝑚 𝑱𝑚 ⋅𝑵 𝑑𝑆𝑅 − ∫𝑅
𝛷 �̇� ⋅𝑵𝑑𝑆𝑅

+∫𝑅
𝗦𝑵 ⋅ �̇� 𝑑𝑆𝑅 + ∫𝑅

[

(𝝃𝑠 ⋅𝑵)�̇�𝑠 +
(

𝝃𝐽 ⋅𝑵
)

�̇�
]

𝑑𝑆𝑅,
(8)

here 𝑵𝑑𝑆𝑅 is the surface element in 𝑅 (see Fig. 2). In writing (8), we have assumed the control volume is not at the boundary
etween the polyelectrolyte gel and surrounding ionic solution. The first term on the right-hand side of (8) accounts for the total
ain in energy due to the mass transport, where we denote by 𝜇𝑚 the chemical potentials of the species 𝑚 ∈ M. The second term
n (8) captures the electrical work expended on 𝑅 by the potential 𝛷; see Drozdov et al. (2016a) for more details. The last two
ntegrals are the mechanical work expended on the reference volume. Following Gurtin (1996) and Hennessy et al. (2020), the
echanical work is decomposed into contributions from the macro-stresses 𝗦 and the micro-stresses 𝝃, the latter of which originate

rom composition gradients.
The interfacial free energy (7) involves gradients of the solvent concentration and the Jacobian determinant, ∇𝑅𝐶𝑠 and ∇𝑅𝐽 ,

esulting in micro-stresses 𝝃𝑠 and 𝝃𝐽 , respectively. In previous works on phase separation in non-ionic hydrogels (Hennessy et al.,
020), the absence of free ions allowed ∇𝑅𝐽 to be written as 𝜈𝑠∇𝑅𝐶𝑠. The mechanical work associated with changes in composition
ould then be captured through a single micro-stress 𝝃𝑠. For a polyelectrolyte gel, however, ∇𝑅𝐽 and ∇𝑅𝐶𝑠 vary independently,
ecessitating the additional micro-stress 𝝃𝐽 due to the gradient in 𝐽 . Alternatively, we could have written ∇𝑅𝐽 =

∑

𝑚∈M 𝜈𝑚∇𝑅𝐶𝑚
nd considered ∇𝑅𝐶𝑚 as independent variables, but this choice is more algebraically complicated and would have resulted in the
ntroduction of additional micro-stresses.

The local form of the energy imbalance can be obtained from Eq. (8) by using the divergence theorem and Eqs. (1b)–(1e) to find

�̇� +
∑

𝑖∈I

[

𝑒𝛷𝑧𝑖 − 𝜇𝑖 + 𝜈𝑖𝑝
]

�̇�𝑖 − (𝜇𝑠 − 𝜈𝑠𝑝 + ∇𝑅 ⋅ 𝝃𝑠) �̇�𝑠 − 𝝃𝑠 ⋅ ∇𝑅 �̇�𝑠 − 𝝃𝐽 ⋅ ∇𝑅 �̇�

−
(

𝗦 + 𝑝𝐽𝗙−𝑇 + 𝐽
(

∇𝑅 ⋅ 𝝃𝐽
)

𝗙−𝑇
)

∶ �̇� − 𝑬 ⋅ �̇� +
∑

𝑚∈M
∇𝑅 𝜇𝑚 ⋅ 𝑱𝑚 ≤ 0.

(9)

y writing 𝛹 = 𝛹 (𝐶𝑚,𝗙,𝑯 ,∇𝑅𝐶𝑠,∇𝑅𝐽 ) according to the energy decomposition in (2), the local energy imbalance inequality in (9)
ecomes

(

𝜕𝛹
𝜕∇𝑅𝐶𝑠

− 𝝃𝑠
)

⋅ ∇𝑅�̇�𝑚 +
(

𝜕𝛹
𝜕𝐶𝑠

− 𝜇𝑠 − ∇𝑅 ⋅ 𝝃𝑠 + 𝜈𝑠𝑝
)

�̇�𝑠 +
( 𝜕𝛹
𝜕𝑯

− 𝑬
)

⋅ �̇� +
(

𝜕𝛹
𝜕∇𝑅𝐽

− 𝝃𝐽
)

⋅ ∇𝑅�̇�

+
∑

𝑖∈I

(

𝜕𝛹
𝜕𝐶𝑖

+ 𝑒𝛷𝑧𝑖 − 𝜇𝑖 + 𝜈𝑖𝑝
)

�̇�𝑖 +
( 𝜕𝛹
𝜕𝗙

− 𝗦 − 𝑝𝐽𝗙−𝑇 − 𝐽 (∇𝑅 ⋅ 𝝃𝐽 )𝗙−𝑇
)

∶ �̇� +
∑

𝑚∈M
∇𝑅 𝜇𝑚 ⋅ 𝑱𝑚 ≤ 0.

(10)

ollowing Hong et al. (2010) and Gurtin (1996), we assume that the only process leading to dissipation of energy is the long-range
diffusive) transport of mobile species. Consequently, we drop any dependence on the rate of change of the model variables and
5
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impose the following constitutive laws for the chemical potentials 𝜇𝑚, the macro-stress 𝗦, the micro-stresses 𝝃, the electric field 𝑬
and the fluxes 𝑱𝑚:

𝜇𝑚 = �̂�𝑚(𝜦), 𝝃𝑠,𝐽 = �̂�𝑠,𝐽 (𝜦), 𝗦 = �̂�(𝜦), 𝑬 = �̂�(𝜦), 𝑱𝑚 = �̂�𝑚(𝜦,∇𝑅𝜇𝑚), (11)

here 𝜦 denotes the list 𝜦 =
{

𝐶𝑚,𝑭 ,𝑯 ,∇𝑅 𝐶𝑠,∇𝑅 𝐽
}

.
Based on Eqs. (11), the inequality (10) is linear in ∇𝑅�̇�𝑠, �̇�𝑚, ∇𝑅�̇� , �̇� , �̇�. Using the classical Coleman–Noll argument (Coleman

nd Noll, 1963), inequality (10) must be valid for any arbitrary choice of the independent variables ∇𝑅�̇�𝑠, �̇�𝑚, ∇𝑅�̇� , �̇� , �̇�, so that
heir coefficients must be identically zero. These thermodynamic restrictions determine the specific form of the functions �̂�𝑚, �̂�𝑠,𝐽 ,
̂ and �̂� which are explicitly given by

�̂�𝐽 = 𝜕𝛹
𝜕∇𝑅𝐽

, �̂�𝑠 =
𝜕𝛹

𝜕∇𝑅𝐶𝑠
, �̂�𝑠 =

𝜕𝛹
𝜕𝐶𝑠

− ∇𝑅 ⋅ 𝝃𝑠 + 𝜈𝑠𝑝, �̂�𝑖 =
𝜕𝛹
𝜕𝐶𝑖

+ 𝑒𝛷𝑧𝑖 + 𝜈𝑖𝑝, (12a)

�̂� = 𝜕𝛹
𝜕𝑯

, �̂� = 𝜕𝛹
𝜕𝗙

− 𝑝𝐽𝗙−𝑇 + 𝐽 (∇𝑅 ⋅ 𝝃𝐽 )𝗙−𝑇 (12b)

The energy imbalance inequality (10) then reduces to:
∑

𝑚∈M
∇𝑅 𝜇𝑚 ⋅ 𝑱𝑚 ≤ 0. (13)

We consider the system to be close to equilibrium and assume linear relationships between the fluxes 𝑱𝑚 and the gradient terms
∇𝑅𝜇𝑚 so that

𝑱𝑚 = −
∑

𝛽∈M
𝗠𝛽𝑚∇𝑅𝜇𝛽 . (14)

To define the mobility tensors 𝗠𝛽𝑚, we adopt the Stefan–Maxwell approach (Stefan, 1871; Maxwell, 1867) for describing multi-
omponent diffusive transport, which correctly captures the hydrodynamic drag (i.e. friction) between different components of the
ixture (Bothe and Druet, 2020; Zhang et al., 2020). Full details of the calculation of 𝗠𝛽𝑚 along with a proof that the energy

imbalance (13) is satisfied are provided in Appendix A.1. In summary, the diffusive fluxes are given by

𝑱 𝑠 = −
𝐶𝑠𝐾
𝜈𝑠

𝗖−1

(

∇𝑅𝜇𝑠 +
∑

𝑖∈I

𝐷𝑖

𝐷0
𝑖

𝐶𝑖
𝐶𝑠

∇𝑅𝜇𝑖

)

, (15a)

𝑱 𝑖 = −
𝐷𝑖𝐶𝑖
𝑘𝐵𝑇

𝗖−1∇𝑅𝜇𝑖+
𝐷𝑖𝐶𝑖
𝐷0
𝑖 𝐶𝑠

𝑱 𝑠, 𝑖 ∈ I, (15b)

where 𝗖 = 𝗙𝑇 𝗙 is the right Cauchy–Green deformation tensor, and 𝐷𝑖 and 𝐷0
𝑖 are the diffusivities of the 𝑖th ionic species in the

gel and in pure solvent respectively. The function 𝐾 is the Darcy hydraulic permeability (over dynamic viscosity) of the gel to the
solvent and ionic species, which is defined as

1
𝐾

= 1
𝑘(𝐽 )

+
∑

𝑖∈I

𝑘𝐵𝑇
𝜈𝑠𝐷0

𝑖

(

1 −
𝐷𝑖

𝐷0
𝑖

)

𝐶𝑖
𝐶𝑠
. (16)

Here 𝑘(𝐽 ) = (𝐷0
𝑠∕𝑘𝐵𝑇 )𝐽

𝜃 represents the Darcy hydraulic permeability (over dynamic viscosity) of the gel to pure solvent, where 𝐷0
𝑠

is the solvent diffusivity in the gel and 𝜃 is a parameter.

2.5. The full polyelectrolyte gel model

The governing equations for the polyelectrolyte gel are summarised and reformulated in terms of the current configuration,
which provides greater physical insight into the constitutive relationships that are derived from the energy imbalance inequality.
The Lagrangian form of the gel model can be found in Appendix A.2. Full details of the transformation between the reference
and current states can be found in Appendix A.3. Formulating the governing equations in the current configuration also facilitates
coupling the models for the gel and bath, as the bath does not have a well-defined reference configuration due to the absence of
the solid phase.

Before presenting the equations describing the evolution of the gel, we introduce the model variables in the current configuration.
We denote by 𝑐𝑚 = 𝐶𝑚∕𝐽 the current concentration of mobile species, i.e., the number molecules per unit volume in 𝑡. The net
charge distribution is given by 𝑞 = 𝑄∕𝐽 with 𝑄 defined by Eq. (1f). The velocities of the mobile species 𝒗𝑚 are related to the velocity
of the network 𝒗𝑛 via 𝒋𝑚 = 𝑐𝑚(𝒗𝑚−𝒗𝑛), where 𝒋𝑚 = 𝐽−1𝗙𝑱𝑚 is the diffusive flux. The Cauchy stress tensor is 𝗧 = 𝐽−1𝗦𝗙𝑇 . The electric
field, the electric displacement and micro-stresses also have a counterpart in the current configuration, 𝒆 = 𝗙−𝑇𝑬, 𝒉 = 𝐽−1𝗙𝑯 , and
𝜻𝑠,𝐽 = 𝐽−1𝗙𝝃𝑠,𝐽 , respectively; these have been eliminated from the following sets of governing equations as 𝒉 and 𝒆 can be expressed
in terms of ∇𝛷 and the micro-stresses in terms of ∇𝑐 .
6
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The full polyelectrolyte gel model in the current configuration is given by

𝐽 =

(

1 −
∑

𝑚∈M
𝜈𝑚𝑐𝑚

)−1

, (17a)

𝜕𝑡𝑐𝑚 + ∇ ⋅ (𝑐𝑚𝒗𝑛) = −∇ ⋅ 𝒋𝑚, 𝑚 ∈ M, (17b)

∇ ⋅ 𝗧 = 𝟎, (17c)

−𝜖∇2𝛷 = 𝑞 = 𝑒

(

∑

𝑖∈I
𝑧𝑖𝑐𝑖 + 𝑧𝑓 𝑐𝑓

)

, (17d)

where the network velocity satisfies 𝒗𝑛 = 𝜕𝑡𝒖 + (𝒗𝑛 ⋅ ∇)𝒖; the diffusive fluxes are

𝒋𝑠 = −𝑐𝑠𝐾(𝑐𝑠, 𝑐𝑖)

(

∇𝜇𝑠 +
∑

𝑖∈I

𝐷𝑖

𝐷0
𝑖

𝑐𝑖
𝑐𝑠
∇𝜇𝑖

)

, (17e)

𝒋𝑖 = −
𝐷𝑖𝑐𝑖
𝑘𝐵𝑇

∇𝜇𝑖 +
𝐷𝑖𝑐𝑖
𝐷0
𝑖 𝑐𝑠

𝒋𝑠, 𝑖 ∈ I; (17f)

and the Darcy hydraulic permeability 𝐾 is defined by Eq. (16). The chemical potentials are given by

𝜇𝑠 = 𝜇0𝑠 + 𝜈𝑠(𝑝 +𝛱𝑠) − 𝛾∇2𝑐𝑠, (17g)

𝜇𝑖 = 𝜇0𝑖 + 𝜈𝑖(𝑝 +𝛱𝑖) + 𝑧𝑖𝑒𝛷, 𝑖 ∈ I, (17h)

where the osmotic pressures are defined as

𝛱𝑠 =
𝑘𝐵𝑇
𝜈𝑠

[

𝜒(1 − 𝜈𝑠𝑐𝑠)
𝐽

+ ln(𝜈𝑠𝑐𝑠) + 1 −
∑

𝑚∈M
𝜈𝑠𝑐𝑚

]

, (17i)

𝛱𝑖 =
𝑘𝐵𝑇
𝜈𝑖

[

−
𝜒𝑐𝑠𝜈𝑖
𝐽

+ ln(𝜈𝑖𝑐𝑖) + 1 −
∑

𝑚∈M
𝜈𝑖𝑐𝑚

]

, 𝑖 ∈ I. (17j)

The stress tensor 𝗧 can be decomposed into the sum of four terms:

𝗧 = −𝑝𝗜 + 𝗧𝑒 + 𝗧𝑀 + 𝗧𝐾 , (17k)

𝗧𝑀 = 𝜖
[

∇𝛷⊗ ∇𝛷 − 1
2
|∇𝛷|2𝗜

]

, (17l)

𝗧𝑒 =
𝐺
𝐽

(

𝗙𝗙𝑇 − 𝗜
)

, (17m)

𝗧𝐾 = 𝛾

[(

|∇𝑐𝑠|
2

2
+ 𝑐𝑠∇2𝑐𝑠

)

𝗜 − ∇𝑐𝑠 ⊗ ∇𝑐𝑠

]

, (17n)

where 𝗙 = (𝗜 − ∇𝒖)−1 is the gradient deformation tensor, 𝗧𝑒 is the elastic stress tensor, 𝗧𝑀 is the Maxwell stress tensor, and 𝗧𝐾 is
the Korteweg stress tensor.

