7 PHYSICA [

ELSEVIER Physica D 134 (1999) 431-464

www.elsevier.com/locate/physd

Undercompressive shocks in thin film flows

A.L. Bertozzi?, A. Miincha, M. Shearef-*

2 Department of Mathematics, Duke University, Durham, NC 27708, USA
b Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, Raleigh,
NC 27695-8205, USA

Received 20 August 1998; received in revised form 26 April 1999; accepted 11 May 1999
Communicated by C.K.R.T. Jones

Abstract

Equations of the typé, + (h? — h3), = —e3(h3h,,,), arise in the context of thin liquid films driven by the competing
effects of a thermally induced surface tension gradient and gravity. In this paper, we focus on the interaction between the
fourth order regularization and the nonconvex flux. Jump initial data, from a moderately thick film to a thin precurser layer,
is shown to give rise to a double wave structure that includes an undercompressive wave. This wave, which approaches an
undercompressive shock as— 0, is an accumulation point for a countable family of compressive waves having the same
speed. The family appears through a series of bifurcations parameterized by the shock speed. At each bifurcation, a pair
of traveling waves is produced, one being stable for the PDE, the other unstable. The conclusions are based primarily on
numerical results for the PDE, and on numerical investigations of the ODE describing traveling waves. Foultheader
regularization is observed to produce a similar bifurcation structure of traveling waves. ©1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Consider the motion of a thin liquid film on an inclined planar surface, driven by competing effects of gravity and
athermally induced surface tension gradient. This problem has been the focus of experimental investigation [10,39];
it is important in understanding the dynamics of a variety of industrial coating processes such as the formation and
protection of microchips, de-icing of airplane wings and the construction of photographic film. Related problems
concerning the dynamics of thin films have been the subject of much recent mathematical research (see [7] and
references therein).
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In this paper, we model the thin film motion by a partial differential equation for the thickn@ass) of the
film above the inclined plane, as a function of distarcdown the plane, and time (While dependence on an
additional, transverse, spatial variablés important, in this paper, we taketo be independent of.) The PDE
model takes the form

By + (h? — ah®), = B(h3hy)x — v WBPhya)y, (N

in which the nonnegative parametess3, y contain effects of surface tension, gravity and the slope of the plane.

The main results of the paper concern the cése: 0, corresponding physically to a vertical plane; small
B, corresponding to a nearly vertical plane or a flow in which the thermally induced surface tension gradient is
dominated by the combined effects of surface tension and gravity, has qualitatively the same behavior as the case
B = 0. Mathematically, takingg = 0 allows us to focus on the interplay between the nonconvex nonlinearity in
the convective term, and the fourth order diffusion, without the complication of the second order diffusion. This
interaction introduces wave propagation phenomena that are strikingly new, both for the application to thin films,
and for the theory of traveling wave approximations to shock waves.

After a suitable rescaling, the cage= 0 leads to the equation

By + (h? = B3y = =3 (h3hyen)s, )

in whiche > 0 is a small parameter. Traveling wave solutions, referred to in this papeapédkary shock profiles,
steepen as — 0 to shock wave solutions of the scalar conservation law

hy + (W% — h3), = 0. (3

The traveling waves connect an upstream hetghto a (small) downstream height< /.
Whenhs — b is small, the traveling wave isompressivén the sense that characteristics for Eq. (3) approach
each other from either end of the wave:

AMhoo) > 5 > AD), 4)

wheres is the speed of the traveling wave, anth) = 2h — 3h? is the characteristic speed. The corresponding
shock wave satisfying Eq. (4) is called_.ax shockinequalities (4) constitute the Lax entropy condition [37] for
discontinuous solutions of the scalar conservation law (3).

As ho increases, we find there are multiple traveling waves approximating the Lax shock. Some of these are
asymptotically stable for Eq. (2), others unstable. In this range.ofve find a further stable solution of Eq. (2)
composed of two waves traveling with different speeds. The slower wave corresponds to a Lax shockjgitting
a heighthc > hoo, independent ofi, so that the shock strength decreases with incredsingthe faster wave
corresponds to anndercompressivehock fromac to b. The latter wave is undercompressive in the sense that it
violates the Lax condition; characteristics pass through the shock instead of impinging on it:

max((huc), A(D)) < suc, ®)

wheres,c denotes the speed of the undercompressive wave.

