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Abstract

Equations of the typeht + (h2 − h3)x = −ε3(h3hxxx)x arise in the context of thin liquid films driven by the competing
effects of a thermally induced surface tension gradient and gravity. In this paper, we focus on the interaction between the
fourth order regularization and the nonconvex flux. Jump initial data, from a moderately thick film to a thin precurser layer,
is shown to give rise to a double wave structure that includes an undercompressive wave. This wave, which approaches an
undercompressive shock asε → 0, is an accumulation point for a countable family of compressive waves having the same
speed. The family appears through a series of bifurcations parameterized by the shock speed. At each bifurcation, a pair
of traveling waves is produced, one being stable for the PDE, the other unstable. The conclusions are based primarily on
numerical results for the PDE, and on numerical investigations of the ODE describing traveling waves. Fourth orderlinear
regularization is observed to produce a similar bifurcation structure of traveling waves. ©1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Consider the motion of a thin liquid film on an inclined planar surface, driven by competing effects of gravity and
a thermally induced surface tension gradient. This problem has been the focus of experimental investigation [10,39];
it is important in understanding the dynamics of a variety of industrial coating processes such as the formation and
protection of microchips, de-icing of airplane wings and the construction of photographic film. Related problems
concerning the dynamics of thin films have been the subject of much recent mathematical research (see [7] and
references therein).
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In this paper, we model the thin film motion by a partial differential equation for the thicknessh(x, t) of the
film above the inclined plane, as a function of distancex down the plane, and timet . (While dependence on an
additional, transverse, spatial variabley is important, in this paper, we takeh to be independent ofy.) The PDE
model takes the form

ht + (h2 − αh3)x = β(h3hx)x − γ (h3hxxx)x, (1)

in which the nonnegative parametersα, β, γ contain effects of surface tension, gravity and the slope of the plane.
The main results of the paper concern the caseβ = 0, corresponding physically to a vertical plane; small

β, corresponding to a nearly vertical plane or a flow in which the thermally induced surface tension gradient is
dominated by the combined effects of surface tension and gravity, has qualitatively the same behavior as the case
β = 0. Mathematically, takingβ = 0 allows us to focus on the interplay between the nonconvex nonlinearity in
the convective term, and the fourth order diffusion, without the complication of the second order diffusion. This
interaction introduces wave propagation phenomena that are strikingly new, both for the application to thin films,
and for the theory of traveling wave approximations to shock waves.

After a suitable rescaling, the caseβ = 0 leads to the equation

ht + (h2 − h3)x = −ε3(h3hxxx)x, (2)

in which ε > 0 is a small parameter. Traveling wave solutions, referred to in this paper ascapillary shock profiles,
steepen asε → 0 to shock wave solutions of the scalar conservation law

ht + (h2 − h3)x = 0. (3)

The traveling waves connect an upstream heighth∞ to a (small) downstream heightb < h∞.

Whenh∞ − b is small, the traveling wave iscompressivein the sense that characteristics for Eq. (3) approach
each other from either end of the wave:

λ(h∞) > s > λ(b), (4)

wheres is the speed of the traveling wave, andλ(h) = 2h − 3h2 is the characteristic speed. The corresponding
shock wave satisfying Eq. (4) is called aLax shock; inequalities (4) constitute the Lax entropy condition [37] for
discontinuous solutions of the scalar conservation law (3).

As h∞ increases, we find there are multiple traveling waves approximating the Lax shock. Some of these are
asymptotically stable for Eq. (2), others unstable. In this range ofh∞ we find a further stable solution of Eq. (2)
composed of two waves traveling with different speeds. The slower wave corresponds to a Lax shock joiningh∞ to
a heighthuc > h∞, independent ofh∞, so that the shock strength decreases with increasingh∞; the faster wave
corresponds to anundercompressiveshock fromhuc to b. The latter wave is undercompressive in the sense that it
violates the Lax condition; characteristics pass through the shock instead of impinging on it:

max(λ(huc), λ(b)) < suc, (5)

wheresuc denotes the speed of the undercompressive wave.
For still larger values ofh∞, there are no compressive traveling waves joiningh∞ to b, and although the double

shock wave structure persists forh∞ < huc, it gives way forh∞ > huc to a two-wave structure in which the slower
wave is a rarefaction wave solution of (3).

Undercompressive shock waves for scalar conservation laws have been studied in contexts in which they are
approximated by traveling wave solutions of equations that includesecond orderdissipation and dispersion, in
contrast to the fourth order nondispersive equation of this paper [23,24,29]. Undercompressive shocks, together
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with other types of nonclassical shocks, have been studied in various applications involving systems of equations
[1,28,43,45,47].

The dynamics of the undercompressive double shock structure has been observed in a recent experiment [17]
in which silicon oil (PDMS) is driven up an inclined oxidized silicon wafer by a thermal gradient. In previous
experimental studies of very thin films (h∞ � 1) [10], the speed of the front agrees extremely well with that predicted
by the classical theory involving only Lax shocks. In the experiments in [17] however, with films of intermediate
thickness, gravity plays a larger role. It has been observed that for these thicker films, the front speed is effectively
independent of the film thicknessh∞, an observation consistent with the formation of an undercompressive shock as
the leading front. Moreover, the thickness profile of the film compares very well with the shape of the film observed
in numerical simulations of Eq. (1) of the double shock structure [4]. (The experimental measurements are taken at
times just before the shocks are predicted by the theory to completely separate.)

A further remarkable observation in this experiment is that the front forms an extremely large capillary ridge that
tends to remain stable, in contrast to all other driven film experiments in which a capillary ridge is observed to break
up into rivulets [11,27,30,44]. The undercompressive shock is believed to play a role in preventing the contact line
from fingering in this way. To the best of our knowledge, this recent experiment is the first documented observation
of an undercompressive shock in an application modeled by a scalar conservation law.

The paper is organized as follows. In Section 2, we review the physical problem, derive a model partial differential
equation, and nondimensionalize using scales that highlight the role of fourth order diffusion. In Section 3, we review
Lax shocks and rarefaction waves for Eq. (3). Also in this section, we discuss traveling wave solutions for Lax shocks
for Eq. (1), both in the straightforward caseγ = 0 of (nonlinear) second order diffusion, and in the case of fourth
order diffusionβ = 0, but with a convex nonlinear flux transport (α = 0). Traveling waves in the latter case are
established using arguments of [41,42]. In Section 4, we present the main numerical results for Eq. (2), illustrating
that there is a transition from weak Lax shocks to the undercompressive double shock structure as the film thickness
is increased. In Section 5, we discuss traveling waves for Eq. (2) directly. This involves the study of a family
of ordinary differential equations with parameters depending onh∞ andb. Here, we examine the existence of
the undercompressive shock, and the associated cascade of bifurcations giving rise to the multiple compressive
traveling waves for the same Lax shock. In Section 6, we show that for largerb near 1/3, the bifurcation structure
of the traveling waves can be understood by studying a simpler equation, derived by expanding aroundh = 1

3;
the simpler equation has a cubic nonlinearity and linear fourth order diffusion. Numerical results for this equation
are similar to those for the full equation, and show that the complex dynamics introduced in Sections 4 and 5 is
really due to the fourth order operator on the right-hand side of Eq. (2) as opposed to the nonlinear diffusion. In
Section 7, we derive a priori bounds for the values ofh in a traveling wave, using two techniques. In Section 8,
we draw attention to various issues related to the numerical study in this paper. Among these are the stability of
the computed one-dimensional fronts to two-dimensional perturbations, the effect of second order diffusive terms
on the dynamics and the singular limit asb → 0. We also propose some open analysis problems motivated by the
numerical work here.

2. The model

We consider the dynamics of a thin layer of liquid of thicknessh on an inclined surface driven by thermally
created surface tension gradients and influenced by gravity (see Fig. 1). Letτ denote the surface tension gradient,
α the angle (from horizontal) of inclination of the plane,ρ the density of the liquid,g the gravitational constant,η
the dynamic viscosity of the liquid, andγ the surface tension of the liquid. The spatial variablesx andy denote,
respectively, the direction of the flow and the direction normal to the flow, both in the plane parallel to the incline.
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Fig. 1. A schematic diagram of the physical problem. A thin film of viscous liquid flows up an inclined plane due to Marangoni stresses created
by a temperature gradient on the plane. Gravity works against the stress to drive fluid back down the plane.

Conservation of mass of the liquid requires that

ht + ∇ · (h EV ) = 0, (6)

whereV is a ‘depth averaged’ velocity of the liquid. The formula forV we use is from [9,16] in which a lubrication
approximation gives

EV =
(

τh

2η
− ρgh2 sinα

3η

)
Eex − ρgh2 cosα

3η
∇h + γ h2∇3h

3η
. (7)

The coefficient ofEex in the expression forEV represents convection of the film due to a surface tension gradient and
due to the component of gravity tangent to the surface. The∇h represents diffusion of the liquid due to the normal
component of gravity while the last term represents diffusion of the liquid due to surface tension.

For the purpose of this paper, we ignore the dependence of the solution on the direction transverse to the flow,
i.e. we consider solutionsh depending only onx andt :

ht + (f (h))x = −
(

γ h3hxxx

3η

)
x

+
(

cosαρgh3

3η
hx

)
x

, (8)

where

f (h) = τh2

2η
− sinαρgh3

3η
.