Compared with previous models of polyelectrolyte gels (Hong et al., 2010; Yu et al., 2017; Zhang et al., 2020), our model is
distinguished by its ability to capture the chemo-mechanical effects of internal interfaces that emerge due to phase separation. In
particular, the new term 𝛾∇2𝑐𝑠 in (17g) captures the change in chemical potential across an interface and the Korteweg stress tensor
𝗧𝐾 is (17k) is a bulk representation of surface tension.

3. A model for the surrounding ionic bath

In this section we present a thermodynamically consistent model for the bath that surrounds the polyelectrolyte gel. The bath
model is derived following the approach developed in Section 2. However, since the bath has no solid component, the governing
equations are derived directly in the current configuration, based on the standard Eulerian description commonly used in mixture
theory (Bowen, 1976). Our detailed derivation reveals how the constraints on the mixture, such as the incompressibility and no-void
conditions, are incorporated within the augmented energy imbalance inequality and alter the structure of the chemical potentials.
For brevity, we present the governing equations here; full details of the derivation can be found in Appendix B.

The bath is modelled as a multi-component viscous fluid consisting of a solvent and the same 𝑁 ionic species that were considered
in the gel model (see Fig. 1). All species are assumed to be incompressible. We denote by 𝑐𝑚, 𝒗𝑚, 𝜇𝑚, and 𝒒𝑚 the concentration,
velocity, chemical potential, and diffusive flux of species 𝑚 ∈ M; 𝑞, 𝛷, 𝒆, and 𝒉 are the electric charge density, potential, field, and
isplacement; and 𝗧 is the Cauchy stress tensor, where all of these quantities are functions of the Eulerian coordinates 𝒙 and time
𝑡. Since we do not anticipate phase separation to occur in the bath, we omit the micro-stresses from the bath model.

Similar to the gel, the bath is a conductor due to the free ions, but we assume the solvent is a linear dielectric with permittivity
𝜖, taken to be the same as in the gel. In the absence of the solid phase and phase separation, we drop the terms in the Helmholtz
7
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free energy associated with the elastic energy, the mixing of solvent and network and interfacial energy. Thus we have that the free
energy, 𝜓 , per unit (current) volume of the mixture, reads

𝜓 = 1
2𝜖

𝒉 ⋅ 𝒉 +
∑

𝑚∈M

[

𝜇0𝑚𝑐𝑚 + 𝑘𝐵𝑇 𝑐𝑚 ln
(

𝜈𝑚𝑐𝑚
)]

, (18)

where the constants 𝜇0𝑚 are taken to be the same as in Eq. (4). Using the free energy (18), constitutive equations for the bath can
be systematically derived using an energy imbalance inequality.

The kinematics of the mixture are based on the volume transport approach in Brenner (2005). We thus define the volume-
averaged mixture velocity as

𝒗 =
∑

𝑚∈M
𝜈𝑚𝑐𝑚𝒗𝑚. (19)

The diffusive fluxes in the bath are defined relative to the mixture velocity as 𝒒𝑚 = 𝑐𝑚(𝒗𝑚 − 𝒗). We therefore obtain the following
governing equations for the bath

𝜕𝑡𝑐𝑚 + ∇ ⋅
(

𝑐𝑚𝒗
)

= −∇ ⋅ 𝒒𝑚, 𝑚 ∈ M, (20a)

∇ ⋅ 𝗧 = 𝟎, (20b)

−𝜖∇2𝛷 = 𝑞 = 𝑒
∑

𝑖∈I
𝑧𝑖𝑐𝑖, (20c)

here the fluxes are defined by

𝒒𝑖 = −
𝐷0
𝑖 𝑐𝑖

𝑘𝐵𝑇

(

∇𝜇𝑖 −
∑

𝛽∈M
𝜈𝑖𝑐𝛽∇𝜇𝛽

)

+
𝑐𝑖
𝑐𝑠
𝒒𝑠, 𝑖 ∈ I, (20d)

𝒒𝑠 = −
∑

𝑖∈I

𝜈𝑖𝒒𝑖
𝜈𝑠

. (20e)

n deriving Eqs. (20d)–(20e), we have considered Stefan–Maxwell cross-diffusion as for the gel. Here the diffusion coefficients 𝐷0
𝑖

re defined as in Eq. (15), i.e. they indicate the diffusion coefficients of the ions in pure solvent. We assume that each point in the
ixture is occupied by solvent and solute, resulting in the no-void condition

1 =
∑

𝑚∈M
𝜈𝑚𝑐𝑚, (20f)

which can be used to eliminate the solvent concentration 𝑐𝑠 from the problem. Since we have assumed that all components of the
mixture are incompressible, Eq. (20f) implies that the mixture velocity 𝒗 satisfies the divergence-free condition

∇ ⋅ 𝒗 = 0. (20g)

The condition ∇ ⋅𝒗 = 0 is usually referred to as quasi-incompressibility (Brenner, 2005) and it captures the fact that locally the volume
f the mixture is conserved, in contrast to the mixture density which can change with the composition of the mixture.

The chemical potentials are given by

𝜇𝑠 = 𝜇0𝑠 + 𝜈𝑠𝑝 + 𝑘𝐵𝑇

[

ln(𝜈𝑠𝑐𝑠) + 1 −
∑

𝑚∈M
𝜈𝑠𝑐𝑚

]

, (20h)

𝜇𝑖 = 𝜇0𝑖 + 𝜈𝑖𝑝 + 𝑘𝐵𝑇

[

ln(𝜈𝑖𝑐𝑖) + 1 −
∑

𝑚∈M
𝜈𝑖𝑐𝑚

]

+ 𝑧𝑖𝑒𝛷, 𝑖 ∈ I, (20i)

which have contributions arising from the thermodynamic pressure 𝑝 and the osmotic pressure (i.e. the terms in the parentheses). The
ionic chemical potentials (20i) have an additional contribution from the electric field (i.e. the final term). The pressure dependence of
the chemical potential arises from our choice to impose the no-void condition (20f) when applying the energy imbalance inequality.
Imposing the divergence-free condition (20g) instead would result in functionally different, yet mathematical equivalent, forms of
the chemical potentials (Kim and Lowengrub, 2005).

The Cauchy stress tensor 𝗧 can be written as

𝗧 = −𝑝𝗜 + 𝗧𝑀 + 𝗧𝑣, (20j)

𝗧𝑀 = 𝜖
[

∇𝛷⊗ ∇𝛷 −
|∇𝛷|2

2
𝗜

]

, (20k)

𝗧𝑣 = 𝜂
(

∇𝒗 + ∇𝒗𝑇
)

, (20l)

where 𝗧𝑀 and 𝗧𝑣 are the Maxwell and viscous stress tensor, respectively. The parameter 𝜂 corresponds to the shear viscosity of the
fluid, which we assume to be independent of the mixture composition. In contrast to the gel, viscous stresses need to be explicitly
accounted for in the bath model. The treatment of the gel as a poroelastic medium means that viscous effects are homogenised and
enter the model in the form of a Darcy-like contribution to the diffusive flux described with a permeability 𝑘.
8
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4. Interfacial conditions

The behaviours of the polyelectrolyte gel and ionic bath are coupled via specification of interfacial boundary conditions. We
enote the position of the interface in the current configuration by 𝛤 , while [⋅]+− denotes the jump in the value of a variable across

the interface, where - and + stand for the limit approaching from the gel and the bath domain respectively. The local velocity of
the interface 𝒗𝛤 is equivalent to the normal component of the network velocity 𝒗𝑛. Thus the kinematic boundary condition reads
as

𝒗𝛤 =
(

𝒗𝑛 ⋅ 𝒏
)

𝒏, (21a)

where 𝒏 = 𝒏(𝒙, 𝑡) is the unit normal vector to the interface. Consequently, imposing the conservation of mass across the interface
and using a pillbox argument gives

[𝑐𝑚
(

𝒗𝑚 − 𝒗𝛤
)

⋅ 𝒏]+− = 0. (21b)

onservation of momentum leads to the continuity of the normal component of the stress tensor:

[𝗧 ⋅ 𝒏]+− = 𝟎. (21c)

ssuming that there are no surface dipoles or charges on the gel-bath interface, we also have continuity of the electrical potential
nd the displacement field; both follow from pillbox arguments applied to Maxwell’s laws:

[𝛷]+− = 0, (21d)

[−𝜖∇𝛷 ⋅ 𝒏]+− = 0. (21e)

e also impose continuity of the chemical potential:
[

𝜇𝑚
]+
− = 0. (21f)

Accounting for the interfacial free energy (7) leads to the appearance of second-order derivatives in the chemical potential
f solvent in the gel; see (17g). Therefore, even when the system is in equilibrium and the solvent chemical potential in the gel is
onstant and equal to that of the bath, an additional boundary condition is required when solving (17g) for the solvent concentration
𝑠. For simplicity, we assume that the gradient in solvent concentration vanishes at the gel-bath interface,

∇𝑐𝑠||𝛤− ⋅ 𝒏 = 0, (21g)

hich implies that there is no preference for solvent molecules to accumulate or disperse at the free surface, either of which would
esult in a local composition gradient. Alternatively, (21g) is equivalent to imposing continuity of the (Eulerian) micro-stress 𝜻𝑠
cross the interface; recall that the micro-stress in the bath is equal to zero.

Closing the model requires a slip-type boundary condition for which there exist multiple choices that are consistent with our
odel. For instance, Mori et al. (2013) opted for a Navier slip condition on the solvent velocity in their kinetic model of a
olyelectrolyte gel. Feng and Young (2020) use a thermodynamics argument to derive a slip conditions on both the solid and
olvent velocity for non-ionic gels. In Hennessy et al. (2022), where we derive the three-dimensional electroneutral formulation of
he model, we instead impose continuity of the tangential components of the mixture velocity.

The governing equations for the gel and ionic bath, together with the coupling conditions given here at the interface, are then
omplemented with appropriate conditions at domain boundaries. In the following section we apply the modelling framework to a
ne-dimensional Cartesian geometry.

. Dynamic phase transitions and patterning of polyelectrolyte gels

In this section, we use numerical simulations to investigate the dynamic patterning of polyelectrolyte gels and how this depends
n the relative sizes of the Kuhn length 𝐿𝐾 =

√

𝛾∕𝑘𝐵𝑇 𝜈 and the Debye length 𝐿𝐷 =
√

𝑘𝐵𝑇 𝜈𝜖∕𝑒2, which characterise the width of the
internal interfaces and electric double layers, respectively. In doing so, we specialise the model to the case of uniaxial deformations.
Despite the simplified geometry, this scenario reveals the complex and wide range of behaviours that can be captured by our model,
and it will serve as a useful stepping stone for understanding the dynamics that can occur in multi-dimensional settings.

In Section 5.1, we detail the reduction of the model to one dimension and discuss the electroneutral limit. In Section 5.2, we look
at the dynamics of volume phase transition in the regime 𝐿𝐾 ≫ 𝐿𝐷. In this case, the two length scales separate and the standard
electroneutral assumption can be invoked. In Section 5.3, we consider the regime in which 𝐿𝐾 ≃ 𝐿𝐷. In this case, we observe a
novel mode patterning in the gel driven by the coupling between phase separation and the formation of electric double layers.
9
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Fig. 3. Sketch of a laterally confined gel swelling in a ionic bath.

5.1. Geometry and model reduction

We consider a one-dimensional model of a polyelectrolyte gel that undergoes uniaxial deformations due to solvent and ion
exchange with a salt bath. The gel is assumed to be bonded to an electrically insulated and impermeable substrate at 𝑧 = 0 and
have a free surface at 𝑧 = ℎ(𝑡), where we relabel the Eulerian coordinate 𝑥3 ≡ 𝑧 for convenience. The deformation gradient tensor
is written as 𝗙 = diag(1, 1, 𝐽 (𝑧, 𝑡)). The corresponding Cauchy stress tensor has the form 𝗧 = diag(𝑇𝓁(𝑧, 𝑡), 𝑇𝓁(𝑧, 𝑡), 𝑇𝑎(𝑧, 𝑡)), where 𝑇𝓁
and 𝑇𝑎 capture the lateral (or transverse) and axial components of the stress, respectively. The velocity of the polymer network and
the diffusive fluxes in the gel are written as 𝒗𝑛 = 𝑣𝑛(𝑧, 𝑡)𝒆𝑧 and 𝒋𝑚 = 𝑗𝑚(𝑧, 𝑡)𝒆𝑧, where 𝒆𝑧 is the basis vector in the 𝑧 direction. All
remaining dependent variables are taken to be functions of the Eulerian coordinate 𝑧 and time 𝑡, only. As discussed by Doi (2009),
this one-dimensional reduction corresponds to the gel being confined between two sidewalls, as shown in Fig. 3; here sidewalls
are either frictionless or sufficiently far apart not to influence the bulk behaviour. Many of the results presented below have been
reproduced in models of cylindrical gels (Hennessy et al., 2022) and are expected to be generalisable to alternative geometries as
well.