For still larger values of ., there are no compressive traveling waves joirtiggto b, and although the double
shock wave structure persists o, < hyc, it gives way forh, > hycto a two-wave structure in which the slower
wave is a rarefaction wave solution of (3).

Undercompressive shock waves for scalar conservation laws have been studied in contexts in which they are
approximated by traveling wave solutions of equations that incked®nd ordedissipation and dispersion, in
contrast to the fourth order nondispersive equation of this paper [23,24,29]. Undercompressive shocks, together
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with other types of nonclassical shocks, have been studied in various applications involving systems of equations
[1,28,43,45,47].

The dynamics of the undercompressive double shock structure has been observed in a recent experiment [17]
in which silicon oil (PDMS) is driven up an inclined oxidized silicon wafer by a thermal gradient. In previous
experimental studies of very thin films{, « 1) [10], the speed ofthe front agrees extremely well with that predicted
by the classical theory involving only Lax shocks. In the experiments in [17] however, with films of intermediate
thickness, gravity plays a larger role. It has been observed that for these thicker films, the front speed is effectively
independent of the film thickness,, an observation consistent with the formation of an undercompressive shock as
the leading front. Moreover, the thickness profile of the film compares very well with the shape of the film observed
in numerical simulations of Eq. (1) of the double shock structure [4]. (The experimental measurements are taken at
times just before the shocks are predicted by the theory to completely separate.)

A further remarkable observation in this experiment is that the front forms an extremely large capillary ridge that
tends to remain stable, in contrast to all other driven film experiments in which a capillary ridge is observed to break
up into rivulets [11,27,30,44]. The undercompressive shock is believed to play a role in preventing the contact line
from fingering in this way. To the best of our knowledge, this recent experiment is the first documented observation
of an undercompressive shock in an application modeled by a scalar conservation law.

The paper is organized as follows. In Section 2, we review the physical problem, derive a model partial differential
equation, and nondimensionalize using scales that highlight the role of fourth order diffusion. In Section 3, we review
Lax shocks and rarefaction waves for Eq. (3). Also in this section, we discuss traveling wave solutions for Lax shocks
for Eq. (1), both in the straightforward cage= 0 of (nonlinear) second order diffusion, and in the case of fourth
order diffusiong = 0, but with a convex nonlinear flux transpou & 0). Traveling waves in the latter case are
established using arguments of [41,42]. In Section 4, we present the main numerical results for Eq. (2), illustrating
that there is a transition from weak Lax shocks to the undercompressive double shock structure as the film thickness
is increased. In Section 5, we discuss traveling waves for Eq. (2) directly. This involves the study of a family
of ordinary differential equations with parameters dependingQnands. Here, we examine the existence of
the undercompressive shock, and the associated cascade of bifurcations giving rise to the multiple compressive
traveling waves for the same Lax shock. In Section 6, we show that for lanmgear 3, the bifurcation structure
of the traveling waves can be understood by studying a simpler equation, derived by expandinglzafeLéwd
the simpler equation has a cubic nonlinearity and linear fourth order diffusion. Numerical results for this equation
are similar to those for the full equation, and show that the complex dynamics introduced in Sections 4 and 5 is
really due to the fourth order operator on the right-hand side of Eq. (2) as opposed to the nonlinear diffusion. In
Section 7, we derive a priori bounds for the values:dh a traveling wave, using two techniques. In Section 8,
we draw attention to various issues related to the numerical study in this paper. Among these are the stability of
the computed one-dimensional fronts to two-dimensional perturbations, the effect of second order diffusive terms
on the dynamics and the singular limitias> 0. We also propose some open analysis problems motivated by the
numerical work here.

2. The model

We consider the dynamics of a thin layer of liquid of thicknéssn an inclined surface driven by thermally
created surface tension gradients and influenced by gravity (see Fig. ¥)deebte the surface tension gradient,
« the angle (from horizontal) of inclination of the planethe density of the liquidg the gravitational constan,
the dynamic viscosity of the liquid, anethe surface tension of the liquid. The spatial variablemdy denote,
respectively, the direction of the flow and the direction normal to the flow, both in the plane parallel to the incline.



434 A.L. Bertozzi et al./ Physica D 134 (1999) 431-464

Fig. 1. A schematic diagram of the physical problem. A thin film of viscous liquid flows up an inclined plane due to Marangoni stresses created
by a temperature gradient on the plane. Gravity works against the stress to drive fluid back down the plane.