To nondimensionalize the equation, we introduce length scalesH, l, and a corresponding time scaleT :

h = Hĥ, x = x̂l, t = T t̂. (9)

Balancing the competing convective effects of gravity and Marangoni forces inf (h) gives

H = 3τ

2 sinαρg
.

Settingl to be the capillary length on which surface tension balances the driving forces on the right-hand side of
Eq. (8) gives
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l =
(

2γH 2

3τ

)1/3

=
(

3γ τ

2ρ2g2 sin2α

)1/3

.

The time scale is then chosen to be the one on which all three of these effects balance,

T = 2
η

τ2

(
4

9
τγρg sinα

)1/3

.

The end result (removing theˆ from the variables in Eq. (9)) is a rescaled dimensionless equation of the form

ht + (h2 − h3)x = −(h3hxxx)x + D(h3hx)x, (10)

where

D =
(

9

4

τ2

γρg

)1/3
cotα

(sinα)1/3
. (11)

We are interested in studying the structure of traveling wave solutions of (10). For the physical problem described
above, we expect to have a situation where there is a front of fluid that connects to a constant height upstream,

h → h∞ as x → −∞.

Although the physical problem has a contact line downstream, as suggested by Fig. 1, we choose the boundary
condition

h → b > 0 as x → ∞.

Such a boundary condition is necessary for the model (7) since it is based on the assumption of a ‘no-slip’ boundary
condition which results in a well-known paradox [14,26] for the case of a moving contact line. To remove the
singularity, we consider the same ‘precursor model’ used in [46] for flow down an inclined plane (see also [3,33]).

In the experiments studied so far [4,10,16,17] the effect of gravity normal to the surface is small compared with
the other effects, and the slope of the film is small compared to the slope of the incline. In all of these studies, the
dimensionless parameterD is less than12 and the problem is well approximated by the model equation withD = 0.
Thus, we setD = 0 for the remainder of the paper; however, we make some comments and conjectures throughout
regarding the dynamics whenD is larger.

The length scale (inx) over whichh transitions fromh∞ to b in a traveling wave or shock layer is order 1 in
formulation (10). We can think of this traveling wave as a viscous regularization of a shock wave, if we letx′ = xε

andt ′ = εt , so that (10) becomes

ht ′ + (h2 − h3)x′ = −e3(h3hx′x′x′)x′ . (12)

This equation is a fourth order nonlinear singular perturbation of the conservation law

ht ′ + (h2 − h3)x′ = 0 (13)

which has a nonconvex flux functionf (h) = h2 − h3. As we show in later sections, the dynamics of Eq. (12) for
small ε is significantly different from the dynamics of Eq. (13) in the vanishing viscosity limit with lower order
diffusion. In Section 3 we review the classical theory of hyperbolic conservation laws with nonconvex fluxes of the
form (13). Later in that section we show that for the case of a convex flux, a regularization of the form (12) has
similar dynamics to lower order regularizations. However, the interaction of the nonconvex flux and fourth order
diffusion, which we discuss in Section 4, produces a dramatically different behavior.
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Fig. 2. Flux functionf (h) and a shock wave (19) satisfying (22).

3. Lax shocks, rarefactions, and traveling waves

Although the parameterD in Eq. (12) is typically small in experiments that have been carried out to date, it
is instructive to consider the effect of second order diffusion, neglecting the fourth order diffusive term that is of
central importance in this paper. Moreover, it is likely that future experiments will explore parameter ranges where
D is not negligibly small, and may provide the dominant diffusive effect. For these reasons, in Section 3.1, we
discuss the case of second order diffusion in the absence of fourth order diffusion, but maintaining the nonconvex
flux function. In Section 3.2, we focus on fourth order diffusion, but consider only a convex flux function. In both of
these subsections, we summarize known results in order to set the context for consideration in Section 4 of fourth
order diffusion with a nonconvex flux.

3.1. Lax shocks with second order diffusion

In this subsection, we study the following equation with second order diffusion:

ht + [f (h)]x = δ(h3hx)x, (14)

wheref (h) is the nonconvex flux function

f (h) = h2 − h3

depicted in Fig. 2, andδ > 0 is a small parameter. Note that the flux functionf (h) has a global maximum at

hmax = 2
3

and an inflection point at

hI = 1
3.

To leading order (i.e.,δ = 0 in Eq. (14)), solutions satisfy the scalar conservation law

ht + f (h)x = 0. (15)
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Smooth solutions of Eq. (15) can be found implicitly using the method of characteristics:

h(x, t) = h0(x − f ′(h(x, t))t), (16)

wheref ′(h) = 2h − 3h2 is the characteristic speed. However, ast increases, solutions of (16) typically undergo
bifurcations to multivalued profiles, corresponding to the formation of shock waves in solutions of (15). To investigate
these discontinuous solutions, we consider the Riemann problem, consisting of Eq. (15), together with initial data
of the form

h(x, 0) =
{

h∞ if x < 0,

b if x > 0.
(17)

This is a classical initial value problem in scalar conservation laws (see e.g. [36]). Sincef is nonconvex, the classical
solution has slightly more structure than for a convex flux function. In this section, we describe the classical solution,
justifying it in part through Eq. (14), which has only second order diffusion. In Section 4, we shall see that the
classical solution does not always reflect the leading order behavior when consideringfourthorder diffusion.

Since the Riemann problem is scale invariant, we seek solutions that possess this property, and hence are functions
of ξ = x/t. For b < 1/3 andh∞ > b, the context in which we are interested, there are two types of classical
solutions, namely a single shock wave, and a rarefaction–shock. To describe these more precisely, we consider in
turn rarefaction waves, shock waves and finally rarefaction–shocks.

A centered rarefaction waveis a solution of (15) of the formh(x, t) = hR(x/t), wherehR is continuous and
piecewiseC1. Substituting into Eq. (15), we find

h′
R(ξ)[f ′(hR) − ξ ] = 0

so that eitherh′
R = 0 (i.e.,hR is constant) orhR(ξ) = f ′−1(ξ). More specifically (possibly restrictingx/t to an

interval)

h(x, t) =



h− if x ≤ f ′(h−)t,

hR(x/t) if f ′(h−)t ≤ x ≤ f ′(h+)t,

h+ if f ′(h+)t ≤ x,

(18)

is a rarefaction wave iff ′(hR(ξ)) = ξ, f ′(h−) ≤ ξ ≤ f ′(h+), and eitherh− < h+ < 1/3, or 1/3 < h+ < h−.

A centered shock wave

h(x, t) =
{

h− if x < st,

h+ if x > st,
(19)

with speeds is a weak solution of (8) if the triple(h−, h+, s) satisfies the Rankine–Hugoniot condition

−s(h+ − h−) + f (h+) − f (h−) = 0. (20)

Thus the shock speed

s = (f (h+) − f (h−)) /(h+ − h−) (21)

is the slope of the chord joining the points(h±, f (h±)) in the graph off, as illustrated in Fig. 2.
A shock (19) is calledcompressive,or aLax shockif it satisfies the Lax entropy condition [37], which relates the

slope of the chord, given by Eq. (21), to the characteristic speeds, which are slopes (derivatives) off :

f ′(h+) < s < f ′(h−). (22)
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We derive Eq. (22) in Section 7 using entropies, for a regularization of the type (14) withlinear second order
diffusion (the result is the same with nonlinear diffusion). These bounds are rather different from those that we
derive for the fourth order regularization in Eq. (10).

It is straightforward to verify that when the flux functionf has at most one inflection point, every Lax shock (19)
has a traveling wave solutionh(x, t) = hLax((x − st)/δ), of the viscous equation (14), satisfying

hLax(±∞) = h±; h′
Lax(±∞) = 0.

Thus, by neglecting surface tension, all Lax shocks are admissible in the sense that they areδ → 0 limits of traveling
wave solutions of the regularized equation (14). We refer to the traveling wave solutionhLax as aviscous profile.

Conversely, the family of shock waves (19) possessing viscous profiles consists of Lax shocks, together with
shocks for which one of the inequalities (22) is an equality, so that characteristics are parallel to the shock on one
side — the shock speed is characteristic. These shocks are sometimes known as generalized Lax shocks, as they
are limits of Lax shocks. Generalized Lax shocks are part of the construction of rarefaction–shock waves. In such
a wave,h(x, t) = hRS(x/t), is piecewiseC1, with a generalized Lax shock at the leading edge (largestx/t) of a
rarefaction wave. Thus, the shock is characteristic on the left. Specifically,

hRS(ξ) =



h− if ξ ≤ f ′(h−),

hR(ξ) if f ′(h−) ≤ ξ ≤ f ′(hm),

h+ if f ′(hm) < ξ,

(23)

wherehR represents a rarefaction wave, andhm satisfiesf ′(hm) = (f (hm) − f (h+))/(hm − h+), which equates
the shock speed with the characteristic speed athm; equivalently, the chord from(h+, f (h+)) to (hm, f (hm)) in
the graph off is tangent ath = hm. For the specific fluxf (h) = h2 − h3, we havehm = (1 − h+)/2.

We can now describe solutions of the Riemann problem (15) and (17), for the parameter rangesb < 1/3 and
h∞ > b of interest. Lethb = (1 − b)/2.