The bath is assumed to consist of solvent and a monovalent salt. The anionic and cationic species are denoted by subscripts -
and +, respectively; hence 𝑧± = ±1. The solvent, anions, and cations, are assumed to have the same molecular volume (Yu et al.,
2017) (𝜈𝑠 = 𝜈± ≡ 𝜈). In addition, the ionic diffusivities in the gel and solution are taken to be equal, 𝐷± = 𝐷0

±. For simplicity, the
bath is considered to be a large reservoir that is in equilibrium. In the far field (𝑧 → ∞), the bath is assumed to be in a stress-free
(𝑇𝑎 = 0) and electrically neutral (𝑐+ = 𝑐−) state, and have a prescribed concentration of ions 𝑐± = 𝑐0. In addition, we use the far
field to set the reference voltage and pressure to be zero (𝛷 = 0 and 𝑝 = 0).

The number of free parameters in the model is reduced by introducing the length of the gel 𝐿 in the dry state and defining
dimensionless variables as follows:

𝑧∗ = 𝑧
𝐿
, 𝑡∗ =

𝐷0
𝑠 𝑡
𝐿2

, 𝜙𝑚 = 𝜈𝑐𝑚, 𝜇∗𝑚 =
𝜇𝑚 − 𝜇0𝑚
𝑘𝐵𝑇

,

𝑗∗𝑚 =
𝜈𝐿𝑗𝑚
𝐷0
𝑠
, 𝑣∗𝑛 =

𝐿𝑣𝑛
𝐷0
𝑠

𝛷∗ = 𝑒𝛷
𝑘𝐵𝑇

, 𝗧∗ = 𝗧
𝐺
, 𝑝∗ =

𝑝
𝐺
.

(22)

The quantities 𝜙𝑚 represent volume fractions of the mobile species. In the gel, the volume fraction of polymer network can be
expressed as 𝜙𝑛 = 𝐽−1 = 1−𝜙𝑠 −𝜙+ −𝜙−. Rescaling the variables according to (22) leads to the appearance of five non-dimensional
parameters that are fixed for a given experimental scenario,

± =
𝐷0

±

𝐷0
𝑠
, 𝛼𝑓 = 𝑧𝑓 𝜈𝐶𝑓 ,  = 𝐺𝜈

𝑘𝐵𝑇
, 𝜔 =

𝐿𝐾
𝐿
, 𝛽 =

𝐿𝐷
𝐿
. (23)

The parameters ± are the relative diffusivities of the ions with respect to the solvent, 𝛼𝑓 is the nominal volume fraction of fixed
charges (multiplied by the valence of fixed charges), and  is the dimensionless shear modulus. The quantities 𝜔 and 𝛽 measure,
respectively, the width of diffuse internal interfaces and electric double layers relative to the typical gel dimension.

As the bath is in equilibrium, the diffusive fluxes 𝒒𝑚 and mixture velocity 𝒗 are set to zero, and the chemical potentials are
constant and equal to their values in the far field. Consequently, the chemical potentials of the mobiles species are given by (upon
dropping the stars for dimensionless variables)

𝜇𝑠 = log𝜙𝑠 + 𝑝 = log(1 − 2𝜙0), (24a)

𝜇± = log𝜙± + 𝑝 ±𝛷 = log𝜙0. (24b)

The second set of equalities in Eqs. (24) arises from matching to the far field as 𝑧→ ∞. The quantity 𝜙0 = 𝜈𝑐0 is the salt fraction in
the far field. The axial stress in the bath is

𝑇 = −𝑝 + 1 𝛽2 ( 𝜕𝛷)2
. (25)
10
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From the axial stress balance 𝜕𝑇𝑎∕𝜕𝑧 = 0, we deduce that 𝑇𝑎(𝑧, 𝑡) ≡ 0, which implies that the bath pressure simply balances
he Maxwell stress. Re-arranging (25) leads to an expression for the pressure which can be substituted into (24) to obtain the
olume fractions of ions. Integrating once the Poisson equation for the voltage (Eq. (20c)), we obtain an equation for the electric
isplacement

−𝛽 𝜕𝛷
𝜕𝑧

=
√

2 log(1 + 2𝜙0(cosh𝛷 − 1)). (26)

Solving (26) is not necessary as it is possible to obtain a self-contained problem for the gel, as we now describe.
The non-dimensional equations for the gel consist of evolution equations for the volume fractions of mobile species given by

𝜕𝜙𝑚
𝜕𝑡

+ 𝜕
𝜕𝑧

(

𝜙𝑚𝑣𝑛
)

= −
𝜕𝑗𝑚
𝜕𝑧

. (27)

he velocity of the polymer network and the diffusive fluxes can be expressed as

𝑣𝑛 = −
∑

𝑚∈M
𝑗𝑚, 𝑗𝑠 = −𝑘(𝐽 )

∑

𝑚∈M
𝜙𝑚

𝜕𝜇𝑚
𝜕𝑧

, 𝑗± = −±𝜙±
𝜕𝜇±
𝜕𝑧

+
𝜙±

𝜙𝑠
𝑗𝑠, (28)

where 𝑘(𝐽 ) = 𝐽 𝜃 is the dimensionless permeability of the gel. The chemical potentials of the mobile species are

𝜇𝑠 = log𝜙𝑠 + 𝜒𝐽−1(1 − 𝜙𝑠) + 𝐽−1 + 𝑝 − 𝜔2 𝜕
2𝜙𝑠
𝜕𝑧2

, (29a)

𝜇± = log𝜙± + 𝐽−1(1 − 𝜒𝜙𝑠) + 𝑝 ±𝛷. (29b)

The axial stress in the gel, 𝑇𝑎, is equal to a constant which must be zero in order to match the axial stress of the bath at the free
surface. Thus, by setting 𝑇𝑎(𝑧, 𝑡) = 0, we find that the pressure in the gel is

𝑝 = 𝐽 − 𝐽−1 + 1
2
𝛽2



( 𝜕𝛷
𝜕𝑧

)2
+ 𝜔2



[

𝜙𝑠
𝜕2𝜙𝑠
𝜕𝑧2

− 1
2

(

𝜕𝜙𝑠
𝜕𝑧

)2
]

. (30)

Finally, the Poisson equation (17d), for the electric potential is given by

−𝛽2 𝜕
2𝛷
𝜕𝑧2

= 𝜙+ − 𝜙− +
𝛼𝑓
𝐽
. (31)

Closing the one-dimensional model requires specification of boundary conditions at the substrate and gel-bath interface along
ith initial conditions. The substrate is taken to be electrically insulated and impermeable. In addition, we assume the micro-stresses

o vanish at the substrate. Therefore, the corresponding boundary conditions at the substrate are given by

𝜕𝛷
𝜕𝑧

= 0, 𝑗𝑚 = 0,
𝜕𝜙𝑠
𝜕𝑧

= 0; 𝑧 = 0. (32)

At the gel-bath interface, imposing continuity of the chemical potentials and the micro-stresses leads to

𝜇𝑠 = log(1 − 2𝜙0), 𝜇± = log𝜙0,
𝜕𝜙𝑠
𝜕𝑧

= 0; 𝑧 = ℎ(𝑡). (33)

Continuity of the electric potential and the electric displacement generally leads to a coupling between the gel and bath models.
However, (26) provides an expression for the electric displacement in the bath. Thus, by evaluating (26) at 𝑧 = ℎ(𝑡) and using the
ontinuity of electric potentials, a nonlinear boundary condition for the electric displacement of the gel is obtained:

−𝛽 𝜕𝛷
𝜕𝑧

=
√

2 log
(

1 + 𝜙0(cosh𝛷 − 1)
)

, 𝑧 = ℎ(𝑡). (34)

An integral constraint that determines the position of the free surface ℎ(𝑡) can be found by integrating the kinematic relation
𝐽−1 = 𝜕𝑋3∕𝜕𝑧 over the length of the gel and using the boundary conditions 𝑋3(0, 𝑡) = 0 and 𝑋3(ℎ(𝑡), 𝑡) = 1, which results in

1 = ∫

ℎ(𝑡)

0

1
𝐽 (𝑧, 𝑡)

d𝑧. (35)

The initial conditions for the gel model are taken to be homogeneous equilibrium solutions that are numerically obtained for a given
salt fraction in the bath 𝜙0, following the approach outlined in Appendix C. The evolution of the system towards a new equilibrium
state is initiated by a sudden change in 𝜙0.

5.1.1. Parameter estimation
The non-dimensional parameters appearing in the reduced model can be estimated using the representative values of the physical

parameters given in Table 1. The diffusion ratios ± = 𝐷0
±∕𝐷

0
𝑠 ≃ 10 are large, indicating that ionic diffusion is fast relative to solvent

diffusion. The Debye length is 𝐿𝐷 ≃ 10−10 m, although this is likely to underestimate the thickness of the electric double layer by
not accounting for the small volume fractions of ions. For millimetre-sized gels, the corresponding value of 𝛽 is 10−7. The value of
𝜔 is more difficult to estimate due to uncertainties in the Kuhn length. Wu et al. (2012) estimate that 𝐿𝐾 ∼ 10−9 m, which results

−6
11

in 𝜔 being on the order of 10 .
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Table 1
Physical parameters used in the full model (17) and characteristic length scales of the problem.

Meaning Typical value(s) Source

𝑘𝐵 Boltzmann’s constant 1.38 × 10−23 J K−1

𝑇 Temperature 298 K
𝑒 Elementary charge 1.602 × 10−19 C
𝜖 Absolute permittivity of bath and gel (based on water) 7 × 10−10 F m−1

𝜈 Volume per molecule of mobile species 10−28 m3 Yu et al. (2017)
𝐷0
𝑖 Diffusivity of mobile ions in pure solvent 10−9 m2 s−1 Sherwood et al. (1975)

𝐷𝑖 Diffusivity of mobile ions in gel 𝐷𝑖 = 𝐷0
𝑖

𝑘 Hydraulic permeability of solvent in the network (𝐷0
𝑠∕𝑘𝐵𝑇 )𝜙

−𝜃
𝑛

𝜃 Exponent in permeability law 0 Hennessy et al. (2020)
𝐷0
𝑠 Diffusivity of the solvent in the gel 𝐷0

𝑠 = 0.1𝐷0
𝑖 Drozdov et al. (2016b)

𝜒 Flory interaction parameter 0.1–2.5
𝐶𝑓 Concentration of fixed charges in the dry gel 𝜈𝐶𝑓 ∼ 0.01–0.5
𝐺 Shear modulus 104–105 Pa
𝛾 Interface stiffness parameter 𝑘𝐵𝑇 𝜈𝐿2

𝐾 Wu et al. (2012)
𝐿 Typical length of a gel 0.001 m
𝐿𝐾 Kuhn length ∼10−9 m Wu et al. (2012)
𝐿𝐷 Width of the electric double layer (Debye length) 𝐿𝐷 =

√

𝜖𝑘𝐵𝑇 𝜈∕𝑒2∼10−10 m

5.1.2. The electroneutral reduction
The smallness of the parameter 𝛽 = 𝐿𝐷∕𝐿 suggests that the one-dimensional model (27)–(35) can be simplified by taking the

lectroneutral limit, which is commonly invoked in modelling studies of polyelectrolyte gels. Physically, the electroneutral limit
xploits the small width of the electric double layer, 𝐿𝐷, relative to the typical dimensions of the gel, 𝐿. Thus, taking the limit
𝛽 = 𝐿𝐷∕𝐿 → 0 collapses the electric double layer to a region of zero thickness and results in the electric potential becoming
discontinuous across the gel-bath interface.

The additional length scale 𝐿𝐾 in the phase-field model leads to multiple ways in which the electroneutral limit can be taken.
If the Kuhn length 𝐿𝐾 and the Debye length 𝐿𝐷 are commensurate, then the internal interfaces created by phase separation are
sufficiently thin to trigger the formation of electric double layers. In this case, taking the electroneutral limit would result in voltage
discontinuities within the gel that must be explicitly tracked by introducing moving boundaries. However, if the Kuhn length is
much larger than the Debye length, 𝐿𝐾 ≫ 𝐿𝐷, then phase separation does not trigger the formation of internal electric double
layers. In this case, the electroneutral limit leads to a model for an electrically neutral gel with a smoothly varying voltage across
internal interfaces.

A detailed asymptotic analysis of the full three-dimensional gel-bath model (Hennessy et al., 2022) revealed that all previous
modelling studies which invoke the electroneutral limit implicitly assume that 𝐿𝐷 ≪ 𝐿𝐾 . Although the estimates of the Debye and
Kuhn lengths in Section 5.1.1 cast doubt on the validity of this assumption, it remains useful when taking the electroneutral limit,
as the resulting model offers significant computational advantages compared to the case when 𝐿𝐷 ≃ 𝐿𝐾 . Thus, we will utilise the
electroneutral model in the limit 𝐿𝐷 ≪ 𝐿𝐾 when studying the volume phase transition, which can be obtained from (27)–(35)
by setting the left-hand side of (31) to zero, neglecting the 𝑂(𝛽2) contributions from the Maxwell stress in the pressure (30), and
replacing the boundary condition (34) with

𝛷 = 1
2
log

(

𝜙−
𝜙+

)

, 𝑧 = ℎ(𝑡). (36)

Full details can be found in Hennessy et al. (2022).