Conservation of mass of the liquid requires that
hi+V - (hV) =0, (6)

whereV is a ‘depth averaged’ velocity of the liquid. The formula fome use is from [9,16] in which a lubrication
approximation gives

, (rh pgh? sina) _  pgh?cosa
Voo (L _pshSiNa) s pgh COSx

w4 YV
2n 3 '

,
— - ™

The coefficient o, in the expression fov represents convection of the film due to a surface tension gradient and
due to the component of gravity tangent to the surface.Mheepresents diffusion of the liquid due to the normal
component of gravity while the last term represents diffusion of the liquid due to surface tension.

For the purpose of this paper, we ignore the dependence of the solution on the direction transverse to the flow,
i.e. we consider solution's depending only onr andsz:

h3hn cosapgh’

he + (f(h))x = — <y3_) + (ih) , ®)
n x 3n x

where

th?  sinapgh®
fhy=—- ke
2n 3n

To nondimensionalize the equation, we introduce length sé&lésand a corresponding time scdle
h = Hh, x =X, t =Tt. 9)

Balancing the competing convective effects of gravity and Marangoni forcégiingives
&
~ 2sinapg’

Setting/ to be the capillary length on which surface tension balances the driving forces on the right-hand side of
Eq. (8) gives
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3 © \202¢2sirfe)

The time scale is then chosen to be the one on which all three of these effects balance,

1/3
n (4 .
T = 2¥ <§rypg Slna> .

The end result (removing thérom the variables in Eq. (9)) is a rescaled dimensionless equation of the form

By + (h? = B3)y = —(h3hyax)x + D(E3hy)y, (10)
where
9 2\ cot
D= <_f_> _cote (1)
4ypg (sina)Y/

We are interested in studying the structure of traveling wave solutions of (10). For the physical problem described
above, we expect to have a situation where there is a front of fluid that connects to a constant height upstream,

h— hy as x — —oo.

Although the physical problem has a contact line downstream, as suggested by Fig. 1, we choose the boundary
condition

h—b>0 as x — oo.

Such a boundary condition is necessary for the model (7) since it is based on the assumption of a ‘no-slip’ boundary
condition which results in a well-known paradox [14,26] for the case of a moving contact line. To remove the
singularity, we consider the same ‘precursor model’ used in [46] for flow down an inclined plane (see also [3,33]).
In the experiments studied so far [4,10,16,17] the effect of gravity normal to the surface is small compared with
the other effects, and the slope of the film is small compared to the slope of the incline. In all of these studies, the
dimensionless parameteris less than} and the problem is well approximated by the model equation ith 0.
Thus, we seD = 0 for the remainder of the paper; however, we make some comments and conjectures throughout
regarding the dynamics whdn s larger.
The length scale (i) over whichh transitions fromz., to b in a traveling wave or shock layer is order 1 in
formulation (10). We can think of this traveling wave as a viscous regularization of a shock wave, ifwve-let
and:’ = et, so that (10) becomes

ht’ + (hz - h3)x’ = _eB(h3hx’x’x’)x’- (12)
This equation is a fourth order nonlinear singular perturbation of the conservation law
hy + (h? —h%),y =0 (13)

which has a nonconvex flux functiof(#) = h% — h3. As we show in later sections, the dynamics of Eq. (12) for
smalle is significantly different from the dynamics of Eq. (13) in the vanishing viscosity limit with lower order
diffusion. In Section 3 we review the classical theory of hyperbolic conservation laws with nonconvex fluxes of the
form (13). Later in that section we show that for the case of a convex flux, a regularization of the form (12) has
similar dynamics to lower order regularizations. However, the interaction of the nonconvex flux and fourth order
diffusion, which we discuss in Section 4, produces a dramatically different behavior.
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f(h)=h"-h’

Fig. 2. Flux functionf (k) and a shock wave (19) satisfying (22).

3. Lax shocks, rarefactions, and traveling waves

Although the parameteb in Eq. (12) is typically small in experiments that have been carried out to date, it
is instructive to consider the effect of second order diffusion, neglecting the fourth order diffusive term that is of
central importance in this paper. Moreover, it is likely that future experiments will explore parameter ranges where
D is not negligibly small, and may provide the dominant diffusive effect. For these reasons, in Section 3.1, we
discuss the case of second order diffusion in the absence of fourth order diffusion, but maintaining the nonconvex
flux function. In Section 3.2, we focus on fourth order diffusion, but consider only a convex flux function. In both of
these subsections, we summarize known results in order to set the context for consideration in Section 4 of fourth
order diffusion with a nonconvex flux.