1. If b < h∞ < hb then the solution is a single Lax shock

h(x, t) =
{

h∞, x < st,

b, x > st,

where the shock speeds is given by Eq. (21):

s = h∞ + b − h2
∞ − h∞b − b2. (24)

2. If h∞ > hb, then the solution is a rarefaction–shock (23) in whichh− = h∞, hm = hb, h+ = b.

The rarefaction–shock solution (23) was introduced by Ludviksson and Lightfoot [39] as a first order approximation
(neglecting curvature) of the advancing front observed in their thermally driven coating flow experiments. In Section
4 we show that including the curvature effects by introducing the fourth order diffusion in (10) from surface
tension yields dramatically different behavior for thicker films. Instead of the rarefaction–shock in (23) we obtain a
rarefaction–undercompressive shock, in which the undercompressive shock separates from the rarefaction wave. It
is interesting to note that Ludviksson and Lightfoot found experimental front speeds up to 40% slower (but never
faster) than predicted by Eq. (23). This could be explained by the presence of an undercompressive shock, which
travels at a slower speed than the shock in (23), as discussed in more detail in [4] for the case of intermediate film
thicknesses.
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3.2. Burgers flux with fourth order nonlinear diffusion

Before addressing the problem with both surface tension and gravity (i.e. a nonconvex flux function and a fourth
order nonlinear diffusion) we review the problem with surface tension and surface tension gradients but neglecting
gravity. Here the equation is

ht +
(

τh2

2η

)
x

= − γ

3η
(h3hxxx)x.

As in [33], we can rescale the equation to have the form (this is a different rescaling than that in Section 2)

ht + (h2)x = −(h3hxxx)x. (25)

Without the competing effect of gravity, the flux function is convex. Eq. (26) is a nonlinear fourth order regularization
of Burgers equation.

Consider the traveling wave problem for Eq. (25) with

h → 1 as x → −∞ and h → b̃ as x → ∞. (26)

In Theorem 1, we prove that wheneverb̃ < 1, there is a traveling wave solutionh(x − st) moving with speed
s = 1+ b̃. These capillary profile solutions are fourth order (nonlinear1 ) regularizations of the classical Lax shock
for the inviscid Burgers equation. They have been computed numerically in [33] for several values ofb̃ between
0.01 and 0.9.

Asymptotic analysis suggests that as in the case of gravitationally driven thin films [3,46] (for whichf (h) = h3)
the structure of the capillary ridge or“bump”, in traveling wave solutions of Eq. (25), has a singular limit in which
the height of the bump becomes unbounded asb̃ → 0. It is interesting to note that the nonconvex flux function
in (10), in which gravity is included, yields solutions with a fundamentally different singular limit asb → 0. For
very smallb, the dominant behavior at the leading edge of the front is always an undercompressive shock (see the
following sections) which has a height that is always bounded by 1. To summarize, we expect that asb → 0, for
Eq. (10) the front speed goes to zero while the undercompressive shock height goes to 1, while in the case of the
convex fluxes (f (h) = h2 or h3) the front speed approaches a constant (1 in the case of Eq. (26)) while the bump
height becomes unbounded.

Following a general topological argument of Michelson [41] (see also [42] for an application to surfactant driven
thin films) we now prove the existence of capillary shock profiles for Lax shocks. We use some ideas of the proof
in Section 7 to prove rigorous bounds on capillary profile solutions to Eq. (10).

Theorem 1. Given anyb̃ > 0 such thatb̃ < 1, there exists a bounded positive traveling wave solutionh(x − st)

of (25)with far field limits(26).

Proof. Going into a traveling reference frame, we note that if the problem with surface tension has a capillary
shock, it will be a traveling wave solution that reduces to solving a third order equation

hxxx − s

h2
+ 1

h
− Q

1

h3
= 0, (27)

where the speeds = 1 + b̃ andQ = −b̃. We look for a solution of (27) that goes to 1 asx → −∞ and tob̃ as
x → ∞.

1 Capillary profiles for fourth orderlinear regularizations of Burgers equation have been studied in [15,35,40,41].



440 A.L. Bertozzi et al. / Physica D 134 (1999) 431–464

Fig. 3. The functionR in the Lyapunov function for the casẽb = 0.2. Any orbit connecting 1 tõb must have all of its extrema lying betweenh∗
andh∗∗.

The proof of existence has three parts: (1) establish the existence of a Lyapunov function, (2) show that the
Lyapunov function can be used to show compactness of the set of bounded solutions, and (3) deform the equation
continuously in order to apply a topological (Conley index) argument to prove existence.

To carry out the first part, multiplying byhx , the ODE (27) may be written in terms of the Lyapunov function

L(h) = hxxhx + R(h),

where

R′(h) = − s

h2
+ 1

h
− Q

1

h3
.

Thus

(L(h))x = (hxx)
2

so that the Lyapunov function is increasing.
Now we show that the set of all bounded solutions of Eq. (27) is compact inC3(R). To do this, we first derive a

priori upper and lower bounds for bounded solutions of (27). Then we show that this leads to a priori bounds for
higher derivatives. This then leads to compactness inC3.

First note that any bounded solution of (27) connects two zeros ofR′(h), and the only choices arẽb and 1. Since
L(h) → R(h) asx → ±∞ for any bounded solutionh, andR(b̃) > R(1) we see that the only possible bounded
solutions are the fixed points̃b and 1 and possibly a heteroclinic orbit connecting these two states. Sincehxhxx

vanishes at an extremum of a solution, all bounded solutionsh must haveR(1) < R(h) < R(b̃). From the structure
of R, we see that there is a valueh∗ belowb̃ and a valueh∗∗ above 1 such thatR(h∗) = R(1) andR(h∗∗) = R(b̃).
All bounded solutions must lie betweenh∗ andh∗∗:

h∗ < h < h∗∗.

See Fig. 3 for a diagram.
These a priori upper and lower bounds imply via Eq. (27) thathxxx is uniformly bounded inL∞. To derive a

priori bounds on intermediate derivatives, we note that the Lyapunov function implies that any bounded solution
satisfies∫ ∞

−∞
(hxx)

2 dx = R(h+) − R(h−) < C,

whereh± = h(±∞), which implies, by the Sobolev lemma and the fact thathx has mean zero, an a priori bound
on theL∞ norm ofhx . The second derivative can be bounded inL∞ by a standard interpolation argument. Also,
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differentiating Eq. (27) and applying the known bounds for lower derivatives gives a priori bounds for all higher
derivatives.

To show that the set of all bounded solutions is compact inC3(R), we consider a sequencehi of bounded
solutions. Given any compact interval [−K, K], the functions(hi)xxx form an equicontinuous family. Thus, there
is a subsequence that converges inC3[−K, K] to a functionh which necessarily satisfies (27). A diagonalization
argument ini andK completes the proof of compactness inC3(R).

In order to apply Conley index theory, we deform (27) to an ODE with no critical points. Consider a smooth
family of ODEs

hxxx + β − s

h2
+ 1

h
− Q

1

h3
= 0 (28)

parameterized byβ. Denote byLβ the modified Lyapunov functionLβ = hxhxx + R(h) + βh. Let hI ∈ [b̃, 1]
denote the position of the inflection point ofR. Denoteβ0 = −R′(hI). For 0 < β < β0, the modified ODE (28)
also has the same structure as (27) and we see that solutions of the modified equation can be bounded between
h∗,β > h∗ andh∗∗,β < h∗∗. Moreover, we can bound the higher derivatives ofh as before.

We now apply a topological argument to finish the proof. Forβ > β0, the set of bounded solutions is empty. The
Conley index is a homotopy invariant associated with isolated sets of bounded solutions. Forβ > β0, the Conley
index for the empty set is different from that of a set of hyperbolic fixed points. Therefore, forβ = 0 there must be
a nontrivial bounded solution and, as we have shown above, the only choice is one connecting 1 tob̃. �

4. Dynamics of the PDE and undercompressive capillary shocks

In this section and the next, we consider Eq. (10) withD = 0, namely

ht + (h2 − h3)x = −(h3hxxx)x. (29)

Eq. (29) corresponds physically to a vertical incline or also the case whereτ2 is small compared withγρg. In this
section, we present some case studies of numerical simulations of the PDE (29), showing that a range of strong Lax
shocks are no longer admissible and that a double shock structure forms involving an undercompressive wave. This
kind of phenomenon was observed recently [23] for diffusive–dispersive equations of the form

ht + (f̃ (h))x = αhxx + βhxxx

in which f̃ is nonconvex. In the next section, we explain the transition from weak capillary shock profiles to the
undercompressive structure via a study of the ODE describing traveling wave solutions of (29).

The numerical scheme used to solve (29) is the same scheme used to generate the traveling wave profiles in [3],
a finite difference scheme with a fully implicit time step and spatial derivatives based on centered differences. The
discretization of the fourth order term is described in detail in [8]. The centered difference approximation of the
convective term coupled with the implicit time step produces a modified equation [19] that to first order in1t and
1x introduces second order numerical diffusion into (29):

ht + (f (h))x = 1t

2
(f ′(h)2hx)x − (h3hxxx)x.

The implicit time step produces a stable scheme with large1t ; however, the numerical diffusion causes this stable
method to give the wrong value for the undercompressive shock height when1t is too large. This indicates that the
structure of the undercompressive shocks may change significantly when second order diffusion is present (as in the
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Fig. 4. The Lax shock with surface tension. Hereb = 0.1, h∞ = 0.3.

case of moderately largeD in Eq. (10)). The numerical diffusion can be globally reduced by taking a sufficiently
small1t and locally reduced by using a reference frame moving with the speed of the front. Each strategy was used
when needed.