5.2. The dynamics of the volume phase transition in electroneutral gels

The one-dimensional electroneutral model described in Section 5.1.2 for the case 𝐿𝐷 ≪ 𝐿𝐾 is used to explore the dynamics of
the volume phase transition. The resulting equations are numerically solved using the transformation 𝑍 = 𝑧∕ℎ(𝑡) to fix the domain,
finite elements for the spatial discretisation, and a semi-implicit time-stepping method for advancing the equations in time. The
code has been implemented using the open-source computing platform FEniCS (Logg et al., 2012).

We first consider the volume phase transition discussed by Yu et al. (2017), who observe good agreement between their free-
swelling equilibrium solutions and the experiments by Ohmine and Tanaka (1982). In particular, their theory captures the parameter
values for which a phase transition occurs. These are, in our notation, 0.7 < 𝜒 < 1.55,  = 1.09× 10−3, 0.02 < 𝛼𝑓 < 0.1, 0 < 𝜙0 < 0.06.

herefore, we fix 𝜒 = 0.95,  = 10−4, and 𝛼𝑓 = 0.1 in the model. Our non-dimensional shear modulus  is smaller than the
eported value to compensate for the shift in the location of the volume phase transition in constrained swelling scenarios. Numerical
ontinuation is then used to track the evolution of the homogeneous equilibria with 𝜙0 and to locate where the volume phase
ransition occurs. For this set of parameters, the equilibria trace out an ‘S’-shaped curve that contains an interval where three
olutions simultaneously exist for a given value of 𝜙0; see Fig. 4(a). The two solutions corresponding to the largest and smallest
alues of 𝜙𝑠 are stable (Celora et al., 2021); hence, the system exhibits a window of bistability. In the dynamic simulations, we

+
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hoose the initial state to be on the right of the bistable region by setting 𝜙0 = 0.01. Then, at time 𝑡 = 0 , the ion concentration in
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Fig. 4. The volume phase transition in a swelling polyelectrolyte gel triggered by decreasing the salt fraction in the bath 𝜙0. The parameter values are  = 10−4,
= 0.95, and 𝛼𝑓 = 0.1. (a) The equilibrium solvent fraction in the gel 𝜙𝑠 as a function of 𝜙0. We highlight the initial and final values of 𝜙𝑠 as orange squares.

(b) Evolution of the size of the gel; the pink dots indicate the time points at which the snapshots (d)–(f) are taken. (c) Evolution of the location of the front
swelling front 𝑧𝐹 , where 𝑧𝐹 is implicitly defined as 𝜙𝑠(𝑧𝐹 (𝑡), 𝑡) = 0.8. We find that 𝑧𝐹 (0) − 𝑧𝐹 ∝

√

𝑡 − 𝑡𝑐 (see comparison with black dotted line). (d)–(f) Snapshots
f the solvent chemical potential 𝜇𝑠 and the gel composition showing volume fractions of solvent 𝜙𝑠 (dark blue), network 𝜙𝑛 (light blue), and free ions 𝜙+ +𝜙−

(yellow). The vertical orange line indicates the location of the front 𝑧𝐹 .

the bath is suddenly decreased to 𝜙0 = 0.0032 so as to drive the gel to the swollen state just to the left of the bistable region (see
the orange square labelled 𝑡 ≫ 1), which induces a volume phase transition.

By tracking the evolution of the gel composition, our model reveals that the phase transition occurs via the formation of a
swelling front that nucleates at the free surface of the gel and propagates into the bulk; see Figs. 4(d)–(f). The onset of the phase
transition when 𝑡 ≃ 750 coincides with a marked increase in the rate of expansion of the gel and divides the evolution of the gel
thickness ℎ(𝑡) into two distinct regimes, as shown in Fig. 4(b). Horkay (2021) experimentally observed the same phenomena when
measuring the radius of spherical polyelectrolyte gels during their volume phase transition. The insights from our model can explain
the physical origin of these distinct regimes of swelling dynamics. In the first swelling regime, before the volume phase transition
sets in (𝑡 < 750), the influx of solvent is driven by the difference in the solvent chemical potential at the free surface and the
substrate, which gives rise to smooth 𝜇𝑠 gradients in the gel. As time increases, the difference diminishes and the gel settles into a
quasi-equilibrium state with an approximately homogeneous composition; see Fig. 4(d). The onset of the phase transition (𝑡 ≃ 750)
rapidly divides the gel into two layers that are separated by the swelling front. The solvent chemical potential in the weakly swollen
layer adjacent to the substrate quickly converges to a constant and uniform value, shown in Figs. 4(e)–(f). A gradient in the solvent
chemical potential consequently develops in the highly swollen layer to ensure continuity across the swelling front and the free
surface. This gradient, in turn, drives the system away from equilibrium and is responsible for the second swelling regime.

In the second swelling regime, the expansion of the gel and the propagation of the swelling front is sustained by the difference in
solvent chemical potential between the free surface and the swelling front. The precise value of the chemical potential at the swelling
front is determined from a Maxwell condition that captures the complex interplay between electrochemical and mechanical effects
in the gel (Celora et al., 2021). However, the position of the swelling front 𝑧𝐹 (𝑡) retains a diffusive scaling law 𝑧𝐹 (0)−𝑧𝐹 (𝑡) ∝

√

𝑡 − 𝑡𝑐
predicted for non-ionic gels by Doi (2009), where 𝑡𝑐 denotes the time at which the phase transition occurs; see Fig. 4(c). Thus, while
he electric interactions between charged species influence the properties of the Maxwell point, evidently they do not play a major
ole in controlling the kinetics of front propagation. Experimentally measuring the time evolution of swelling fronts would provide
n ideal opportunity to quantitatively validate the model along with these hypotheses.

The model also provides a means of investigating how polyelectrolyte gels collapse (or deswell) during the volume phase
ransition. To study the dynamics of collapse, we keep the parameter values fixed at 𝜒 = 0.95,  = 10−4, and 𝛼𝑓 = 0.1. The equilibria

are therefore the same as those shown in Fig. 4(a). However, we now assume that the gel is initially in equilibrium with a bath that
has a salt fraction of 𝜙0 = 0.0032, which lies to the left of the region of bistability. The volume phase transition is then triggered by
increasing the salt content of the bath to a value of 𝜙 that lies to the right of the bistable region; see Fig. 5(a).
13
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Fig. 5. The two routes to gel collapse. The volume phase transition is induced by increasing the salt fraction in the bath 𝜙0. The parameter values are  = 10−4,
𝜒 = 0.95, and 𝛼𝑓 = 0.1. The gel is initially in equilibrium with a bath with 𝜙0 = 0.0032. At time 𝑡 = 0, 𝜙0 is decreased to 𝜙0 = 0.0042 (route 1) or 𝜙0 = 0.01 (route
2). (a) The equilibrium solvent fraction in the gel 𝜙𝑠 as a function of 𝜙0. We highlight the initial and final gel solvent fractions as squares. (b) Evolution of the
size of the gel ℎ(𝑡). (c) Evolution of the location of the depletion front 𝑧𝐹 (𝑡) defined by 𝜙𝑠(𝑧𝐹 (𝑡), 𝑡) = 0.8. For the scenario ‘‘route 2’’, where multiple interfaces
are presents, we denote by front the right-most interface. We use here a logarithmic scale in time to show the non-monotonic behaviour of the orange curve.
(d)–(g): Snapshots of the gel composition during ‘‘route 1’’ of collapse. (h)–(k): Snapshots of the gel composition during ‘‘route 2’’ of collapse. The vertical orange
line indicated the location of the front 𝑧𝐹 .

Our dynamic simulations show that, in contrast to the swelling case, the collapse of a gel can occur via two distinct routes. The
first route to collapse occurs when the salt fraction in the bath is increased to 𝜙0 = 0.0042. In this case, the collapse dynamics are
analogous to the swelling dynamics illustrated in Fig. 4. In particular, the volume phase transition occurs through the formation of
a deswelling front that invades the gel; see Fig. 5(c)–(f). The emergence of the front also leads to two distinct deswelling regimes
that can be identified in the evolution of the gel size ℎ(𝑡), as seen in Fig. 5(b). When the salt fraction is increased from 𝜙0 = 0.0032
to 𝜙0 = 0.01, the second route to collapse occurs, which is distinguished by the onset of spinodal decomposition in the bulk of the
gel during front propagation; see Fig. 5(h)–(k). The new phases that spontaneously emerge within the gel continually coarsen until
the front has invaded the entirety of the gel and the phase transition is complete. During the second route to collapse, the decrease
in the gel size ℎ(𝑡) is smooth (see Fig. 5(b)) and it is not possible to identify the point at which front formation is initiated. However,
the evolution of the deswelling front 𝑧𝐹 (𝑡) is more erratic in the second route compared to the first (see Fig. 5(c)) because of the
interactions between the front and the localised collapsed phases that have formed within the gel.

We have investigated the rationale behind the two routes to collapse by carrying out a detailed linear stability analysis of the
one-dimensional electroneutral model and constructing the associated phase diagrams in Celora et al. (2021). In summary, we find
that, during the first route to collapse, the system initially settles into a configuration set by the Maxwell point, which lies outside of
the (unstable) spinodal region of the phase diagram. The two regions that form within the gel during the volume phase transition,
namely the weakly swollen region adjacent to the substrate and the highly swollen region adjacent to the free surface, are therefore
14
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Fig. 6. Time evolution and spatial distribution of the lateral stresses 𝑇𝓁 during ‘‘route 2’’ of the volume phase transition. The stress 𝑇𝓁 has been computed using
(37) with the results of the simulations shown in Fig. 5(h)–(k).

stable against compositional fluctuations. During the second route to collapse, the increase in salt concentration in the bath is
sufficient to drive the system into the spinodal region, which initiates phase separation within the bulk of the gel.

Experimental studies often report that morphological changes occur during gel collapse, resulting in, for example, peristaltic
patterns in cylindrical gels or blisters on the gel surface (Matsuo and Tanaka, 1992; Shen et al., 2019; Shibayama and Nagai,
1999). The occurrence of spinodal decomposition during collapse provides a mechanism for morphological change by driving the
gel towards a state of non-uniform stress. For the one-dimensional scenarios considered here, the only non-trivial components of
stress are the lateral (transverse) stresses, which can be expressed in non-dimensional form as

𝑇𝓁(𝑡, 𝑧) = −
(

𝐽 − 1
𝐽

)

+ 𝜔2



(

𝜕𝜙𝑠
𝜕𝑧

)2
. (37)

The two terms on the right-hand side of (37) represent the contributions from the elastic and Korteweg stresses, respectively. The
Maxwell stresses have been neglected as they become vanishingly small in the electroneutral limit (𝛽 → 0). The elastic component
of the stress arises from the lateral confinement of the gel and is always compressive because the gel exists only in a swollen
state (𝐽 > 1). The contribution from the Korteweg stress is always tensile and thus acts as a stabilising mechanism against elastic
instability.

Using the simulation results shown in Fig. 5(h)–(k), we can track the spatio-temporal evolution of the lateral stress during gel
collapse. The initiation of spinodal decomposition has a three-fold impact on the stress distribution within the gel. Firstly, it leads
to an overall increase in the compressive stress experienced by the bulk of the gel (Fig. 6). This is due to the bulk of the gel tending
towards a state of larger solvent content; see Fig. 5(h)–(k). Secondly, spinodal decomposition locally relaxes the compression of
the gel at isolated regions that are depleted of solvent. Thirdly, the formation of thin diffuse interfaces between solvent-rich and
solvent-poor phases leads to large tensile stresses where the Korteweg stress dominates the compressive elastic stress. As the internal
structure of the gel changes due to thermodynamic coarsening, the stress profile evolves as well, and eventually the gel settles into
a homogeneous state of compression that is reduced relative to the initial configuration.

The tensile stresses that arise in diffuse interfaces are equivalent to surface tensions that occur at sharp interfaces and are likely
to play a strong role in pattern formation in higher-dimensional settings. For instance, Barrière et al. (1996) explained the peristaltic
patterns that occur during the collapse of cylindrical gels as originating from a dense skin that forms at the gel surface which is under
tension. By modelling the dense skin as a surface tension at the free surface of the cylinder, they were able to qualitatively reproduce
the patterns observed experimentally by Matsuo and Tanaka (1992). In the context of our one-dimensional simulations, the dense
skin discussed by Barrière et al. can be associated with the deswollen layer that forms upstream of the propagating deswelling front;
see Fig. 5(h)–(k). In our case, the deswollen layer remains under compression; however, the diffuse interface at the deswelling front
naturally gives rise to the tensile stress thought to be responsible for surface patterning. It is particularly interesting that Matsuo and
Tanaka attributed the various surface patterns seen in their experiments to phase separation in the bulk of the gel, an explanation
that has mainly been superseded by the capillary-driven instability proposed by Barrière et al. Our numerical simulations, however,
indicate that phase separation and skin formation can occur simultaneously and thus suggest there is still more to be learnt about
the origin of surface patterns during gel collapse.

Altering the parameter values leads to qualitatively similar modes of pattern formation in the gel. However, the bulk response of
the gel, as characterised by the evolution of its thickness ℎ(𝑡), can exhibit non-monotonic kinetics that differ from those observed in
Figs. 4 and 5. Motivated by the study of Wu et al. (2010), we consider a gel with parameter values  = 10−3, 𝜒 = 1.75, and 𝛼𝑓 = 0.25
that is initially in equilibrium with a bath that has a salt fraction of 𝜙0 = 10−4. The volume phase transition is then triggered by
increasing 𝜙0 and 𝜒 to 𝜙0 = 0.05 and 𝜒 = 2.4, which leads to front propagation and spinodal decomposition; see Fig. 7(a)–(c).
In this case, the gel undergoes a temporary period of swelling before ultimately shrinking and tending towards the solvent-poor
collapsed state, as shown in Fig. 7(d). This non-monotonic behaviour results from the fast diffusion of ions into the gel relative to
solvent diffusion. On short time scales, there is a rapid influx of cations while the total solvent content remains constant, leading
15

to an increase in gel volume. However, on longer time scales, solvent is ejected from the gel leading to its collapse. Zhang et al.
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Fig. 7. Spinodal decomposition in the bulk of the gel leads to a non-trivial distribution of ions, with cations becoming most concentrated at internal interfaces.
(a)–(c): The volume fractions of cations 𝜙+ and solvent 𝜙𝑠. (d): The size of the gel ℎ(𝑡). Labels denote the time of the snapshots shown in panels (a)–(c). The
arameters are set to  = 10−3, 𝛼𝑓 = 0.25. The gel is initially in equilibrium with the bath with salt fraction 𝜙0 = 10−4 and 𝜒 = 1.75 (𝜙𝑠(𝑍, 0) ≡ 0.8622 and
+(𝑍, 0) ≡ 4.92 × 10−4). At time 𝑡 = 0+, 𝜙0 is increased to 0.05 and 𝜒 is increased to 2.4. The spatial variable 𝑍 is defined as 𝑍 = 𝑧∕ℎ(𝑡).