3.1. Lax shocks with second order diffusion

In this subsection, we study the following equation with second order diffusion:
he + Lf W]x = 8(h°ho)x, (14)
where f (h) is the nonconvex flux function
f(h) = h?>—n®
depicted in Fig. 2, and > 0 is a small parameter. Note that the flux functipth) has a global maximum at
hmax = §
and an inflection point at

h =

Wl

To leading order (i.e§ = 0 in Eg. (14)), solutions satisfy the scalar conservation law

hi + f(h)x =0. (15)
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Smooth solutions of Eq. (15) can be found implicitly using the method of characteristics:
hx,t) = ho(x — f'(h(x,))t), (16)

where f'(h) = 2h — 3h? is the characteristic speed. However; ascreases, solutions of (16) typically undergo
bifurcations to multivalued profiles, corresponding to the formation of shock waves in solutions of (15). To investigate
these discontinuous solutions, we consider the Riemann problem, consisting of Eq. (15), together with initial data
of the form

heo If x <0,

b if x>0. (17)

h(x,0) = {
This is a classical initial value problem in scalar conservation laws (see e.qg. [36])./Smnoenconvex, the classical
solution has slightly more structure than for a convex flux function. In this section, we describe the classical solution,
justifying it in part through Eq. (14), which has only second order diffusion. In Section 4, we shall see that the
classical solution does not always reflect the leading order behavior when consfderthgrder diffusion.

Since the Riemann problem is scale invariant, we seek solutions that possess this property, and hence are functions
of ¢ = x/t. Forb < 1/3 andhy > b, the context in which we are interested, there are two types of classical
solutions, namely a single shock wave, and a rarefaction—shock. To describe these more precisely, we consider in
turn rarefaction waves, shock waves and finally rarefaction—shocks.

A centered rarefaction wavis a solution of (15) of the fornk(x, 1) = hr(x/t), wherehg is continuous and
piecewiseCl. Substituting into Eq. (15), we find

REf (hr) —£] =0

so that eithei; = 0 (i.e., kR is constant) ohr(§) = f£'~1(&). More specifically (possibly restricting/s to an
interval)

h_ if x< f'(ho)e,
h(x, 1) = { hr(x/t) if  f'(h)t <x < f'(hy)t, (18)
hy if  f'(hpr <x,

is a rarefaction wave if'(hr(§)) = &, f/(h-) <& < f'(hy), and eitheli_ < hy <1/3,0r1/3 < hy < h_.
A centered shock wave

0= 19)
with speeds is a weak solution of (8) if the triplé:_, i, s) satisfies the Rankine—Hugoniot condition

=s(hy —h-)+ f(hy) — f(h-) =0. (20)
Thus the shock speed

s=(f(hy) — f(h-)) /(hy —h_) (21)

is the slope of the chord joining the poinis., f (k1)) in the graph off, as illustrated in Fig. 2.
A shock (19) is calledompressivegr aLax shockf it satisfies the Lax entropy condition [37], which relates the
slope of the chord, given by Eq. (21), to the characteristic speeds, which are slopes (derivatives) of

fl(hy) <s < f'(ho). (22)
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We derive Eqg. (22) in Section 7 using entropies, for a regularization of the type (14)imgdr second order
diffusion (the result is the same with nonlinear diffusion). These bounds are rather different from those that we
derive for the fourth order regularization in Eqg. (10).

Itis straightforward to verify that when the flux functighhas at most one inflection point, every Lax shock (19)
has a traveling wave solutidn(x, t) = h ax((x — st)/8), of the viscous equation (14), satisfying

hiax(£00) = h4; h,Lax(iOO) =0.