In the numerical solutions of initial value problems, we observe various patterns of propagating waves. In describ-
ing these waves, we use the terms shock wave and traveling wave interchangeably, identifying pieces of the solution
that appear to be traveling waves with the shock wave solutions of the underlying conservation law. Similarly,
we speak of compressive and undercompressive waves when the underlying shock waves have the corresponding
property. All of the computations are performed in a traveling reference frame moving with speed

s(h∞, b) = f (h∞) − f (b)

h∞ − b
= h∞ + b − (h2

∞ + h∞b + b2).

In some cases, we find a traveling wave solution with that speed and in other cases we do not. All cases discussed
below considerb = 0.1; however, the same qualitative dynamics emerge for all 0< b < 1/3. In each case, we
consider a range of left statesh∞ for which the dynamics of the PDE has certain observed characteristic behavior.
We note that the valuesh1, h2, andhUC discussed below all depend upon the right stateb.

Case 1(b < h∞ < h1. Unique weak Lax shock profiles). Givenb, there is a valueh1 such that for allb < h∞ < h1,
the solution of the PDE is always observed to evolve to a unique capillary shock profile connecting the statesh∞
andb. For example, consider initial data of a smoothed shock profile

h(x) = (tanh(−x + 100) + 1)
h∞ − b

2
+ b

connecting the statesh∞ asx → −∞ to b asx → ∞. Fig. 4 shows a plot of the solution forh∞ = 0.3 and
b = 0.1. The solution at later times, computed in a reference frame moving with speeds(0.3, 0.1), settles down to
the unique traveling wave solution for these boundary conditions. This behavior persists up to a value ofh∞ which
we callh1; it depends onb.

Case 2(h1 < h∞ < h2. Multiple Lax shock profiles). Forh∞ in a range,h1 < h∞ < h2, whereh2 also depends
onb, there are multiple capillary shock profiles connecting the same two left and right states, respectivelyh∞ and
b. Some of these profiles are stable for the PDE (29) and others are not. In Fig. 5, we show several solutions with
b = 0.1 andh∞ = 0.3323.
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Fig. 5. Two stable traveling waves with the same valuesb = 0.1, h∞ = 0.3323. The computations are done in a traveling reference frame
moving with shock speeds(h∞, b). Solid lines are the solutions at very late times.

For the solution shown in Fig. 5(a), we used the initial condition

h0(x) = (tanh(−x + 300) + 1)
h∞ − b

2
+ b. (30)

One might expect all profiles with the same far field boundary conditions as Eq. (30) to settle down to this profile.
However, if we start with the initial condition,

h0(x) =
{

((0.6 − h∞)/2) tanh(x − 300) + (0.6 + h∞)/2, x < 305,
−((0.6 − b)/2) tanh(x − 310) + (0.6 + b)/2, x > 305,

(31)

which introduces a bump, we observe (see Fig. 5(b)) that the solution approaches a different traveling wave profile
moving with the same speed and connecting the same left and right states.

In the next section, we study more carefully the ODE for the traveling wave profiles and show via numerical
computations in phase space that there are actuallyfour traveling waves for this pair of valuesh∞ = 0.3323 and
b = 0.1. Two (the ones depicted in Fig. 5) are stable with respect to the PDE evolution and the other two are not.

In addition to the two stable profiles shown in Fig. 5, there is another possibility for the dynamics. In Fig. 6, we
take the initial condition to be

h0(x) =
{

((0.6 − h∞)/2) tanh(x − 300) + (0.6 + h∞)/2, x < 310,
−((0.6 − b)/2) tanh(x − 320) + (0.6 + b)/2, x > 310,

(32)

with a broader hump than in Eq. (31), but of the same height. The solution does not settle down to a single traveling
wave. Instead, two shocks emerge, anundercompressive waveon the right connectingb to a larger statehUC ≈ 0.568,
followed by a slower compressive wave connectinghUC to h∞. Both waves travel more slowly than the traveling
waves of Fig. 5.

For eachb < 1/3, there is special value,hUC, for h∞ for which an undercompressive traveling wave exists. That
is, there is a capillary shock profile connectinghUC to b. The corresponding shock wave is undercompressive in the
sense that it is supersonic on both sides, i.e., the characteristic speed is smaller than the wave speed on both sides of
the shock. Correspondingly, the chord connectinghUC to b in the graph of the flux cuts through the flux curve at an
intermediate pointh∗ = 1−hUC − b. In Fig. 7, we show the “undercompressive connections” for various values of
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Fig. 6. Solution with an undercompressive wave (on the right) and a compressive wave. The dashed line is the initial condition Eq. (32); the dark
line is the solution at time 105. Note that the traveling reference frame is the same as in Fig. 5.

Fig. 7. The undercompressive connection. Here we compareb = 0.1, 0.05, 0.001. Shown is the connection fromb to the statehUC.

b. These were obtained by reading off the constant value ofh that emerges between the undercompressive traveling
wave and the compressive traveling wave, as in Fig. 6. We also confirmed these results via the ODE computations
in the next section.

Case 3(h2 < h∞ < hUC. Undercompressive double shock structures). Forh∞ in this range,there are no capillary
shock profiles joiningh∞ to b. In contrast to Case 2, forh2 < h∞ < hUC, all initial conditions that we tested
converge to a solution with the same double shock structure. Fig. 8 illustrates this behavior for the caseh∞ = 0.4
andb = 0.1. The initial condition is a smoothed step function fromh∞ = 0.4 tob = 0.1. It is shown by the dashed
line in the plot. The solution at a later time has two shocks. The leading shock is the undercompressive shock and
the trailing shock is a classical Lax shock.

Case 4(h∞ > hUC. Rarefaction–undercompressive shock). For this case, we see a combination rarefaction
wave and undercompressive shock. Recall from Section 2 that in the case where surface tension is absent, when
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Fig. 8. Undercompressive double shock structure forh∞ = 0.4 tob = 0.1 at time 4800.

h∞ > (1 − b)/2, an initial step profile evolves as a rarefaction–shock combination, given by the solution in Eq.
(23). However, for the problem with fourth order diffusion, a capillary shock profile connecting(1 − b)/2 to b

typically does not exist and instead the rarefaction connects to the undercompressive shock connectinghUC to b.
Since the undercompressive shock moves with a speeds(hUC, b), which is greater than the speedf ′(hUC), of the
right-hand side (leading edge) of the rarefaction wave, the undercompressive shock separates from the rarefaction
wave to produce a separated rarefaction–shock profile. At large times or, via rescaling the equation, whenε is small
in Eq. (12), we expect that the solution of the PDE with approximate Riemann initial data will approximate the
nonclassical inviscid rarefaction–undercompressive shock solution given by

hRUS(ξ) =




h∞ if ξ ≤ f ′(h∞),

hR(ξ) if f ′(h∞) ≤ ξ ≤ f ′(hUC),

hUC if f ′(hUC) ≤ ξ ≤ s(hUC, b),

b if s(hUC, b) < ξ,

(33)

whereξ = x/t is the similarity variable and as in Section 2,h = hR denotes the rarefaction wave.

The following numerical example confirms this prediction. Here we considerb = 0.1 andh∞ = 0.8, with initial
condition

h(x) = (tanh(−x + 1100) + 1)
h∞ − b

2
+ b. (34)

The initial data are centered atx = 1100 simply so that the rarefaction remains in the regime of positivex − st for
the duration of the simulation. Here,s = s(0.8, 0.1) = 0.17, is the speed of the reference frame and the time step
is chosen small enough to minimize dissipative errors from numerical diffusion. The computed solution of Eq. (29)
starting with this initial condition does indeed evolve into a rarefaction–shock combination, in which the shock is
the undercompressive shock fromhUC to b = 0.1, which separates from the rarefaction wave. Shown in Fig. 9
are the initial condition (dashed line), the PDE solution at timet = 1400 (a subset of the computational values
are shown as diamonds) and the expected inviscid limit of the rarefaction–undercompressive shock combination in
Eq. (33) att = 1400 (shown as a dot-dashed line). Note that the latter two are almost identical, except where the
fourth order diffusion smooths the shock and the connection to the rarefaction.
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Fig. 9. A rarefaction undercompressive shock solution for smoothed Riemann initial data withh∞ = 0.8 andb = 0.1. The initial condition (34) is
shown as a dashed line and the numerical solution at timet = 1400 is shown as diamonds. The theoretical inviscid nonclassical rarefaction–shock
is shown as a dot-dashed line.

5. Traveling waves with fourth order diffusion

In this section, we examine traveling wave solutions of Eq. (29). These solutions satisfy the third order ordinary
differential equation

−s(h − h−) + f (h) − f (h−) = −h3h′′′, (35)

whereh− = limξ→−∞h(ξ). (In integrating the equation once, we have assumedh′′′(ξ) → 0 asξ → −∞.)
Eq. (35) has two parametersh− ands. For the present, the singularity ath = 0 is unimportant; we takeh− > 0

and restricth to be bounded away from zero.
Writing Eq. (35) as

h′′′ = g(h; h−, s), (36)

where

g(h; h−, s) = −h−3 (−s(h − h−) + f (h) − f (h−)) , (37)

we see that equilibriah = h+ (zeroes ofg(.; h−, s)) are given by the Rankine–Hugoniot condition (20) for shocks.
Moreover, the linearized ordinary differential equationu′′′ = (∂g/∂h)(h+; h−, s)u has three eigenvalues, namely
the three cube roots of(∂g/∂h)(h+; h−, s). Note further that(∂g/∂h)(h+; h−, s) = −(1/h3+)(f ′(h+)− s), so that
the sign of(∂g/∂h)(h+; h−, s) is related to whether characteristics ath+, traveling with speedf ′(h+), are faster
or slower than the speeds of the traveling wave.