2020) also observed a non-monotonic evolution of the gel size in their numerical simulations. However, these authors attribute this
henomenon to Stefan–Maxwell cross-diffusion rather than the large separation of diffusive time scales between mobile species.

The onset of phase separation is responsible for the formation of non-trivial heterogeneous electronic structures within the gel.
y taking the nominal volume fraction of fixed charges, 𝛼𝑓 , to be positive, we are implicitly assuming the gel is cationic. From
lectroneutrality considerations, it is natural to expect that the largest concentrations of cations are found in the most swollen
hases, as the high solvent content effectively dilutes the positive charges on the polyelectrolyte chains. However, this is not the
ase; the highest concentration of cations are found in the diffuse interfaces that form between the swollen and collapsed phases,
s seen in Fig. 7(a)–(c). The origin of the high interfacial cation concentration can be traced to the Korteweg stress (recall there
re no Maxwell stresses in the electroneutral limit). At the edge of the swollen phases, where 𝜕2𝜙𝑠∕𝜕𝑧2 < 0, the Korteweg stress
s very negative. To ensure a constant value of the chemical potential, the cationic osmotic pressure, 𝛱+ ∼ log𝜙+, must increase
o counteract the negative Korteweg stress, which in turn drives an increase in the volume fraction of cations. Thus, the electronic
tructure within the gel is tightly coupled to the mechanical stresses that arise from phase separation.

.3. Emergence of localised patterns from the electric double layer

In this section, we depart from the electroneutral assumption to investigate the role of the electric double layer in pattern
ormation within the gel. To facilitate resolving the electric double layer, we focus on the dynamics that occur in a thin region near
he gel-bath interface by taking the length of the gel to be 𝐿 = 103𝐿𝐷, leading to 𝛽 = 10−3.

.3.1. Computation and continuation of equilibria
The electric double layer naturally leads to inhomogeneous gel configurations that persist even when equilibrium with the

urrounding bath is established. We use numerical continuation to track how the non-homogeneous equilibrium states of the one-
imensional model (27)–(35) evolve as the salt fraction in the bath 𝜙0 varies. The governing equations are discretised using finite
ifferences and the BifurcationKit (Veltz, 2020) in Julia is employed for the continuation.

We find that the structure of the electric double layer, and hence the structure of the gel, is crucially dependent on the relative
ize of the Kuhn length to the Debye length, the values of which are encoded in the dimensionless parameters 𝜔 and 𝛽. In the
ase when 𝛽 ≪ 𝜔 (equivalent to 𝐿𝐷 ≪ 𝐿𝐾 ), the equilibrium curves qualitatively resemble the predictions of the electro-neutral
heory. In particular, the size of the gel, ℎ, increases as the salt fraction in the bath 𝜙0 decreases; see Fig. 8(a.1). Moreover, the gel
s homogeneous and thus electrically neutral except in a thin layer near the free boundary at 𝑧 = ℎ, as seen in Fig. 8(a.2)-(a.4). As
0 decreases, the width of the electric double layer decreases. These predictions agree with the standard description of the electric
ouble layer in the literature on polyelectrolyte gels (Hong et al., 2010; Yu et al., 2017).

However, the equilibrium curves change dramatically when 𝛽 and 𝜔 are of comparable (small) magnitude (Fig. 8(b)). For
ufficiently large values of 𝜙0, there is a unique equilibrium state for the gel characterised by a homogeneous bulk and localised thin
ayer near the gel-bath interface. For intermediate values of 𝜙0 (≈ 10−4), the equilibrium curve is characterised by a multi-stable
egion delimited by a series of saddle–node (or fold) bifurcations that are clearly visible in Fig. 8(b.1). Here we expect linearly
table and unstable solution to alternate in order of increasing ℎ. As shown in Figs. 8(b.4)-(b.6), the equilibrium solutions lying in
he multi-stability region of the equilibrium curves are characterised by the coexistence of two domains in the gel: a homogeneous
ulk and a patterned region characterised by alternating solvent-rich spikes and collapsed dips. As the equilibrium gel thickness ℎ
ncreases for a fixed value of 𝜙0, the width of the patterned domain increases until it invades the entire gel. This family of solutions
hen persists as we decrease 𝜙0; see Fig. 8(b.7), which corresponds to the green dot in Fig. 8(b.1).

For a similar range of parameter values, equilibrium nanostructures have been discussed in Wu et al. (2012). Here a periodic
omain was considered (with no bath) and homogeneous solutions were always present in the model. Our results show that such
16

anoscale structures can also occur for gels in contact with an ionic bath and can be spatially localised. A similar coexistence of



Journal of the Mechanics and Physics of Solids 160 (2022) 104771G.L. Celora et al.
Fig. 8. Non-homogeneous steady states obtained numerically by continuation for 𝛽 = 5 × 10−3 and (a) much larger or (b) comparable values for 𝜔, as stated at
the top of each column. Panels in the top row for each case show the gel thickness as a function of the ion concentration 𝜙0 in the bath. The panels in the
bottom row show the gel composition for several values of 𝜙0, which are identified by coloured dots: 𝜙0 = 10−2.45 (purple), 𝜙0 = 10−3.1 (magenta) and 𝜙0 = 10−4.45

(green). For the magenta dots in (b), solutions with more spikes correspond to dots with higher thickness ℎ. The other parameters are  = 5 × 10−4, 𝜒 = 0.8 and
𝛼𝑓 = 0.05.

homogeneous and patterned domains has been observed in other physical systems (Gavish et al., 2017), such as copolymeric sub-
stances and ionic liquids (Gavish and Yochelis, 2016). In these systems, a similar interplay of phase separation and electrochemistry
can give rise to such exciting structures which can be investigated mathematically in the context of homoclinic snaking.

In Fig. 9, we characterise the equilibrium solutions corresponding to 𝜙0 = 10−4.5 (see green dots in Fig. 8). We refer to the
solutions in Fig. 9(a) and Fig. 9(b) respectively as electroneutral and phase separated gels. In Fig. 9(a.1), we see that the net charge,
𝑞, is non-zero in the electric double layer while the bulk of the gel is electroneutral. In the phase separated gel, Fig. 9(b.1), we find
instead that the bulk of the gel consists of charged domains with a spatially periodic charge distribution. Integrating over the spatial
domain, we find that the total charge in the electroneutral and phase separated gels are similar (≈ 5 × 10−4). This suggests that in
the phase separated region, despite the point-wise breakdown of charge neutrality, the spatial arrangement of the charges is such
that on average the bulk of the gel is electroneutral.

In Fig. 9(a.2) and Fig. 9(b.2), we decompose the chemical potential into its individual contributions. For the homogeneous gel
(panel (a.2)), in the bulk of the gel the thermodynamic pressure (𝑝) and the osmotic pressure, 𝛱𝑠 (see definition in caption Fig. 9),
balance. However, near the free boundary, 𝑝 and 𝛱𝑠 rapidly increase, and together contribute to the formation of a steep gradient in
the solvent volume fraction across the double layer. However, the opposing effect of the interfacial energy contribution, −𝜔2𝜕𝑧𝑧𝜙𝑠,
stabilises the systems and ensures the solvent volume fraction transitions smoothly across the double layer. As 𝜔 decreases, steeper
gradients form in the double layer, which act as a nucleation mechanism to drive phase separation in the gel bulk, where the
complex interplay between mechanics, electrostatics, and thermodynamics gives rise to periodic stable patterns.

To conclude, we focus on the axial stress distribution in the gel; see Fig. 9(a.3) and (b.3). In the electroneutral case, the double
layer is characterised by large tensile stresses, where the dominant contribution is associated to the axial Korteweg stress tensor 𝑇𝐾 .
In the phase separated gel, the tensile stresses in the double layer decrease and we find the dominant contribution is now from the
Maxwell stresses 𝑇 . As we move away from the gel-bath interface, the formation of internal interfaces and double layers result
17
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Fig. 9. Characterisation of the stationary solutions with 𝜙0 = 10−4.45: (a) 𝜔 = 0.04, corresponding to Fig. 8(a.4); and (b) 𝜔 = 0.008, corresponding to Fig. 8(b.7).
The spatial variable is rescaled as 𝑍 = 𝑧∕ℎ, 𝑍 ∈ [0, 1]. In panels (a.1) and (b.1) we illustrate the charge distribution 𝑎 across the gel. Away from the interface
the solution either asymptotes to a constant value or to a periodic solution. We therefore focus only on the yellow area highlighted near the interface which is
representative of what happens away from the free gel-bath interface. In panels (a.2) and (b.2) we illustrate the contributions to the solvent chemical potential,
𝑝 is the pressure (Eq. (30)), 𝛱𝑠 is the osmotic pressure (𝛱𝑠 = log(𝜙𝑠) + 𝐽−1(𝜒(1 − 𝜙𝑠) + 1)) and −𝜔2𝜕𝑧𝑧𝜙𝑠 is the contribution due to the interfacial energy. In
panels (a.3) and (a.4) we illustrate the spatial distribution of the axial Maxwell (𝑇𝑀 ), Korteweg (𝑇𝐾 ) and elastic (𝑇𝑒) stresses. All other parameters are taken as
in Fig. 8.

in a non trivial spatial distribution of the axial stresses whereby the dominant contribution comes from the Kortweg and elastic
(𝑇𝐸) stresses. The Korteweg stress 𝑇𝐾 alternates between being negative (compressive) in the highly swollen domains (or spikes)
and positive in the poorly swollen regions. The elastic stress 𝑇𝐸 instead is always positive but is maximum in the highly swollen
regions of the gel. We see that, despite the formation of internal electrical double layers, the contribution of the Maxwell stresses
is negligible.

5.3.2. Dynamic simulations: transitions between equilibria
Numerically solving the time-dependent model given by (27)–(35) provides a means of exploring how the system jumps between

the different stable equilibria that are observed in Fig. 8(b.1). We use the same numerical methods as in Section 5.1 to simulate the
model. The parameter values are taken to be those specified in Fig. 8(b) and we choose 𝜙0 = 10−3.5 so as to lie in the region where
multiple stable equilibrium solutions are expected.

We first set the initial condition to be the equilibrium state computed for 𝜙0 = 10−3.5, corresponding to the profile like that
shown in panel (b.3) of Fig. 8. We then smoothly decrease at a specific time 𝑡1 > 0 the fraction in the bath 𝜙0 to a value of 10−4.45,
where the gel only admits a phase separated spike-and-dip pattern that extends across the entire gel; see Fig. 8(b). As shown in
panels (c)–(d) of Fig. 10, the gel starts to phase separate by the creation of localised spikes (highly swollen regions). In contrast
to spinodal decomposition, the formation of spikes is sequential and controlled, whereby each new spike appears at the boundary
between the phase-separated domain of the gel and the inner homogeneous gel bulk. When at a time 𝑡2 > 𝑡1, the ion volume fraction
in the bath 𝜙0 is increased back to its original value 𝜙0 = 10−3.5, the gel relaxes to a non-homogeneous state that differs from its
initial ‘electroneutral’ state and has larger thickness; see Fig. 10(b). Interestingly, as soon as we increase 𝜙0, no new spikes form
in the gel, and those present at time 𝑡 = 𝑡2 are locked in. Consequently, the number of spikes in the gel at its final equilibrium
state is set by the number of spikes attained by time 𝑡2. By choosing smaller or larger values of 𝑡2, we can therefore control the
number of spikes (and hence the thickness of the gel ℎ) that characterise the final equilibrium state of the gel. These results hint
at the possibility of observing such patterned states experimentally; this can be done indirectly by measuring the size ℎ of the gel,
or directly by observing differences in the appearance of the gel close to the free boundary and further away from it. Furthermore
our simulations suggest that different patterned states can be selected by appropriately choosing the conditions of the surrounding
18
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Fig. 10. Numerical simulations illustrating how the interior structure of the gel can be changed by changing 𝜙0 in the bath following the procedure outlined
n the main text. All other parameters are as in Fig. 8(b) with 𝑡1 = 100 and 𝑡2 = 1350. The final state is close to the one represented in panel (b.5) in Fig. 8.

. Conclusions and outlook

We have derived thermodynamically consistent models for a polyelectrolyte gel and the surrounding salt bath. The phase-field
odel of the gel is distinguished by its ability to capture the spontaneous formation and subsequent evolution of internal interfaces

hat appear due to phase separation. We find that the internal structure of the gel is controlled by a novel interplay between the
ebye and Kuhn lengths, 𝐿𝐷 and 𝐿𝐾 , which characterise the width of electric double layers and diffuse internal interfaces.