Thus, by neglecting surface tension, all Lax shocks are admissible in the sense thatéhey @ienits of traveling

wave solutions of the regularized equation (14). We refer to the traveling wave sdlutipas aviscous profile.
Conversely, the family of shock waves (19) possessing viscous profiles consists of Lax shocks, together with

shocks for which one of the inequalities (22) is an equality, so that characteristics are parallel to the shock on one

side —the shock speed is characteristic. These shocks are sometimes known as generalized Lax shocks, as they

are limits of Lax shocks. Generalized Lax shocks are part of the construction of rarefaction—shock waves. In such

awavei(x, 1) = hrs(x/t), is piecewiseCl, with a generalized Lax shock at the leading edge (larggstof a

rarefaction wave. Thus, the shock is characteristic on the left. Specifically,

h- if &< f'(ho),
hrs(§) = { hr(E) it f'(h-) <& < f'(hm), (23)
hy if f/(hm) <é,

wherehg represents a rarefaction wave, dngsatisfiesf’(h,,) = (f (h) — f(hy))/(h, — hy), Which equates
the shock speed with the characteristic spedd,atequivalently, the chord fronv:, f(h)) to (A, f(hy)) In
the graph off is tangent at = h,,. For the specific fluxf () = h% — h3, we haveh,, = (1 — h)/2.
We can now describe solutions of the Riemann problem (15) and (17), for the parameterbrande8 and
heo > b Of interest. Leth, = (1 — b)/2.
1. If b < ho < hyp then the solution is a single Lax shock

hoo, Xx < st,
b, X > Sst,

hx,t) = {

where the shock speeads given by Eq. (21):
§ = hoo +b — h%, — hoob — b2, (24)

2. If hoo > hyp, then the solution is a rarefaction—shock (23) in which= he, hy, = hp, hy = b.
The rarefaction—shock solution (23) was introduced by Ludviksson and Lightfoot [39] as a first order approximation
(neglecting curvature) of the advancing front observed in their thermally driven coating flow experiments. In Section
4 we show that including the curvature effects by introducing the fourth order diffusion in (10) from surface
tension yields dramatically different behavior for thicker films. Instead of the rarefaction—shock in (23) we obtain a
rarefaction—undercompressive shock, in which the undercompressive shock separates from the rarefaction wave. It
is interesting to note that Ludviksson and Lightfoot found experimental front speeds up to 40% slower (but never
faster) than predicted by Eq. (23). This could be explained by the presence of an undercompressive shock, which
travels at a slower speed than the shock in (23), as discussed in more detail in [4] for the case of intermediate film
thicknesses.
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3.2. Burgers flux with fourth order nonlinear diffusion

Before addressing the problem with both surface tension and gravity (i.e. a nonconvex flux function and a fourth
order nonlinear diffusion) we review the problem with surface tension and surface tension gradients but neglecting
gravity. Here the equation is

Th?

Y 13
h A z__hhxxx X
+(% ) TR

As in [33], we can rescale the equation to have the form (this is a different rescaling than that in Section 2)
hi 4+ (B = =(h%hexa)e. (25)

Without the competing effect of gravity, the flux function is convex. Eq. (26) is a nonlinear fourth order regularization
of Burgers equation.
Consider the traveling wave problem for Eq. (25) with

h—1asx — —oo and h— b asx — . (26)

In Theorem 1, we prove that whenever< 1, there is a traveling wave solutidnx — st) moving with speed
s = 1+ b. These capillary profile solutions are fourth order (nonlifdaegularizations of the classical Lax shock
for the inviscid Burgers equation. They have been computed numerically in [33] for several valubstafeen
0.01 and 09.

Asymptotic analysis suggests that as in the case of gravitationally driven thin films [3,46] (for yuthich= /3)
the structure of the capillary ridge or*bump”, in traveling wave solutions of Eq. (25), has a singular limit in which
the height of the bump becomes unbounded as 0. It is interesting to note that the nonconvex flux function
in (10), in which gravity is included, yields solutions with a fundamentally different singular lintit-as 0. For
very smallb, the dominant behavior at the leading edge of the front is always an undercompressive shock (see the
following sections) which has a height that is always bounded by 1. To summarize, we expectithat @sfor
Eq. (10) the front speed goes to zero while the undercompressive shock height goes to 1, while in the case of the
convex fluxes f(h) = h? or h3) the front speed approaches a constant (1 in the case of Eq. (26)) while the bump
height becomes unbounded.

Following a general topological argument of Michelson [41] (see also [42] for an application to surfactant driven
thin films) we now prove the existence of capillary shock profiles for Lax shocks. We use some ideas of the proof
in Section 7 to prove rigorous bounds on capillary profile solutions to Eq. (10).