To further understand equilibria, and trajectories joining different equilibria, we write Eq. (36) as a first order
system:

h′ = v, v′ = w, w′ = g(h; h−, s). (38)

For a specific equilibrium(h, v, w) = (h+, 0, 0), withg(h+; h−, s) = 0, the three cube roots of(∂g/∂h)(h+; h−, s)

give rise to the following structure of invariant manifolds containing the equilibrium.
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1. If f ′(h+) < s, then(∂g/∂h)(h+; h−, s) > 0, so that(h+, 0, 0) has a one-dimensional unstable manifold and
a two-dimensional stable manifold on which solutions spiral into the equilibrium due to the complex conjugate
pair of eigenvalues with negative real part.

2. If f ′(h+) > s, then(∂g/∂h)(h+; h−, s) < 0, so that(h+, 0, 0) has a one-dimensional stable manifold and a
two-dimensional unstable manifold on which solutions spiral away from the equilibrium due to the complex
conjugate pair of eigenvalues with positive real part.

Now equilibria of Eq. (38) correspond to intersections of the line with slopes through(h−, f (h−)) with the graph
of f . Alternatively, we can fixh+ 6= h− and defines through the Rankine–Hugoniot condition (20). Specifically,
for the flux functionf (h) = h2 − h3,

s = h− + h+ − h2
− − h−h+ − h2

+. (39)

Consider the case of a weak Lax shock, specifically 0< h+ < h− < 1/3, with h− − h+ small. Then(h−, 0, 0)

has a two-dimensional unstable manifold and(h+, 0, 0) has a two-dimensional stable manifold. If they intersect
transversally (away from the equilibria), then the curve of intersection is a trajectory for Eq. (38) from(h−, 0, 0)

to (h+, 0, 0). We refer to the corresponding solution of the partial differential equation (29) as a capillary shock
profile fromh− to h+.

The existence of capillary shock profiles for weak Lax shocks away from the inflection pointh = 1/3 is provided
by the analysis of Kopell and Howard [35].

Theorem 2. Let 0 < h+ < 1/3. There existsε = ε(h+) > 0 such that if0 < h+ < h− < h+ + ε, then there is a
capillary shock profile fromh− to h+.

Note that while Theorem 1 concerns the existence of arbitrarily strong capillary shock profiles for Lax shocks,
the proof depends on the convexity of the flux function. In Theorem 2, the flux is nonconvex, but the hypotheses
are designed to relegate the nonconvexity to higher order terms which do not affect the existence of the traveling
wave profiles. It might be possible therefore to modify the proof of Theorem 1 so that it applies to Theorem 2, but
instead we appeal directly to the result of Kopell and Howard.

In the following subsection we discuss numerical computations of the structure of phase space in order to identify
values ofh− for which there are capillary shock profiles for Lax shocks, and to understand transitions in the vector
field (38). In a recent paper [34], Kataoka and Troian compute several trajectories for the ODE (36), and discuss the
stability of the corresponding traveling waves to two-dimensional perturbations. In the subsequent subsection we
discuss the stability of the capillary shock profiles with respect to the dynamics of the PDE (29). In Section 7 we
derive a priori upper and lower bounds for capillary shock profiles, and also derive an upper bound on the values of
h− for which capillary shock profiles exist.

5.1. Structure of phase space

We next investigate the appearance of capillary shock profiles for differenth− by numerically exploring the
structure of the phase space. In order to do so, we determine the unstable and stable manifolds of the three equilibria

B = (h+, 0, 0), M = (h−, 0, 0), T = (1 − h− − h+, 0, 0)

(with h+ < h− < 1−h− −h+) by integrating Eq. (36) either forwards or backwards inξ , respectively, starting with
initial data(h(0), h′(0), h′′(0))at a distance of about 10−5 · · · 10−7 from an equilibrium. The necessary computations
were carried out using the explicit Adams method of the LSODE package [25], which features automatic step size
selection and adaptivity.
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Certain trajectories are visualized in a perspective plot of the three-dimensional phase space. Additionally, we
show the intersection of the stable manifoldW s(B) of B, the unstable manifoldWu(M) of M, and the unstable
manifoldWu(T ) of T with the plane

P = {(h, h′, h′′); h = (2h− + h+)/3}.
We refer to the planeP as a Poincaré section. SinceW s(B) andWu(M) are surfaces, their intersections with

P appear as two curves, whereas the one-dimensional manifoldWu(T ) appears in the Poincaré section as a point.
Capillary profiles for Lax shocks correspond to intersections ofWu(M) andW s(B). A capillary profile for an
undercompressive shock appears whenW s(B) contains the curveWu(T ).

In the discussion below, we assumeh+ = b = 0.1; however, the same qualitative picture emerges for other
positive values ofb < 1/3. We discuss the dynamics of the phase space forb close to 1/3 in the next section. The
results of the computations are shown in Figs. 10–15, for values ofh− increasing from 0.3 to 0.355. The notation
for the different curves and significant points carries over from one figure to the next, with new symbols added as
needed. We discuss in turn three cases, corresponding to the first three cases identified in Section 4. (Case 4 of
Section 4 is the same as Case 3 here, because of the parameterization of the vector field byh−, which is always
taken to be the middle equilibrium in this section.)

Case 1(h− < h1. Unique capillary shock profile). For each value ofh+ < 1/3 we find a maximum valueh1 for
h−, with the property that there is a unique orbit fromM to B providedh+ < h− < h1. This is the sameh1 as in
the previous section. Forh+ = 0.1, we find

h1 = 0.3286.

Fig. 10 shows an example withh− = 0.3. The three-dimensional phase portrait is shown in Fig. 10(a) with the
unstable manifoldsWu(T ) andWu(B) shown as dotted lines. The orbit connectingB to M is shown as a solid
line and the orbit fromM to T is a dot-dashed line. In Fig. 10(b), the Poincaré section shows that the curves
Wu(M) ∩ P andW s(B) ∩ P intersect only once, demonstrating uniqueness of the orbit connectingM to B. This
orbit corresponds to the traveling wave solution shown in Fig. 4. Note the spiraling structure ofWu(M) ∩ P . It
indicates that the surfaceWu(M) winds tightly around the one-dimensional unstable manifoldWu(T ) of T , which
forms part of its boundary.

Case 2(h1 < h− < h2. Multiple capillary shock profiles). For each value ofh+ < 1/3 there is a range of values
for h− > h1, for which there exists more than one orbit connectingM to B. This range ofh− extends up to a finite
upper boundh2, as in the previous section. Forh+ = 0.1, we find

h2 = 0.3479.

The number of connections can be computed numerically by examining the number of intersection points of the
curvesWu(M) ∩ P andW s(B) ∩ P on the Poincaré section. We present several computations below, all with
h+ = 0.1.

For h− = 0.33, the Poincaré section, shown in Fig. 11(b), indicates three intersections ofW s(B) ∩ P and
Wu(M)∩P . Fig. 11(a) shows the corresponding orbits in three-dimensional phase space; on the scale of the graph,
two of the orbits nearly coincide with the largest separation nearT . Note thatWu(T ) comes closer toB than in
Case 1 (for whichh− = 0.3). However, in both casesWu(T ) follows the same branch of the unstable manifold
Wu(B) asξ → ∞.

As h− increases fromh1, W
u(T ) comes even closer toB until at a special value

h− = h∗ = 0.33205,
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Fig. 10. Phase portrait forh− = 0.3: The unique connection fromM to B is denoted by a solid line in (a) and appears as the unique intersection
point Wu(M) ∩ W s(B) ∩ P in (b), P = {h = (h+ + 2h−)/2}. The circle indicates that this connection corresponds to a unique andstable
traveling wave solution of the PDE (29). The dashed lines in (a) are the unstable manifolds ofT andB, and a cross in the Poincaré section shows
Wu(T ) ∩ P .

Wu(T ) actually connects toB. This special orbit is shown in Fig. 12(a) emphasized with diamonds. The Poincaré
section in Fig. 12(b) shows thatW s(B) passes through the center of the spiral structure ofWu(M).

The qualitative structure of the phase space suggests that there are infinitely many turns inWu(M) ∩ P, and
consequently a countably infinite number of intersections ofWu(M) ∩ P with W s(B) ∩ P whenh = h∗. To
understand this, we first remark that, in the neighborhood ofT , the connection fromM to T is governed by the two
complex eigenvalues of the linearization of Eq. (38) around this equilibrium. These eigenvalues have negative real
part, so that the trajectory approachesT through a spiral with an infinite number of turns. A neighboring trajectory,
contained inWu(M) but not inW s(T ), will initially stay close to the orbit connectingM to T , and undergo some
turns, until it finally is repulsed from the vicinity ofT along one of the two branches ofWu(T ). Since it seems
reasonable to expect that an arbitrary number of turns can be achieved just by picking an orbit close enough to the
connection fromM to T , the spiral structure ofWu(M), which consists of the union of all these individual orbits,
can be expected to have an infinite number of turns.