In the case of a small Debye length, 𝐿𝐷 ≪ 𝐿𝐾 , the bulk of the gel remains electrically neutral, even after the onset of phase
eparation. However, the ions are non-uniformly distributed throughout the gel, with the cations preferentially accumulating at
iffuse interfaces due to the Korteweg stress. We show that the volume phase transition occurs in electro-neutral gels via the
ormation of a propagating front that may be coupled to the onset of spinodal decomposition within the bulk. The formation of
he front can be detected in macroscopic measurements as a sudden change in the gel size. The jump in transverse stress across
he propagating front due to different degrees of swelling could also trigger a mechanical instability that manifests as detectable
urface patterns. Similarly, our work confirms that phase separation can occur within the gel during its collapse, which was claimed
o be the driving force behind the formation of peristaltic patterns in cylindrical gels by Matsuo and Tanaka (1992). The phase-field
odel presented here is well suited for use in higher-dimensional studies that explore morphological changes within polyelectrolyte

els and how these can be harnessed in emerging applications.
When the Debye and Kuhn lengths are commensurate, 𝐿𝐷 ≃ 𝐿𝐾 , we observe a new mode of self-organisation within the gel

that is driven by the electric double layer at the gel-bath interface. Thus, in contrast to previous modelling studies, we find that
the electric double layer plays an active and key role in the gel dynamics. The competition between the Kuhn and Debye lengths
leads to the emergence of a stable, multi-layered structure in the gel with alternating positively and negatively charged phases.
While electro-neutrality is locally violated at each point in the gel, it is recovered when spatially averaging over the gel volume.
Mathematically, the multi-layered structure arises from the equilibrium states undergoing a cascade of bifurcations known in the
literature in other contexts as homoclinic snaking (Gavish and Yochelis, 2016). It produces localised patterns that emanate from the
electric double layer. Dynamic simulations illustrate how, by manipulating the salt fraction in the bath, it is possible to control
the internal composition of the gel and drive it towards a multitude of stable configurations. Although the emerging patterns are
expected to have small length scales, they can be indirectly detected from the gel size, thus providing a means to experimentally
explore the results reported here. Our findings also have important consequences for the analysis and interpretation of experimental
data, which is often based on fitting solutions obtained under the assumption that the polyelectrolyte gel is homogeneous and
electrically neutral. When the Kuhn and Debye lengths are similar in size, which is roughly the case according to our parameter
estimates, then neither of these assumptions can be valid.

While experiments and simulations have shown rich spatio-temporal phenomena of polyelectrolyte gels, and have established
their sensitivity to undergo dramatic changes in their shape and state in response to environmental variations, an in-depth
understanding of the complex electrochemical and hydrodynamic interactions of various species on multiple time and spatial
scales is still necessary to answer fundamental questions on the observed structural phenomena and control pattern formation. The
model proposed here can open the doors to a broad range of theoretical studies to, for instance, determine whether experimentally
observed structures are in equilibrium or long-lived non-equilibrium states, and which thermodynamic conditions trigger the onset
19

of structural transitions within these complex materials.
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ppendix A. Model derivation for the gel

.1. Derivation of the diffusive fluxes in the gel

Following Zhang et al. (2020), we use a Stefan–Maxwell approach (Stefan, 1871; Maxwell, 1867) to describe multi-component
iffusive transport in the gel, which correctly captures the hydrodynamic drag (i.e. friction) between different components of the
ixture (Bothe and Druet, 2020). We start from the Eulerian formulation of the reduced energy imbalance inequality (10), which
e write as

∑

𝑚∈M
∇𝜇𝑚 ⋅ 𝒋𝑚 ≤ 0, (A.1)

here ∇ is the spatial gradient and 𝒋𝑚 is the diffusive flux of species 𝑚. In the current configuration, the diffusive fluxes are defined
s 𝒋𝑚 = 𝑐𝑚(𝒗𝑚 − 𝒗𝑛), where 𝑐𝑚 and 𝒗𝑚 are the current concentration and velocity of species 𝑚 and 𝒗𝑛 is the velocity of the polymer

network; see Appendix A.3 for more details. Inequality (A.1) can then be reformulated as

−
∑

𝑚∈M
𝑐𝑚∇𝜇𝑚 ⋅ (𝒗𝑚 − 𝒗𝑛) ≥ 0. (A.2)

We assume that the system is near equilibrium and there is a linear relationship between the gradient of chemical potentials and
the relative velocities 𝒗𝑚 − 𝒗𝑛 so that

−𝑐𝑚∇𝜇𝑚 =
∑

𝛽∈M
𝓁𝑚𝛽 (𝒗𝛽 − 𝒗𝑛), (A.3)

where 𝓁𝑚𝛽 are phenomenological coefficients. Given Eqs. (A.3), the inequality (A.2) can be written as (Rajagopal and Srinivasa, 2004),

∑

𝑚∈M

∑

𝛽∈M
𝓁𝑚𝛽 (𝒗𝛽 − 𝒗𝑛) ⋅ (𝒗𝑚 − 𝒗𝑛) ≥ 0. (A.4)

Inequality (A.4) thermodynamically constraints the coefficients 𝓁𝑚𝛽 to satisfy Onsager reciprocal relations (Onsager, 1931). In the
absence of magnetic effects, the matrix of phenomenological 𝓵 = [𝓁𝑚𝛽 ] must be positive definite for (A.4) to hold.

The phenomenological coefficients 𝓁𝑚𝛽 can be related to drag coefficients, commonly used in mixture theory (Xue et al., 2017a,b),
hat can be estimated experimentally. To do so, we rewrite Eqs. (A.3) in the form

−𝑐𝑠∇𝜇𝑠 =
∑

𝑖∈I
𝑓𝑠𝑖

(

𝒗𝑠 − 𝒗𝑖
)

+ 𝑓𝑠𝑛(𝒗𝑠 − 𝒗𝑛), (A.5a)

−𝑐𝑗∇𝜇𝑗 =
∑

𝑖∈I ,𝑖≠𝑗
𝑓𝑗𝑖

(

𝒗𝑗 − 𝒗𝑖
)

+ 𝑓𝑗𝑠(𝒗𝑗 − 𝒗𝑠) + 𝑓𝑗𝑛(𝒗𝑗 − 𝒗𝑛), 𝑗 ∈ I, (A.5b)

here 𝑓𝑎𝑏 are the drag coefficients capturing the interaction between species 𝑎 and 𝑏. The Onsager reciprocal relations require that
𝑚𝑏 = 𝑓𝑏𝑚. A common assumption in mixture theory is that the solute–solute drag can be neglected so that 𝑓𝑖𝑗 = 0 for 𝑖, 𝑗 ∈ I (Xue
t al., 2017a; Katchalsky and Curran, 1965). The remaining drag coefficients are defined by:

𝑓𝑠𝑛 =
𝜈𝑠𝑐𝑠
𝑘
, 𝑓𝑗𝑠 =

𝑘𝐵𝑇 𝑐𝑗
0
, 𝑓𝑗𝑠 + 𝑓𝑗𝑛 =

𝑘𝐵𝑇 𝑐𝑗
𝐷

, (A.6)
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where 𝑘 is related to the permeability of the solvent in the network, 𝐷0
𝑗 is the diffusion coefficient of the solute 𝑗 pure solution, and

𝑗 is the diffusion coefficient of solute 𝐽 in the gel. For this choice of drag coefficients, the matrix 𝓵 is:

𝓵 =
[

𝐝 −𝒇 𝑠
−𝒇𝑇𝑠 𝑑𝑠

]

, 𝒇 𝑠 =
⎡

⎢

⎢

⎣

𝑓1𝑠
⋮
𝑓𝑁𝑠

⎤

⎥

⎥

⎦

, 𝑑𝑠 =
∑

𝑖
𝑓𝑠𝑖 + 𝑓𝑠𝑛. (A.7)

hus, 𝓵 is a symmetric diagonally dominant matrix with positive diagonal entries and hence positive semi-definite in line with the
nsager reciprocal relations.

Using (A.5)–(A.6), along with the definition of the diffusive fluxes 𝒋𝑚 = 𝑐𝑚(𝒗𝑚 − 𝒗𝑛), we find that

𝒋𝑠 = −
𝐾𝑐𝑠
𝜈𝑠

(

∇𝜇𝑠 +
∑

𝑖∈I

𝐷𝑖

𝐷0
𝑖

𝑐𝑖
𝑐𝑠
∇𝜇𝑖

)

, (A.8a)

𝒋𝑖 = −
𝐷𝑖𝑐𝑖
𝑘𝐵𝑇

∇𝜇𝑖+
𝐷𝑖𝑐𝑖
𝐷0
𝑖 𝑐𝑠

𝒋𝑠, 𝑖 ∈ I, (A.8b)

where the coefficient 𝐾 is defined to be

1
𝐾

= 1
𝑘
+
∑

𝑖∈I

𝑘𝐵𝑇
𝜈𝑠𝐷0

𝑖

(

1 −
𝐷𝑖

𝐷0
𝑖

)

𝑐𝑖
𝑐𝑠
. (A.8c)

Here 𝐾 represents the Darcy hydraulic permeability (over dynamic viscosity) of the gel to the solvent and ionic species, whilst
𝑘 represents the Darcy hydraulic permeability (over dynamic viscosity) to pure solvent. The nominal diffusive fluxes 𝑱𝑚 can be
obtained from the relation 𝑱𝑚 = 𝐽𝗙−1𝒋𝑚 to produce the expressions in Eqs. (15).

.2. Polyelectrolyte gel equations in the reference configuration

The governing equations for the gel written in terms of the reference configuration are given by

𝐽 = 1 +
∑

𝑚∈M
𝜈𝑚𝐶𝑚, (A.9a)

𝜕𝑡𝐶𝑠 + ∇𝑅 ⋅ 𝑱 𝑠 = 0, (A.9b)

𝜕𝑡𝐶𝑖 + ∇𝑅 ⋅ 𝑱 𝑖 = 0, 𝑖 ∈ I, (A.9c)

∇𝑅 ⋅ 𝗦 = 𝟎, (A.9d)

∇𝑅 ⋅𝑯 = 𝑒

(

∑

𝑖∈I
𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓

)

, (A.9e)

where 𝑯 = 𝜖𝐽𝗖−1𝑬, 𝑬 = −∇𝑅𝛷, and 𝗖 = 𝗙𝑇 𝗙. The nominal diffusive fluxes are

𝑱 𝑠 = −𝐾𝗖−1

(

𝐶𝑠∇𝑅𝜇𝑠 +
∑

𝑖

𝐷𝑖

𝐷0
𝑖

𝐶𝑖∇𝑅𝜇𝑖

)

, (A.9f)

𝑱 𝑖 = −
𝐷𝑖
𝑘𝐵𝑇

𝐶𝑖𝗖
−1∇𝑅𝜇𝑖 +

𝐷𝑖

𝐷0
𝑖

𝐶𝑖
𝐶𝑠

𝑱 𝑠, 𝑖 ∈ I. (A.9g)

The micro-stresses are

𝝃𝑠 = 2𝛾1 𝗖−1 ∇𝑅 𝐶𝑠 − 𝛾3 𝗖−1 ∇𝑅 𝐽 , (A.9h)

𝝃𝐽 = 2𝛾2 𝗖−1 ∇𝑅 𝐽 − 𝛾3 𝗖−1 ∇𝑅 𝐶𝑠, (A.9i)

where 𝛾1 = 𝛾∕(2𝐽 ), 𝛾2 = 𝛾𝐶2
𝑠 ∕(2𝐽

3), 𝛾3 = 𝛾𝐶𝑠∕𝐽 2. The chemical potentials are written as

𝜇𝑠 = 𝜇0𝑠 + 𝜈𝑠(𝑝 +𝛱𝑠) + 𝜇𝐺𝑠 , (A.9j)

𝜇𝐺𝑠 = −∇𝑅 ⋅ 𝝃𝑠 + 𝐺𝑖𝐽𝐺𝑖𝑀
(

𝜕𝛾1
𝜕𝐶𝑠

𝜕𝐶𝑠
𝜕𝑋𝐽

𝜕𝐶𝑠
𝜕𝑋𝑀

+
𝜕𝛾2
𝜕𝐶𝑠

𝜕𝐽
𝜕𝑋𝐽

𝜕𝐽
𝜕𝑋𝑀

−
𝜕𝛾3
𝜕𝐶𝑠

𝜕𝐶𝑠
𝜕𝑋𝐽

𝜕𝐽
𝜕𝑋𝑀

)

, (A.9k)

𝜇𝑖 = 𝜇0𝑖 + 𝜈𝑖(𝑝 +𝛱𝑖) + 𝑧𝑖𝑒𝛷, 𝑖 ∈ I, (A.9l)

where 𝐺𝑖𝐽 are elements of the tensor 𝗚 = 𝗙−𝑇 and the osmotic pressures are defined as

𝛱𝑠 =
𝑘𝐵𝑇
𝜈𝑠

[

ln
(

𝜈𝑠𝐶𝑠
𝐽

)

+ 1 −
∑

𝑚∈M

𝜈𝑠𝐶𝑚
𝐽

+
𝜒(𝐽 − 𝜈𝑠𝐶𝑠)

𝐽 2

]

, (A.9m)

𝛱𝑖 =
𝑘𝐵𝑇
𝜈𝑖

[

ln
(

𝜈𝑖𝐶𝑖
𝐽

)

+ 1 −
∑

𝑚∈M

𝜈𝑖𝐶𝑚
𝐽

−
𝜒𝜈𝑖𝐶𝑠
𝐽 2

]

, 𝑖 ∈ I. (A.9n)
21
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The nominal (first Piola–Kirchhoff) stress tensor as well as the elastic and Maxwell contributions are

𝗦 = −𝑝𝐽𝗙−𝑇 + 𝗦𝐾 + 𝗦𝑀 + 𝗦𝑒, (A.9o)

𝗦𝑒 = 𝐺
(

𝗙 − 𝗙−𝑇
)

, (A.9p)

𝗦𝑀 = − 1
𝜖𝐽

( 1
2
|𝗙𝑯|

2𝗜 − (𝗙𝑯)⊗ (𝗙𝑯)
)

𝗙−𝑇 . (A.9q)

Finally, the nominal Korteweg stress tensor is

𝗦𝐾𝗙
𝑇 = 𝐽

𝜕𝛾1
𝜕𝐽

𝐺𝑖𝐽𝐺𝑖𝑀
𝜕𝐶𝑠
𝜕𝑋𝐽

𝜕𝐶𝑠
𝜕𝑋𝑀

𝗜 − 2𝛾1(𝗙−𝑇∇𝑅𝐶𝑠)⊗ (𝗙−𝑇∇𝑅𝐶𝑠) − 𝐽
𝜕𝛾3
𝜕𝐽

𝐺𝑖𝐽𝐺𝑖𝑀
𝜕𝐶𝑠
𝜕𝑋𝐽

𝜕𝐽
𝜕𝑋𝑀

𝗜

+ 2𝛾3 Sym[(𝗙−𝑇∇𝑅𝐽 )⊗ (𝗙−𝑇∇𝑅𝐶𝑠)] + 𝐽
𝜕𝛾2
𝜕𝐽

𝐺𝑖𝐽𝐺𝑖𝑀
𝜕𝐽
𝜕𝑋𝐽

𝜕𝐽
𝜕𝑋𝑀

𝗜 − 2𝛾2(𝗙−𝑇∇𝑅𝐽 )⊗ (𝗙−𝑇∇𝑅𝐽 ) − 𝐽 (∇𝑅 ⋅ 𝝃𝐽 )𝗜,
(A.9r)

here Sym[⋅] denotes the symmetric part of a tensor. Note that in taking the partial derivatives of 𝛾1,2,3, we treat the variables 𝐶𝑠
nd 𝐽 as independent.