Theorem 1. Given anyb > 0 such thath < 1, there exists a bounded positive traveling wave solution— st)
of (25) with far field limits(26).

Proof. Going into a traveling reference frame, we note that if the problem with surface tension has a capillary
shock, it will be a traveling wave solution that reduces to solving a third order equation

S 1 1
hxxx_ﬁ‘FE_Qﬁ:Ov (27)
where the speed = 1+ b andQ = —b. We look for a solution of (27) that goes to 1.as> —oo and tob as

X — OQ.

1 capillary profiles for fourth ordeinear regularizations of Burgers equation have been studied in [15,35,40,41].
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Fig. 3. The functionR in the Lyapunov function for the cage= 0.2. Any orbit connecting 1 t& must have all of its extrema lying betwekp
andh .

The proof of existence has three parts: (1) establish the existence of a Lyapunov function, (2) show that the
Lyapunov function can be used to show compactness of the set of bounded solutions, and (3) deform the equation
continuously in order to apply a topological (Conley index) argument to prove existence.

To carry out the first part, multiplying by,, the ODE (27) may be written in terms of the Lyapunov function

L(h) - hxxhx +R(h)»
where
R(h) = s n 1 0 1
) h3’
Thus

(L()x = (hxx)?

so that the Lyapunov function is increasing.

Now we show that the set of all bounded solutions of Eq. (27) is compac(R). To do this, we first derive a
priori upper and lower bounds for bounded solutions of (27). Then we show that this leads to a priori bounds for
higher derivatives. This then leads to compactneg’in

First note that any bounded solution of (27) connects two zer&(@f, and the only choices afeand 1. Since
L(h) — R(h) asx — oo for any bounded solutioh, andR(b) > R(1) we see that the only possible bounded
solutions are the fixed poinfsand 1 and possibly a heteroclinic orbit connecting these two states. Bihge
vanishes at an extremum of a solution, all bounded solufianast haver (1) < R(h) < R(b). From the structure
of R, we see that there is a valiig belowb and a valué:... above 1 such thak (k) = R(1) andR (i) = R(b).
All bounded solutions must lie betweén andh..:

he < h < hyy.

See Fig. 3 for a diagram.

These a priori upper and lower bounds imply via Eq. (27) that is uniformly bounded in.°°. To derive a
priori bounds on intermediate derivatives, we note that the Lyapunov function implies that any bounded solution
satisfies

/ (hxx)z dx = R(hy) — R(h-) < C,

wherehy = h(+o00), which implies, by the Sobolev lemma and the fact thahas mean zero, an a priori bound
on theL* norm of .. The second derivative can be bounded.fi by a standard interpolation argument. Also,
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differentiating Eq. (27) and applying the known bounds for lower derivatives gives a priori bounds for all higher
derivatives.

To show that the set of all bounded solutions is compaaf{R), we consider a sequende of bounded
solutions. Given any compact intervat K, K], the functions(i;) ., form an equicontinuous family. Thus, there
is a subsequence that converge§ii—K, K] to a functions which necessarily satisfies (27). A diagonalization
argument in andK completes the proof of compactnessiA(R).

In order to apply Conley index theory, we deform (27) to an ODE with no critical points. Consider a smooth
family of ODEs

hxxx+,3_}%+%_Ql%=0 (28)

parameterized by. Denote byLg the modified Lyapunov functiodg = h hy + R(h) 4 Bh. Leth| € [b, 1]
denote the position of the inflection point & Denotefy = —R’(h). For 0 < B < Bo, the modified ODE (28)
also has the same structure as (27) and we see that solutions of the modified equation can be bounded between
hyp > hy andhy, g < hy.. Moreover, we can bound the higher derivatives @fs before.

We now apply a topological argument to finish the proof. Bor B, the set of bounded solutions is empty. The
Conley index is a homotopy invariant associated with isolated sets of bounded solutiofis>Fés, the Conley
index for the empty set is different from that of a set of hyperbolic fixed points. Thereforg, 00 there must be
a nontrivial bounded solution and, as we have shown above, the only choice is one connecfing1to I

4. Dynamics of the PDE and undercompressive capillary shocks

In this section and the next, we consider Eq. (10) with= 0, namely
ht + (hz - hg)x = _(h3hxxx)x- (29)

Eq. (29) corresponds physically to a vertical incline or also the case wRésesmall compared withypg. In this

section, we present some case studies of numerical simulations of the PDE (29), showing that a range of strong Lax
shocks are no longer admissible and that a double shock structure forms involving an undercompressive wave. This
kind of phenomenon was observed recently [23] for diffusive—dispersive equations of the form

he + (f(h)x = athyy + Bhyxx

in which 7 is nonconvex. In the next section, we explain the transition from weak capillary shock profiles to the
undercompressive structure via a study of the ODE describing traveling wave solutions of (29).