The infinite number of intersections ofWu(M) ∩ P with W s(B) ∩ P whenh = h∗ corresponds to an infinite
number of different orbits connectingM to B. Each orbit corresponds to a different traveling wave solution of the
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Fig. 11. Phase portrait forh− = 0.33: Solid lines in (a) represent the three connections fromM to B, which appear as three intersection points
Wu(M) ∩ W s(B) ∩ P in (b). Circles and boxes indicate whether they correspond to stable or unstable traveling wave solutions of the PDE (29),
respectively. For better visibility, one branch ofW u(T ) has been emphasized with ‘+’.

PDE (29). All of these traveling waves have the same speed. Note that Fig. 12(b) resolves only a few turns of the
spirals ofWu(M) ∩ P . A closeup of the area atWu(T ) ∩ P in Fig. 13 shows at least two more turns of the spiral,
and in numerical trials we could resolve a total of six turns and five intersection points, inWu(M) ∩ W s(B) ∩ P .
The accumulation point of the intersection points in the Poincaré section corresponds to the special orbit connecting
T to B. This orbit yields a special traveling wave solution of the PDE (29). This is the undercompressive capillary
shock discussed in Case 3 of the previous section. Note thath∗ andhUC are related byhUC = 1 − h+ − h∗.

The caseh∗ < h− < h2 is analogous toh1 < h− < h∗. For example, there are two capillary shock profiles
in the caseh− = 0.333. Note thatWu(T ) ∩ P now lies on the other side ofW s(B) ∩ P , see Fig. 14(b). In the
three-dimensional plot (Fig. 14(a)), the unstable manifold ofT again gets close toB, but then follows the other
branch ofWu(B) asξ → ∞.

Case 3(h2 < h−. No capillary shock profiles). Forh− larger thanh2, W
s(B) ∩ Wu(M) = ∅, implying that there

are no orbits fromM to B. Figs. 15(a and b) show the caseh− = 0.355.Wu(T ) andWu(M) have moved further
away fromW s(B). The Poincaré section, shown in Fig. 15(b), illustrates very well the nonintersection.



A.L. Bertozzi et al. / Physica D 134 (1999) 431–464 451

Fig. 12. Phase portrait forh− = h∗ = 0.33205: Solid lines indicate two of the (probably infinite amount of) connections fromM to B in (a),
which appear as intersection points in (b). The diamonds in (a) emphasize the special connection fromT to B, which only exists for this value
of h−. It corresponds to the undercompressive shock profile of Eq. (29). Note that the cross in (b) representingW u(T ) ∩ P now is on top of the
dotted line forW s(B) ∩ P .

Fig. 13. Close-up of the Poincaré section forh− = h∗ = 0.33205, showing additional turns ofW u(M).
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Fig. 14. Phase portrait forh− = 0.333: Note thatW u(T ) gets close toB, then leaves the vicinity of this fixed point along the other branch of
Wu(B) ∩ P than in Fig. 11(a). Correspondingly,W u(T ) andW s(B) ∩ P have changed sides in the Poincaré section, compared to Fig. 11(b).

5.2. Stability of the capillary shock profiles

The next question relates to the stability of the capillary shock profiles as traveling wave solutions of the underlying
PDE (29). We explore this question numerically. Though every connection ofM toT in the three-dimensional phase
space of the ODE (36) corresponds to a traveling wave solution of Eq. (29), not all of these arestablesolutions
of the PDE. In the stable case, small perturbations of the profile decay with time, whereas for unstable traveling
waves, the perturbed solution is observed to evolve into either a different traveling wave or a double shock solution
as described in Section 4.

We determine the stability of a capillary shock profile obtained from the ODE (36) by using it as initial data for
the PDE (29), which we then solve using the same numerical procedure as in Section 4. Although numerical and
interpolation errors supply sufficient perturbations of the profile, we also investigate what happens with the unstable
traveling waves if we explicitly apply a small perturbation (height between 0.01 and 0.025) with compact support
centered at the maximum of the initial profile. We discuss the results of this investigation for each range ofh−
identified in the previous subsection.



A.L. Bertozzi et al. / Physica D 134 (1999) 431–464 453

Fig. 15. Phase portrait forh− = 0.355: In (b) we see thatW s(B) andW u(M) are well apart, suggesting that no connection fromM to T , i.e.
no traveling wave solution of Eq. (29), exists.

In Case 1: h− < h1, we find that the unique traveling wave is stable. Stability is indicated in the Poincaré section
of Fig. 10(b) forh− = 0.3, by labeling the intersection point inP with a circle.

For Case 2:h1 < h− < h2, we distinguish between the two subcasesh− ≤ h∗ andh− > h∗.
Case 2a:h1 < h− ≤ h∗. We label the capillary shock profiles according to their place along the spiral curve

Wu(M) ∩ P , using circles and boxes at the intersection points withW s(B) ∩ P to indicate stable and unstable
traveling waves, respectively. The stability properties alternate, with a stable traveling wave farthest away from
the centerWu(T ) ∩ P of the spiral. We find numerically that the unstable traveling waves evolve into either the
preceding or the following traveling wave, both of which are stable. Specifically, the application of a small nega-
tive/positive perturbation selects the preceding/following traveling wave, respectively. These findings are illustrated
in the Poincarésections of Fig. 11(b), forh− = 0.33, and in Fig. 12(b), forh− = h∗.

Case 2b:h∗ < h− ≤ h2. Again, stable and unstable capillary shock profiles alternate, starting with a stable
traveling wave farthest away fromWu(T ) ∩ P. Since we now have an even number of capillary shock profiles, the
last one is unstable. It decays into the preceding traveling wave if perturbed negatively, and into the double shock
profile for positive perturbations. We remark that in Case 2a, such a double shock profile cannot persist, since the
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Fig. 16.h− = 0.3323: The stable (—) and unstable (- - -) capillary shock profiles.

Fig. 17. The Poincaré sectionP corresponding to Fig. 16; symbols carry over from Fig. 10(b)–14(b).

Lax shock would have to travel at a higher speed than the undercompressive shock. Fig. 14(b) shows the Poincaré
section for this case, withh− = 0.333.

As another example for Case 2b, we show the results forh− = 0.3323. We remind the reader that in Section 4,
the long-time solutions of the PDE were computed for these parameter values, i.e.,b = h+ = 0.1 andh∞ = h− =
0.3323, and that, depending on the shape of the initial data (30)–(32), either one of two capillary shock profiles in
Fig. 5 or the double shock profile Fig. 6 emerged. As one might expect, the two capillary profiles are those solutions
of the ODE which are stable solutions of the PDE. Besides these, two more traveling waves are found as solutions
of the ODE, which are unstable and hence do not appear as long-time solutions of the PDE.

All four traveling waves are shown in Figs. 16 and 17, where the solid/dashed lines distinguish the stable and
unstable profiles. The Poincaré section shows that this is the complete set of capillary shock profiles forh− =
0.3323, h+ = 0.1. The numbers refer to the order in which the capillary shock profiles appear on the spiral formed
by Wu(M). For negative perturbations, the (unstable) second and fourth capillary shock profiles decay into the first
and third, respectively. For positive perturbations, the solutions tend towards the third capillary shock profile or the
double shock profile, respectively.

We end this section with a summary of our numerical investigation of the phase space of the ODE (36) and of
the stability of the capillary shock profiles as solutions of the PDE (29). We find that, ash− < h∗ increases,W s(B)

moves through the spiral structure ofWu(M), and new capillary shock profiles emerge each time a new turn of
the spiral is crossed. More precisely, at each crossing, a new capillary shock profile appears, which then separates
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into a pair of traveling waves, one stable and the other unstable, suggesting a saddle–node type of bifurcation. The
cascade of bifurcations leads to infinitely many traveling wave solutions whenh− = h∗, with a heteroclinic orbit
from T to B as an accumulation point of the orbits fromM to B. The structure of this accumulation point might
be investigated rigorously using Sil’nikov’s method [21]. Similar behavior is observed ash approachesh∗ from
above. Furthermore, forh− < h1, we find a unique and stable capillary shock profile exists; forh− > h2, there
are no capillary shock profiles connecting toh+. In Section 7 we derive a priori bounds for the left stateh− that a
capillary shock profile can connect from as a function of the right stateh+. These bounds are shown in Fig. 20; the
graph shows that the upper bound forh− is only slightly larger than the numerical values ofhUC computed from
the phase portrait.

6. Perturbation analysis forhhh near 1/3

In this section, we investigate solutions of Eq. (29) nearh = 1/3. To this end, we rescale parameters and variables
usingδ = 1

3 − b, with 0 < δ � 1. Specifically, we set

u∞ = δ−1
(
h∞ − 1

3

)
, u = δ−1

(
h − 1

3

)
,

and introduce rescaled independent variables

ξ = 3δ2/3
(
x − 1

3t
)

, τ = 3δ8/3t.

Then, to leading order inδ, we obtain the equation

uτ − (u3)ξ = −uξξξξ , (40)

with boundary conditions atξ = ±∞
lim

ξ→∞
u = −1, lim

ξ→−∞
u = u∞, lim

ξ→±∞
uξ = lim

ξ→±∞
uξξ = 0.

Next, we seek traveling wave solutions for Eq. (40), which obey

lim
ξ→±∞

u = u±, lim
ξ→±∞

uξ = lim
ξ→±∞

uξξ = 0.