.3. Polyelectrolyte gel equations in the current configuration

To derive the equations in the current configuration, we first integrate Eqs. (1) over a reference volume 𝑅 and then use the
following identities to relate infinitesimal volume and surface elements in the reference and current configurations,

𝑑𝑉 = 𝐽𝑑𝑉𝑅, 𝒏𝑑𝑆 = 𝐽𝗙−𝑇𝑵𝑑𝑆𝑅, (A.10)

where 𝑵 and 𝒏 are respectively the normal unit vector to the surface elements 𝑑𝑆𝑅 and 𝑑𝑆 (see Fig. 2). The integral form of Eq. (1b)
s given by

𝑑
𝑑𝑡 ∫𝑅

𝐶𝑚𝑑𝑉𝑅 = −∫𝑅
𝑱𝑚 ⋅𝑵𝑑𝑆𝑅, (A.11)

which can be mapped to the current configuration using the relations (A.10), together with the Reynolds transport theorem, to give

∫(𝑡)

(

𝜕𝑐𝑚
𝜕𝑡

+ ∇ ⋅ (𝑐𝑚𝒗𝑛)
)

𝑑𝑉 = −∫(𝑡)
𝒋𝑚 ⋅ 𝒏 𝑑𝑆, (A.12)

where 𝑐𝑚 = 𝐶𝑚∕𝐽 is the current concentration (measured per unit volume in the current state), 𝒋𝑚 = 𝐽−1𝗙𝑱𝑚 is the current flux
(measured per unit area in the current state), 𝒗𝑛 is the velocity of the polymer network, and ∇ denotes the gradient with respect to
the Eulerian coordinate 𝒙. Since the volume (𝑡) is arbitrary, we find that the local mass balance in Eulerian coordinates is

𝜕𝑐𝑚
𝜕𝑡

+ ∇ ⋅ (𝑐𝑚𝒗𝑛 + 𝒋𝑚) = 0, (A.13)

where the fluxes are given by (A.8). The standard form of the species conservation law
𝜕𝑐𝑚
𝜕𝑡

+ ∇ ⋅ (𝑐𝑚𝒗𝑚) = 0 (A.14)

can be recovered by defining the diffusive fluxes as 𝒋𝑚 = 𝑐𝑚(𝒗𝑚 − 𝒗𝑛). The velocity of the polymer network 𝒗𝑛 is linked to the solid
displacement 𝒖 via the relationship 𝜕𝑡𝒖 + (𝒗𝑛 ⋅ ∇)𝒖 = 𝒗𝑛. The displacement gradient tensor is 𝗙−1 = 𝗜 − ∇𝒖.

By applying the same procedure to remaining governing equations in Section 2.2, we obtain

∇ ⋅ 𝗧 = 𝟎, (A.15a)

𝒆 = −∇𝛷, (A.15b)

∇ ⋅ 𝒉 = 𝑞, (A.15c)

here 𝗧 = 𝐽−1𝗦𝗙𝑇 = −𝑝𝗜 + 𝗧𝑒 + 𝗧𝑀 + 𝗧𝐾 is the Cauchy stress tensor, 𝒆 = 𝗙−𝑇𝑬 is the electric field, 𝒉 = 𝐽−1𝗙𝑯 = 𝜖𝒆 is the electric
isplacement, and

𝑞 = 𝑒

(

∑

𝑖∈I
𝑧𝑖𝑐𝑖 + 𝑧𝑓 𝑐𝑓

)

(A.15d)

s the total charge density. Finally, the Eulerian formulation of the incompressibility condition Eq. (1a) is

𝐽 = 1
1 −

∑

𝑚∈M 𝜈𝑚𝑐𝑚
. (A.15e)

The expressions for the solvent chemical potential 𝜇𝑠, the micro-stresses 𝝃𝑠 and 𝝃𝐽 , and the Korteweg stress tensor 𝗧𝐾 = 𝐽−1𝗦𝐾𝗙
𝑇

are substantially simpler when written in terms of Eulerian coordinates. By using the identities

𝐽∇ ⋅ 𝝃 = 𝛾𝐽∇ ⋅
(

𝐽−1∇𝑐
)

= 𝛾∇2𝑐 −
𝛾
∇𝐶 ∇𝐽 +

𝛾𝐶𝑠
|∇𝐽 |2 , (A.16a)
22
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𝐽∇𝑅 ⋅ 𝝃𝐽 = −𝛾𝐽∇ ⋅
( 𝑐𝑠
𝐽
∇𝑐𝑠

)

= −𝛾𝑐𝑠|∇𝑐𝑠|
2 − 𝛾|∇𝑐𝑠|

2 +
𝛾𝐶𝑠
𝐽 3

∇𝐶𝑠∇𝐽 −
𝛾𝐶2

𝑠

𝐽 4
|∇𝐽 |2, (A.16b)

1
2
𝐽𝛾∇𝑐𝑠 ⊗ ∇𝑐𝑠 = 𝛾1∇𝐶𝑠 ⊗ ∇𝐶𝑠 − 𝛾3Sym

[

∇𝐶𝑠 ⊗ ∇𝐽
]

+ 𝛾2∇𝐽 ⊗ ∇𝐽 , (A.16c)

e find that

𝜇𝑠 = (𝑝 +𝛱𝑠)𝜈𝑠 + 𝜇0𝑠 − 𝛾∇
2𝑐𝑠, (A.17a)

𝗧𝐾 =
(

𝛾𝑐𝑠|∇𝑐𝑠|
2 +

𝛾
2
|∇𝑐𝑠|

2
)

𝗜 − 𝛾∇𝑐𝑠 ⊗ ∇𝑐𝑠, (A.17b)

𝝃𝑠 = 𝛾𝗙−1∇ 𝑐𝑠, (A.17c)

𝝃𝐽 = −𝛾𝑐𝑠𝗙−1∇ 𝑐𝑠. (A.17d)

The elastic and Maxwell stress tensors can be written as

𝗧𝑒 =
𝐺
𝐽

(𝗕 − 𝗜) , 𝗧𝑀 = 𝜖
[

∇𝛷⊗ ∇𝛷 − 1
2
|∇𝛷|2𝗜

]

, (A.18)

where 𝗕 = 𝗙𝗙𝑇 is the left Cauchy–Green tensor.

ppendix B. The model derivation for the bath

The derivation of the bath model begins in Appendix B.1 with a consideration of the balance laws and the equations of
lectrostatics in Eulerian coordinates. Then, in Appendix B.2, constitutive relations are derived using an energy imbalance inequality.

.1. Conservation equations and electrostatics in the current configuration

We assume that each point in the mixture is occupied by solvent and/or solute, i.e. no voids can form in the mixture, resulting
n the no-void condition:

1 =
∑

𝑚∈M
𝜈𝑚𝑐𝑚, (B.1a)

where 𝑐𝑚 is the (current) concentration of species 𝑚 and 𝜈𝑚 is its molecular volume. The concentrations 𝑐𝑚 satisfy the balance laws
𝜕𝑐𝑚
𝜕𝑡

+ ∇ ⋅
(

𝑐𝑚𝒗
)

= −∇ ⋅ 𝒒𝑚, 𝑚 ∈ M, (B.1b)

where the volume-averaged mixture velocity 𝒗 is defined as

𝒗 =
∑

𝑚∈M
𝜈𝑚𝑐𝑚𝒗𝑚, (B.1c)

and 𝒗𝑚 is the velocity of the 𝑚th component of the mixture. In deriving (B.1b), we have defined the diffusive fluxes 𝒒𝑚 relative to
the mean mixture velocity 𝒗 according to 𝒒𝑚 = 𝑐𝑚(𝒗𝑚 −𝒗). Using the definition of mixture velocity (B.1c), together with the no-void
ondition (B.1a), we have that the fluxes must satisfy:

∑

𝑚∈M
𝜈𝑚𝒒𝑚 = 𝟎. (B.1d)

e introduce the material derivative 𝐷(⋅)∕𝐷𝑡 = 𝜕(⋅)∕𝜕𝑡 + (𝒗 ⋅ ∇)(⋅), so that Eq. (B.1b) takes the simple form:
𝐷𝑐𝑚
𝐷𝑡

+ 𝑐𝑚∇ ⋅ 𝒗 = −∇ ⋅ 𝒒𝑚, 𝑚 ∈ M. (B.1e)

By multiplying (B.1b) by 𝜈𝑚, summing over 𝑚, and using (B.1a) and (B.1d), we find that the mixture velocity is divergence free:

∇ ⋅ 𝒗 = 0. (B.1f)

To facilitate the derivation of state and constitutive equations for the bath, we introduce the velocity gradient tensor 𝗟 = ∇𝒗.
Using this notation, we can write ∇⋅𝒗 = 𝗜 ∶ 𝗟 = tr(𝗟), where tr(⋅) denotes the trace of a tensor. The tensor 𝗟 is commonly decomposed
as the sum of its symmetric (𝗗) and skew symmetric (𝗪) parts:

𝗗 = 𝗟 + 𝗟𝑇

2
, 𝗪 = 𝗟 − 𝗟𝑇

2
. (B.2)

The tensor 𝗗 is commonly called the rate of deformation and 𝗪 is known as the vorticity or spin tensor.
Neglecting the inertia of the mixture (so that viscous effects dominate inertial effects corresponding to low Reynolds number of

the mixture), and assuming that the bath is not subject to external forces, conservation of momentum for the mixture is:

∇ ⋅ 𝗧 = 𝟎, (B.3)

where 𝗧 is the Cauchy stress tensor. Following Coleman and Noll (1963) and Groot (1962), we assume the stress tensor is symmetric,
23

which implies balance of internal and external angular momentum; for a more detailed discussion, we refer to Groot (1962).
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T

Finally, Maxwell’s equations for the electric field 𝒆, electrostatic potential 𝛷 and the electric displacement 𝒉 are analogous to
those for the gel (A.15b)–(A.15c) with the charge density 𝑞 given by:

𝑞 =
∑

𝑖∈I
𝑒𝑧𝑖𝑐𝑖. (B.4)

B.2. The energy imbalance inequality

The energy imbalance inequality in the current configuration is

d
d𝑡

{

∫(𝑡)
𝜓 𝑑𝑣

}

≤ 𝑒𝑙((𝑡)) + ∫(𝑡)
(𝗧 ∶ 𝗟) 𝑑𝑣 −

∑

𝑚∈M
∫(𝑡)

∇ ⋅
(

𝜇𝑚 𝒒𝑚
)

𝑑𝑣, (B.5)

where (𝑡) is an arbitrary control volume in the bath. The terms on the right-hand side of the inequality are, in order: the rate of
electrical work (specified below), the rate of mechanical work due to the stress tensor 𝗧 and the rate at which energy is introduced in
the system due to mass transport. In writing down the inequality (B.5), we have not considered any micro-stresses because we assume
that phase separation does not occur in the bath. Inequality (B.5) must hold for all motions which satisfy the no-void condition (B.1a)
and incompressibility condition (B.1f). However, since these two constraints are algebraically equivalent, it is sufficient to impose
only one of them when using the energy imbalance inequality to derive constitutive relationships for the bath. We choose to enforce
the no-void condition (B.1a) using a Lagrange multiplier 𝜆, which allows the composition variables 𝑐𝑚 to be treated as independent.
Alternative derivations which enforce the incompressibility condition can be found in Kim and Lowengrub (2005). Thus, by using
Reynolds’ transport theorem, the energy imbalance inequality (B.5) can be written as:

∫(𝑡)

[

𝐷𝜓
𝐷𝑡

+ 𝜓 (𝗜 ∶ 𝗟) − 𝜆
∑

𝑚
𝜈𝑚
𝐷𝑐𝑚
𝐷𝑡

]

𝑑𝑣 ≤ 𝑒𝑙((𝑡)) + ∫(𝑡)
(𝗧 ∶ 𝗟) 𝑑𝑣 −

∑

𝑚∈M
∫(𝑡)

∇ ⋅
(

𝜇𝑚 𝒒𝑚
)

𝑑𝑣. (B.6)

To derive the rate of the electrical work in the current configuration, we start from its definition in the reference configuration
see second term on the right-hand side of Eq. (8)). We then apply the divergence theorem to obtain:

𝑒𝑙((𝑡)) = −∫(𝑡)
∇ ⋅

(

𝛷
(𝐷𝒉
𝐷𝑡

+ 𝒉 (𝗜 ∶ 𝗟) − 𝗟𝒉
))