The numerical scheme used to solve (29) is the same scheme used to generate the traveling wave profiles in [3],
a finite difference scheme with a fully implicit time step and spatial derivatives based on centered differences. The
discretization of the fourth order term is described in detail in [8]. The centered difference approximation of the
convective term coupled with the implicit time step produces a modified equation [19] that to first orseain
Ax introduces second order numerical diffusion into (29):

A
hi + (f(W)x = %(f/(h)zhx)x — (h®hn)s-

The implicit time step produces a stable scheme with l&xgehowever, the numerical diffusion causes this stable
method to give the wrong value for the undercompressive shock heightauhisrioo large. This indicates that the
structure of the undercompressive shocks may change significantly when second order diffusion is present (as in the
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Fig. 4. The Lax shock with surface tension. Hére: 0.1, i, = 0.3.

case of moderately largk in Eq. (10)). The numerical diffusion can be globally reduced by taking a sufficiently
smallAr and locally reduced by using a reference frame moving with the speed of the front. Each strategy was used
when needed.

In the numerical solutions of initial value problems, we observe various patterns of propagating waves. In describ-
ing these waves, we use the terms shock wave and traveling wave interchangeably, identifying pieces of the solution
that appear to be traveling waves with the shock wave solutions of the underlying conservation law. Similarly,
we speak of compressive and undercompressive waves when the underlying shock waves have the corresponding
property. All of the computations are performed in a traveling reference frame moving with speed

f(hoo) — f(b)
heo — b

In some cases, we find a traveling wave solution with that speed and in other cases we do not. All cases discussed

below consideh = 0.1; however, the same qualitative dynamics emerge for all ® < 1/3. In each case, we

consider a range of left statés, for which the dynamics of the PDE has certain observed characteristic behavior.

We note that the valuégs, h», andhyc discussed below all depend upon the right skate

Case (b < hoo < h1.Unique weak Lax shock profiles). Givénthere is avaluéi suchthatforalb < hy < h3,
the solution of the PDE is always observed to evolve to a unique capillary shock profile connecting thie.states
andb. For example, consider initial data of a smoothed shock profile

hoo — b

2
connecting the statds,, asx — —oo to b asx — oo. Fig. 4 shows a plot of the solution fér,, = 0.3 and
b = 0.1. The solution at later times, computed in a reference frame moving with sp&8&d0.1), settles down to

the unique traveling wave solution for these boundary conditions. This behavior persists up to a kglugtoth
we callhy; it depends orb.

h(x) = (tanh(—x + 100 + 1) +b

Case 2(h1 < he < hp. Multiple Lax shock profiles). Fol, in arangehi < hoo < h2, Wherehy also depends

on b, there are multiple capillary shock profiles connecting the same two left and right states, respegtieelgt

b. Some of these profiles are stable for the PDE (29) and others are not. In Fig. 5, we show several solutions with
b =0.1andhy = 0.3323.
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Fig. 5. Two stable traveling waves with the same valbes 0.1, 1, = 0.3323. The computations are done in a traveling reference frame
moving with shock speed ., b). Solid lines are the solutions at very late times.

For the solution shown in Fig. 5(a), we used the initial condition

ho(x) = (tanh(—x + 300) + 1)hoo —b

+b. (30)

One might expect all profiles with the same far field boundary conditions as Eq. (30) to settle down to this profile.
However, if we start with the initial condition,

((0.6 — hoo)/2) tanh(x — 300) + (0.6 + hso)/2, x < 305

o) = { —((0.6— b)/2) tanh(x — 310) + (0.6 +b)/2,  x > 305 &)

which introduces a bump, we observe (see Fig. 5(b)) that the solution approaches a different traveling wave profile
moving with the same speed and connecting the same left and right states.
In the next section, we study more carefully the ODE for the traveling wave profiles and show via numerical
computations in phase space that there are actf@iiytraveling waves for this pair of valuds, = 0.3323 and
b = 0.1. Two (the ones depicted in Fig. 5) are stable with respect to the PDE evolution and the other two are not.
In addition to the two stable profiles shown in Fig. 5, there is another possibility for the dynamics. In Fig. 6, we
take the initial condition to be