Substitutingu = u(η), η = ξ − στ into Eq. (40), and integrating once, we obtain

σ = −(u2
− + u−u+ + u2

+), uηηη = (u − u−)(u − u+)(u + u− + u+). (41)

It is convenient to reduce the number of parameters in Eq. (42), as follows. When the equilibriau−, u+ and
−(u− + u+) are distinct, an appropriate change of variables in the ODE yields

uηηη = (u2 − 1)(u − ρ) (42)

with a single parameter−1 < ρ < 1. By symmetry, and bearing in mind the caseu+ = −1 corresponding to
h(∞) = b, we restrict attention to the range 0< ρ < 1.

Eq. (42) is equivalent to the first order system

u′ = v, v′ = w, w′ = (u2 − 1)(u − ρ),

where′ = d/dξ . We again have three hyperbolic fixed points,B = (−1, 0, 0), M = (ρ, 0, 0) andT = (1, 0, 0). As
for the unscaled equation,B andT have two-dimensional stable manifolds, andM has a one-dimensional stable
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Fig. 18. Sections of the phase portrait of Eq. (42) withP = {u = (−1+ 2ρ)/3}, for ρ = 0.397. The enlarged view on the right resolves the four
intersection pointsW u(M) ∩ W s(B) ∩ P . Circles and boxes indicate whether they correspond to stable or unstable traveling wave solutions of
the PDE (40), respectively.

manifold. To investigate trajectories between equilibria, we study the intersections of stable and unstable manifolds
in a Poincaré section withP = {u = (−1 + 2ρ)/3}. Fig. 18 shows an example forρ = 0.397. We observe that
Wu(M) has the same spiral structure aroundWu(T ) as in Eq. (35).

As we varyρ, the relative position ofWu(M) andW s(B) change, and we have three cases,ρ < ρ1 = 0.3793,
where we have a unique connection fromM to B, ρ1 ≤ ρ < ρ2 = 0.4720, with multiple connections, andρ2 < ρ,
where no connection appears to exist at all. For a special value ofρ = ρ∗ = 0.3959, we find thatT connects to
B, which corresponds to the undercompressive part of the double shock solution of Eq. (40). In conclusion, the
structure of the connecting orbits we are interested in is the same for Eq. (42) as for the more complicated unscaled
equation (35).

For the same example as before, i.e.ρ = 0.397, for which the enlarged view of the Poincaré section in Fig. 18(b)
shows that four connections fromM to B exist, we investigate the stability of the corresponding traveling wave
solutions of the PDE (40). We find the same stability pattern as before, i.e. if we rank the traveling wave solutions
according to their position on the spiral ofW s(M), stable and unstable solutions of the PDE (40) alternate. Again,
numerical errors were sufficient to initiate the destabilization of the unstable traveling waves, but explicitly applying
an initial perturbation showed that the perturbed traveling wave could decay into either of the two neighboring
traveling waves, or into the Lax/undercompressive shock combination for the highest ranked traveling wave.

We conclude this section by comparing the numerical results for Eq. (42) to the computed solutions of Eq. (35)
for h+ andh− close to 1/3. We do so by usingρ1, ρ∗ andρ2 (from Eq. (42)) to estimateh1, h∗ andh2, for smallδ.
Forh+ = b, and generalh−, b < h− < (1 − b)/2, the corresponding values foru± are

u+ = −1, u− = δ−1
(
h− − 1

3

)
.

We subsequently transform Eq. (41) via

ū = −2(u − u+)

2u+ + u−
− 1, ξ̄ =

(
2u+ + u−

2

)2/3

ξ,

to get Eq. (42), after dropping the bars, whereρ is given by the following expression,

ρ = −3u−
2u+ + u−

.
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Solving this forh− yields

h− = 1

3
− 2ρ

3 + ρ

(
b − 1

3

)
,

from which we get the following asymptotic estimates by settingρ = ρ1, ρ∗ andρ2, respectively,

has
1 = 1

3 + 0.2245δ, has
∗ = 1

3 + 0.2332δ, has
2 = 1

3 + 0.2719δ.

Graphical comparison withh1, h∗ andh2 in Fig. 21 shows good agreement for 0.25 < b < 1/3.

7. A priori bounds for capillary shock profiles

Recall that a capillary shock profile is a traveling wave solution,h(x − st) of the PDE (10)

ht + (h2 − h3)x = −(h3hxxx)x + D(h3hx)x. (43)

Here we derive bounds on the maximum height of any traveling wave solution and also bounds on the admissible
far field statesh± for such a solution. A traveling waveh(x − st) connecting the stateh− to the stateh+ satisfies

−shx + (h2 − h3)x = −(h3hxxx)x + (Dh3hx)x, (44)

wheres = h− + h+ − (h2− + h−h+ + h2+) is the speed of the wave. We can integrate Eq. (44) once to obtain

−sh + (h2 − h3) = −h3hxxx + Dh3hx + Q, (45)

whereQ = −h−h+ + h2−h+ + h2+h−.

7.1. Bounds for the maximum and minimum height of a traveling wave

As in the proof of Theorem 1, Eq. (45) has a Lyapunov function

L(h) = hxxhx + R(h),

where

R′(h) = − s

h2
+ 1

h
− 1 − Q

h3

so that

(L(h))x = (hxx)
2 + D(hx)

2.

Unlike in Theorem 1 where we had a convex flux, the functionR can have three extrema. Whenh− + h+ < 1, the
chord connecting these two points on the graph of the flux function intersects the flux at a third value 1− h− − h+.
In such a case, the three extrema areh−, h+, and 1− h− − h+. An example of such aR is shown in Fig. 19.

Although the Conley index argument in the proof of Theorem 1 does not carry over to the case of a nonconvex
flux, the part of the proof addressing a priori pointwise upper and lower bounds can be extended. In particular, for
any traveling wave solution connecting the statesh− andh+, there exist a priori upper and lower bounds for the
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Fig. 19. The functionR in the Lyapunov function for the case with gravity and surface tension. Note that the functionR decreases for largeh.
Pictured are the a priori upper and lower boundsh∗∗ andh∗ for a traveling wave solution connecting the statesh− andh+.

extrema of the traveling wave. For example, whenh+ < h− < 1 − h+ − h−, the extrema of the traveling wave
satisfy

h∗ < hextrema< h∗∗,

whereh∗ andh∗∗ are defined by (see Fig. 19)

h∗ = min{h | R(h) ≥ R(h−)}, h∗∗ = max{h | R(h) ≥ R(h−)}.

7.2. Entropy–flux pairs and constraints on admissible capillary shock profiles

Another related question is to determine which statesh− andh+ admit a traveling wave solution of Eq. (45).
Here we show that it is possible to use the concept of entropy–flux pairs to derive a priori bounds for admissible
capillary shocks. Any scalar conservation law of the form

ht + (f (h))x = 0

can be rewritten in the form

G(h)t + F(h)x = 0,

whereG, F are called an entropy–flux pair. Note thatG andF are related byF ′(h) = G′(h)f ′(h). We apply this
idea to the traveling wave ODE (45).

First we review how to do this for the case of linear second order diffusion. We consider

ht + (f (h))x = εhxx

and we want to know what traveling wave solutions exist connecting the left stateh− to the right stateh+ < h−.
Let us assume thath+ > 0. If we have such a solutionh(x − st) it must satisfy

−shx + (f (h))x = εhxx. (46)

Now let us consider a function ofh, G(h), that satisfiesG′′(h) > 0 on the range ofh. Multiplying Eq. (46) by
G′(h), integrating from−∞ to ∞, and integrating by parts gives

−s[G(h)] + [F(h)] = −ε

∫
G′′(h)h2

x. (47)
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Here [A] = A(∞) − A(−∞). Eq. (47) gives us the inequality

−s[G(h)] + [F(h)] ≤ 0 (48)

which is the key equation used to derive bounds ons.
We begin by noting that the caseG′(h) = 1 gives the shock speed if such a shock exists:

s = f (h−) − f (h+)

h− − h+
. (49)

Now consider the caseG(h) = hm/m for large positivem. ThenG(h−) > G(h+) so that [G(h)] is negative and
Eq. (48) yields the result that

s ≤ F(h−) − F(h+)

G(h−) − G(h+)
.

Notice that

F(h−) − F(h+) =
∫ h−

h+
f ′(h)G′(h) dh = f ′(h−)G(h−) − f ′(h+)G(h+) −

∫ h−

h+
f ′′(h)G(h) dh

so that

s ≤ f ′(h−)G(h−) − f ′(h+)G(h+)

G(h−) − G(h+)
−

∫ h−
h+f ′′(h)G(h) dh

G(h−) − G(h+)
.

The first term on the right-hand side is

f ′(h−) − f ′(h+)G(h+)/G(h−)

1 − G(h+)/G(h−)
.

SinceG(h+)/G(h−) → 0 asm → ∞, we see that asm → ∞ the first term goes tof ′(h−). Likewise, the second
term goes to zero asm → ∞. To see this, note that

∥∥∥∥
∫ h−

h+
f ′′(h)(G(h)/G(h−)) dh

∥∥∥∥≤C

∫ h−

b

(h/h−)m dh = C

m + 1

(
1 − (b/h−)m+1

)
→0 as m→∞. (50)

The upshot is that takingm → ∞ gives the right-hand side of the classical Lax entropy condition

s ≤ f ′(h−). (51)

Repeating the above argument for negativem and takingm → −∞ gives the left-hand side of the Lax entropy
condition

f ′(h+) ≤ s. (52)

For a nonconvex flux function with a single inflection point, a capillary shock profile is admissible if and only if it
satisfies the two conditions (52).