𝑑𝑣. (B.7)

By using (A.15b)–(A.15c), we can establish the following identities (adopting the summation convention):

∇ ⋅
(𝐷𝒉
𝐷𝑡

)

= ∇ ⋅
( 𝜕𝒉
𝜕𝑡

+ (𝒗 ⋅ ∇)𝒉
)

= 𝜕∇ ⋅ 𝒉
𝜕𝑡

+ 𝑣𝑖
𝜕2ℎ𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕ℎ𝑗
𝜕𝑥𝑖

=
𝜕𝑞
𝜕𝑡

+ 𝑣𝑖
𝜕
𝜕𝑥𝑖

(∇ ⋅ 𝒉) + ∇𝒉𝑇 ∶ 𝗟 =
𝐷𝑞
𝐷𝑡

+ ∇𝒉𝑇 ∶ 𝗟, (B.8a)

𝒆𝗟𝒉 = 𝑒𝑖𝐿𝑖𝑗ℎ𝑗 = 𝑒𝑖ℎ𝑗𝐿𝑖𝑗 = (𝒆⊗ 𝒉) ∶ 𝗟, (B.8b)

∇ ⋅ (𝗟𝒉) =
𝜕𝐿𝑖𝑗
𝜕𝑥𝑖

ℎ𝑗 +
𝜕ℎ𝑗
𝜕𝑥𝑖

𝐿𝑖𝑗 =
𝜕
𝜕𝑥𝑗

(

𝜕𝑣𝑖
𝜕𝑥𝑖

)

ℎ𝑗 + ∇𝒉𝑇 ∶ 𝗟 = ∇(𝗜 ∶ 𝗟) ⋅ 𝒉 + ∇𝒉𝑇 ∶ 𝗟. (B.8c)

hus, (B.7) reduces to:

𝑒𝑙((𝑡)) = ∫(𝑡)

(

𝒆𝐷𝒉
𝐷𝑡

+
[

𝑝𝑒𝑙𝗜 − 𝒆⊗ 𝒉
]

∶ 𝗟 −𝛷
𝐷𝑞
𝐷𝑡

)

𝑑𝑣, (B.9a)

where

𝑝𝑒𝑙 = (𝒆 ⋅ 𝒉) −𝛷(∇ ⋅ 𝒉). (B.9b)

Using the specified form of the free energy (18) along with (B.9) enables the energy imbalance inequality (B.6) to be written as
(

𝗧𝑒𝑞𝑢𝑖 − 𝗧
)

∶ 𝗟 +
(

𝜕𝜓
𝜕𝒉

− 𝒆
)

⋅
𝐷𝒉
𝐷𝑡

+
∑

𝑖∈I

[

𝑒𝑧𝑖𝛷 − 𝜇𝑖 + 𝜈𝑖𝜆 +
𝜕𝜓
𝜕𝑐𝑖

]

𝐷𝑐𝑖
𝐷𝑡

+
(

𝜈𝑠𝜆 − 𝜇𝑠 +
𝜕𝜓
𝜕𝑐𝑠

)

𝐷𝑐𝑠
𝐷𝑡

+
∑

𝑚∈M
∇𝜇𝑚 ⋅ 𝒒𝑚 ≤ 0, (B.10)

where we define 𝗧𝑒𝑞𝑢𝑖 as

𝗧𝑒𝑞𝑢𝑖 = −𝑝𝑒𝑙𝗜 + 𝒆⊗ 𝒉 +

(

𝜓 −
∑

𝑚∈M
𝜇𝑚𝑐𝑚

)

𝗜. (B.11)

Guided by the inequality (B.10), we define the following constitutive equations for the chemical potentials, the electric field, the
fluxes and the stress tensor:

𝜇𝑚 = �̂�𝑚(𝑐𝑚,𝒉), (B.12a)

𝒆 = �̂�(𝑐𝑚,𝒉), (B.12b)

𝗧 = �̂�(𝑐𝑚,𝒉,𝗟) = 𝗧𝑒𝑞𝑢𝑖(𝑐𝑚,𝒉) + 𝗧𝑣(𝑐𝑚,𝒉,𝗟), (B.12c)

𝒒𝑚 = �̂�𝑚(𝑐𝑚,𝒉,∇𝜇𝑚). (B.12d)
24
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The dependence of 𝗧𝑣 on the velocity gradient 𝗟 enables viscous dissipation to be explicitly accounted for via a viscous contribution
to the stress tensor. In the gel, viscous dissipation is accounted for in the diffusive fluxes via a Darcy contribution describing pressure-
driven flow. Given the form on the constitutive laws in Eqs. (B.12), the inequality (B.10) is linear in the rates 𝐷𝒉∕𝐷𝑡, 𝐷𝑐𝑚∕𝐷𝑡 with

∈ M, each of which can be chosen independently at each point 𝒙 and time 𝑡. For the energy imbalance inequality to be always
atisfied, we must have that

𝜇𝑠 = 𝜇0𝑠 + 𝜈𝑠𝑝 + 𝑘𝐵𝑇

[

ln
(

𝜈𝑠𝑐𝑠
)

+ 1 −
∑

𝑗∈M
𝜈𝑠𝑐𝑗

]

, (B.13a)

𝜇𝑖 = 𝜇0𝑖 + 𝜈𝑖𝑝 + 𝑘𝐵𝑇

[

ln
(

𝜈𝑖𝑐𝑖
)

+ 1 −
∑

𝑗∈M
𝜈𝑖𝑐𝑗

]

+ 𝑧𝑖𝑒𝛷, 𝑖 ∈ I, (B.13b)

𝒆 = 𝜖−1𝒉, (B.13c)

𝗧𝑒𝑞𝑢𝑖 = −𝑝𝗜 + 𝜖−1𝒉⊗ 𝒉 −
|𝒉|2

2𝜖
𝗜, (B.13d)

where 𝗧𝑒𝑞𝑢𝑖 has been simplified using the definition of the Helmholtz free energy (18) and by introducing the thermodynamic
pressure 𝑝 defined as 𝑝 = 𝜆 + 𝑘𝐵𝑇

∑

𝑚∈M 𝑐𝑚. The energy imbalance (B.10) then reduces to:

−𝗧𝑣 ∶ 𝗟 +
∑

𝑚∈M
∇𝜇𝑚 ⋅ 𝒒𝑚 ≤ 0. (B.14)

Given the symmetry of the stress tensor 𝗧 and the fact that 𝗧𝑒𝑞𝑢𝑖 is symmetric (as verified below), we must have that 𝗧𝑣 is
symmetric. We then have that 𝗧 ∶ 𝗪 = 0, so that 𝗟 = 𝗗+𝗪 can be substituted by 𝗗 in (B.14). Utilising the definition of the mixture
velocity (B.1c) together with the relationship 𝒒𝑚 = 𝑐𝑚(𝒗𝑚 − 𝒗), Eq. (B.14) can be rewritten as:

−𝗧𝑣 ∶ 𝗗 +
∑

𝑚∈M
𝑐𝑚

(

∇𝜇𝑚 −
∑

𝛽∈M
𝑐𝛽𝜈𝑚∇𝜇𝛽

)

⋅ 𝒗𝑚 ≤ 0. (B.15)

Assuming that we are in the regime of linear non-equilibrium thermodynamics and considering the additional constraint imposed
by Curie’s law, i.e., there cannot be any coupling between thermodynamic variables of different tensorial nature, we arrive at the
following set of force–flux relations

𝗧𝑣 = 2𝜂
(

𝗗 − 1
3
(𝗜 ∶ 𝗗)𝗜

)

+ 𝜅(𝗜 ∶ 𝗗)𝗜, (B.16a)

− 𝑐𝑚

(

∇𝜇𝑚 −
∑

𝛽∈M
𝜈𝑚𝑐𝛽∇𝜇𝛽

)

=
∑

𝑘∈M
𝓁𝑘𝑚𝒗𝑘, 𝑚 ∈ M, (B.16b)

where the matrix of phenomenological coefficients 𝓵 = [𝓁𝑖𝑗 ] must be symmetric and positive definite, while 𝜂 and 𝜅 are positive
constants representing the shear and dilatational viscosity of the bath, respectively. Note that the latter will not actually play a role
as the isotropic component of 𝗧𝑣 will vanish upon strongly imposing the divergence-free condition (1a).

To determine the velocities 𝒗𝑚 and hence the diffusive fluxes 𝒒𝑚, we assume that the transport of mobile species in the bath
obeys Stefan–Maxwell diffusion (Stefan, 1871; Maxwell, 1867). We can therefore relate the phenomenological coefficients 𝓁𝑖𝑗 to the
drag coefficients used in mixture theory. To do so, we rewrite Eq. (B.16b) in terms of the relative velocities between the different
phases:

−𝑐𝑚

(

∇𝜇𝑚 −
∑

𝛽∈M
𝜈𝑚𝑐𝛽∇𝜇𝛽

)

=
∑

𝑘∈M⧵{𝑚}
𝑓𝑘𝑚

(

𝒗𝑚 − 𝒗𝑘
)

, 𝑚 ∈ M. (B.17)

We neglect solute-solute drag and use the expressions for 𝑓𝑠𝑖 = 𝑓𝑖𝑠 given in (A.6). Analogously to the result in Appendix A.1, for this
choice of the fluxes, we have that the matrix 𝓵 has the same structure as in Eq. (A.7) by setting 𝑓𝑚𝑛 = 0 for all 𝑚 ∈ M. Therefore 𝓵
is still a symmetric and diagonally dominated matrix and hence positive semi-definite.

Eq. (B.17) is an underdetermined system for the velocities 𝒗𝑚, which can be seen by summing over 𝑚 ∈ M to show that both sides
are identically zero. This is to be expected as the velocities are not independent but need to satisfy (B.1d). We therefore use (B.17)
to express the ionic velocities in terms of 𝒗𝑠, where the latter is defined by (B.1d). All this considered, we obtain:

𝒗𝑖 = −
𝐷0
𝑖

𝑘𝐵𝑇

(

∇𝜇𝑖 −
∑

𝛽∈M
𝜈𝑖𝑐𝛽∇𝜇𝛽

)

+ 𝒗𝑠, 𝑖 ∈ I. (B.18)

imply subtracting the mixture velocity and multiplying by the ionic concentration 𝑐𝑖 we find that diffusive fluxes can be written
as

𝒒𝑖 = −
𝐷0
𝑖 𝑐𝑖

𝑘𝐵𝑇

(

∇𝜇𝑖 −
∑

𝛽∈M
𝜈𝑖𝑐𝛽∇𝜇𝛽

)

+
𝑐𝑖
𝑐𝑠
𝒒𝑠, (B.19a)

𝒒𝑠 = −
∑

𝑖∈𝐼

𝜈𝑖
𝜈𝑠
𝒒𝑖, (B.19b)

where (B.19b) is obtained by simply rearranging the terms in (B.1d).
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Appendix C. Homogeneous equilibrium solutions for a constrained gel

The homogeneous steady states of (27)–(35) can be obtained by setting 𝜙𝑚(𝒙, 𝑡) ≡ �̄�𝑚 with 𝑚 ∈ {𝑠,+,−}, 𝐽 (𝒙, 𝑡) ≡ 𝐽 , 𝑝(𝒙, 𝑡) ≡ �̄�
and 𝛷(𝒙, 𝑡) ≡ �̄�. Imposing continuity of chemical potential across the gel-bath interface leads to

�̄� =
(

𝐽 2 − 1
)

𝐽−1, (C.1a)

0 = 𝛼𝑓𝐽
−1 + �̄�+ − �̄�−, (C.1b)

ln(1 − 2𝜙0) = 
(

𝐽 2 − 1
)

𝐽−1 +
[

ln(�̄�𝑠) +
𝜒(1 − �̄�𝑠) + 1

𝐽

]

, (C.1c)

ln(𝜙0) = 
(

𝐽 2 − 1
)

𝐽−1 + �̄� + ln(�̄�+) −
𝜒�̄�𝑠 − 1

𝐽
, (C.1d)

ln(𝜙0) = 
(

𝐽 2 − 1
)

𝐽−1 − �̄� + ln(�̄�−) −
𝜒�̄�𝑠 − 1

𝐽
, (C.1e)

𝐽 =
(

1 − �̄�𝑠 − �̄�+ − �̄�−
)−1 . (C.1f)

ubtracting (C.1d) from (C.1c) and (C.1e), and using (C.1b), we obtain:

�̄�± = ∓
𝛼𝑓𝐽−1

2
+

√

√

√

√

√

(

𝛼𝑓𝐽−1

2

)2

+
𝜙2
0�̄�

2
𝑠

(

1 − 2𝜙0
)2

exp
(

2𝜒𝐽−1
)

, (C.2a)

�̄� = 1
2
ln
(

�̄�−�̄�
−1
+
)

. (C.2b)

Eqs. (C.2) are a generalisation of the standard Donnan Equilibrium (Donnan, 1924; Huyghe and Janssen, 1997) to our specific
problem, where the additional exponential contribution in (C.2a) due to the mixing energy has to be considered. Using (C.2) to
simplify the system (C.1), the latter reduces to:

0 = 
(

𝐽 2 − 1
)

𝐽−1 + ln
(

�̄�𝑠
1 − 2𝜙0

)

+ (𝜒(1 − �̄�𝑠) + 1)𝐽−1, (C.3a)

0 = 𝐽−1 − 1 + �̄�𝑠 + 2

√

√

√

√

√

(

𝛼𝑓𝐽−1

2

)2

+
𝜙2
0�̄�

2
𝑠

(

1 − 2𝜙0
)2

exp
(

2𝜒𝐽−1
)

, (C.3b)

where the only two unknowns are �̄�𝑠 and 𝐽 . Eqs. (C.3) define the equilibrium curves presented in the figures in Section 5.2 which
can be computed using arclength continuation methods.
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