For the problem with fourth order diffusion, we will not be able to show that all convex entropy functionsG(h)

yield such inequalities. Instead, we will have a restricted class of entropies for which such conditions hold.
To make this work, we appeal to some previous work on dissipative entropies for fourth order degenerate diffusion

(see [2,6,8]). Consider the class of equations

−shx + (f (h))x = −ε(hnhxxx)x, (53)
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Fig. 20. Graphs of the left- and right-hand side of Eq. (56) for fixedh+ = 0.1 as a function ofh−. The graph shows that forh+ = 0.1 the entropy
bound restricts admissible connections fromh+ = 0.1 to lie in the rangeh+ = 0.1 ≤ h− ≤ 0.627.

with n > 0 and solutionh > 0. We again ask what restriction the equation imposes on solutions that connect the
stateh− at x → −∞ to the stateh+ at x → ∞. Again, we consider a convex entropy functionG(h) such that
G′′(h) is nonnegative on the range ofh. Multiplying Eq. (53) byG′(h) and integrating by parts gives

−s[G(h)] + [F(h)] = ε

∫
G′′(h)hnhxxxhx. (54)

We can derive an inequality similar to Eq. (48) provided that we can find a convex functionG(h) such that the
right-hand side of Eq. (54) has a nonpositive sign. Following the analysis in [8] and later used in [2,6] to prove
results about weak solutions to fourth order degenerate diffusion equations, we see that forG′′(h) = hp−n, the
right-hand side of Eq. (54) is nonpositive whenever−1

2 < p ≤ 1. This gives us a range of power-law entropies and
corresponding inequalities,

−s[G(h)] + [F(h)] ≤ 0. (55)

We now consider the casen = 3. We expect that the bounds given by the entropy will include values ofh− in the
set [0, h2] ∪ hUC determined numerically in Sections 4 and 5. The casep = 1, with G(h) = −logh, above gives
us the sharpest constraint. The bound (55) becomes

h− + h+ − (h2
− + h−h+ + h2

+) ≥ 3h2−/2 − 2h− − 3h2+/2 + 2h+
−log(h−) + log(h+)

. (56)

The left- and right-hand sides of this inequality are shown in Fig. 20. This bound implies that givenh+ there are
maximum and minimum values ofh− for which traveling waves exist. These bounds are displayed graphically in
Fig. 21.

Fig. 21 compares the bounds onh− for 0 < h+ < 1/3 with the numerical values ofhUC(h+) (dark triangles) of
the undercompressive connection and with the valueh2(h+) (circles) above which classical shocks are no longer
observed. Also the values forh∗ andh1 are shown as squares and light triangles; these values are extremely close
to each other. Fig. 21(b) shows a close up nearh+ = 1/3 and compares with the values predicted by the asymptotic
theory in Section 6. Note that the upper bound given by the theory is not much larger than the numerical value
for huc.

8. Concluding remarks

In this paper, we have investigated solutions of the nonlinear partial differential equation (29) that has a nonconvex
flux and nonlinear fourth order diffusion. The numerical investigation has uncovered a variety of phenomena
associated with traveling wave solutions of the equation. These phenomena also occur in the simpler equation (40)
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Fig. 21. The upper and lower bounds, shown as solid lines, onh−, as determined by the entropyG(h) = −log(h), for various values ofh+. We
compare these bounds with the numerical values for the undercompressive shock valuehUC (dark triangles) and the thresholdsh1 (squares),
h2 (circles) as well ash∗ (light triangles). The figure on the right shows a closeup nearh+ = 1/3. We compare with the asymptotic theory of
Section 6, shown by dashed (h1), grey (h∗) , and dot-dashed (h2) lines.

with linear fourth order diffusion. The numerics shows that for shock dynamics, theε → 0 limit of Eq. (2) has
different behavior from the classical results for theε = 0 hyperbolic conservation law. In particular, initial data
corresponding to strong Lax shocks can give rise to a double wave structure that includes an undercompressive
shock as the leading front. It is especially interesting that such dynamics arise from a purely diffusive (albeit
fourth order) regularization of the PDE. Since the double wave structure has a leading shock that is often much
larger than the jump for the Lax shock, this is a striking example of how fourth order diffusion can violate the
maximum principle. Also along these lines, in the numerical studies of the undercompressive shock, we note that
the shock heighthuc increases as the downstream film thicknessb decreases. The rigorous bound in Section 7
shows thathuc < 1 while the numerics shows thathuc is as large as 0.9 for b on the order of 10−4. We conjecture
that huc → 1 asb → 0. If true, this has some interesting consequences for the dynamics of the PDE (29)
with jump initial data. In particular, for very smallb, with the exception of very small values ofh∞, any h∞
less thanhuc will yield a solution to the PDE that evolves as a double shock structure. Moreover, the leading
undercompressive shock will travel at very small speeds: note that ifhuc → 1 asb → 0, thens∗, the speed of the
undercompressive shock, goes to zero. Moreover, there will be a wide range ofh∞ < 2/3 for which the trailing
Lax shock actually travels backwards! This is extremely unusual as the characteristics forh < 2/3 always travel
forwards. We note that this is a different singular behavior from theb → 0 limit when the flux function is convex,
e.g.f (h) = h2 or h3. In these cases, asb → 0, the Lax shock speed approaches a bounded constant determined
by h∞, but the shape of the capillary Lax shock becomes singular. This size of the bump becomes unbounded as
b → 0.

Since these are scalar equations in one space dimension and time, the analysis of the phenomena will be simpler
than for a system or with more space dimensions. In particular, the phase portraits uncovered in Section 5 might
be established quite easily, including the existence of parameter values for which the vector field has a separatrix
corresponding to an undercompressive shock. The proof of stability of the corresponding traveling wave to small
perturbations in one dimension might be quite difficult, but there are now a variety of methods for attacking
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such a problem. A recent paper of Engelberg [15] establishes the stability of weak compressive capillary shock
profiles (given by Theorem 2). The stability of the undercompressive viscous-dispersive profile described in [29]
is proved in [13], based on the Evans function to study the spectrum of the linearized equation, a technique
that has proved effective in other contexts [31,32], including the stability of undercompressive viscous profiles
[18]. The stability of undercompressive viscous profiles has also been established for certain systems of equations
using a combination of properties of the linearized viscous equation, the hyperbolic equation, and the nonlinearity
[38].

In Sections 4 and 5 we discuss stability of the traveling waves as solutions of the PDE (29). Our numerical
evidence indicates that when multiple traveling waves exist connecting the far field statesh− andh+, some of these
waves are stable and others are not. On the Poincaré sections pictured in Section 5, the stable and unstable waves
occur as alternating points along the spiral representing the intersection of the unstable manifold fromh− with the
Poincaré plane. These stability results are consistent with the idea that a saddle–node bifurcation occurs whenever
more traveling waves emerge ash− is varied (while keepingh+ fixed). At the center of the spiral is the connection
from h− to the state 1− h− − h+. When the stable manifold fromh+ intersects this point, we have a heteroclinic
connection from the top state 1− h− − h+ to the bottom stateh+ which takes the form of an undercompressive
capillary shock. This shock, although it is the limiting solution of an infinite family of alternating stable and unstable
Lax shocks connectingh− to h+, appears to be quite stable as a solution of the PDE (29). It would be interesting
to try to understand better the relationship of the stability of the infinite family of Lax shocks to the stability of the
undercompressive shock. In addition, a very relevant stability question related to the dynamics of driven contact
lines in thin films, is whether the traveling waves are stable as solutions of the 2D equation

ht + (f (h))x = −∇ · (h3∇1h)

describing the effects of transverse perturbations of the film. The capillary shocks that arise for convex fluxes of
the formf (h) = h2 [33] or f (h) = h3 [3,46], are always linearly unstable with respect to perturbations in the
transverse variable. This instability is believed to play a role in fingering of a driven contact line (as in paint dripping
down a wall). For the case of the nonconvex flux considered here (e.g. Eq. (29)), recent results [4] indicate that while
the capillary Lax shocks are linearly unstable to transverse perturbations, the undercompressive shock is stable.
This is believed to be play a role in recent experimental results [17] in which the contact line is much more stable
for intermediate film thicknesses.

In this paper, we have investigated new phenomena only for purely fourth order diffusion. When second order
diffusion is included, withD positive but small in Eq. (10), then we expect the results to be unchanged, as this
is a lower order perturbation that will modify the vector field in a benign way. However, asD increases, the
undercompressive shocks must become less important as the compressive waves establish themselves, since in
the limit D → ∞, as in Section 3.1, there are no undercompressive traveling waves. It would be interesting to
understand this transition, and whether it takes place at a finite value ofD. Our preliminary computations with
positiveD indicate that for smallD the situation is very much like the caseD = 0 that we consider here. In [3],
it was shown that for the convex fluxf (h) = h3 (gravity driven films), for eachb, there is a criticalD above
which the capillary ridge, or bump in the shock profile disappears. The disappearance of the bump was related
to the change in linear stability of the front with respect to 2D perturbations. If there is a critical finiteD above
which undercompressive shocks no longer exist, it would be interesting to know its relationship to the 2D stability
problem.

Finally we note that we have used a precursor model for the study of driven contact lines. Many other such models
exist, including the slip models [20,22] in which degenerate fourth order diffusion plays a role [6,7]. There are also
models that include long range van der Waals interactions [12] involving second order super-diffusive terms [5].
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