((0.6 — hoo)/2) tanh(x — 300) + (0.6 + hso)/2, x < 310,

hote) = { —((0.6 — b)/2) tanh(x — 320) + (0.6+b)/2,  x > 310 42

with a broader hump than in Eq. (31), but of the same height. The solution does not settle down to a single traveling
wave. Instead, two shocks emergeyadercompressive wawa the right connectingto alarger statéyc ~ 0.568
followed by a slower compressive wave connecting to /. Both waves travel more slowly than the traveling
waves of Fig. 5.

For eachh < 1/3, there is special valuéyc, for i, for which an undercompressive traveling wave exists. That
is, there is a capillary shock profile connecting: to . The corresponding shock wave is undercompressive in the
sense that it is supersonic on both sides, i.e., the characteristic speed is smaller than the wave speed on both sides of
the shock. Correspondingly, the chord connectipg to b in the graph of the flux cuts through the flux curve at an
intermediate poink, = 1 — hyc — b. In Fig. 7, we show the “undercompressive connections” for various values of
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Fig. 6. Solution with an undercompressive wave (on the right) and a compressive wave. The dashed line is the initial condition Eq. (32); the dark
line is the solution at time 0 Note that the traveling reference frame is the same as in Fig. 5.
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Fig. 7. The undercompressive connection. Here we comipar®.1, 0.05, 0.001. Shown is the connection frobrio the statéryc.

b. These were obtained by reading off the constant valuetiohit emerges between the undercompressive traveling
wave and the compressive traveling wave, as in Fig. 6. We also confirmed these results via the ODE computations
in the next section.

Case 3(h2 < hoo < huc. Undercompressive double shock structures). isgin this rangethere are no capillary

shock profiles joining:o to . In contrast to Case 2, fdr, < hs < hyc, all initial conditions that we tested
converge to a solution with the same double shock structure. Fig. 8 illustrates this behavior for thg cask4

andb = 0.1. The initial condition is a smoothed step function frogg = 0.4 tob = 0.1. It is shown by the dashed
line in the plot. The solution at a later time has two shocks. The leading shock is the undercompressive shock and

the trailing shock is a classical Lax shock.

Case 4(hs > huyc. Rarefaction—undercompressive shock). For this case, we see a combination rarefaction
wave and undercompressive shock. Recall from Section 2 that in the case where surface tension is absent, when
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Fig. 8. Undercompressive double shock structuré:fgr= 0.4 tob = 0.1 at time 4800.

hoo > (1 — b)/2, an initial step profile evolves as a rarefaction—shock combination, given by the solution in Eq.
(23). However, for the problem with fourth order diffusion, a capillary shock profile conne¢lirgb)/2 to b

typically does not exist and instead the rarefaction connects to the undercompressive shock colpettirig

Since the undercompressive shock moves with a sp@est, b), which is greater than the speg¢d(hyc), of the
right-hand side (leading edge) of the rarefaction wave, the undercompressive shock separates from the rarefaction
wave to produce a separated rarefaction—shock profile. At large times or, via rescaling the equatieriswiredl

in Eq. (12), we expect that the solution of the PDE with approximate Riemann initial data will approximate the
nonclassical inviscid rarefaction—undercompressive shock solution given by

hoo if &< f'(heo),
_ ) hr®) if fl(he) <& < f'(huc),
hrus(®) = huc it f'(huc) <& < s(huc, b), (33)
b if s(huc,b) <&,

where& = x/t is the similarity variable and as in Section/2= hr denotes the rarefaction wave.

The following numerical example confirms this prediction. Here we conside0.1 andh., = 0.8, with initial
condition

h(x) = (tanh(—x + 1100 + 1)h°°2_ b

+b. (34

The initial data are centered.at= 1100 simply so that the rarefaction remains in the regime of positiver for

the duration of the simulation. Here = 5(0.8,0.1) = 0.17, is the speed of the reference frame and the time step

is chosen small enough to minimize dissipative errors from numerical diffusion. The computed solution of Eq. (29)
starting with this initial condition does indeed evolve into a rarefaction—shock combination, in which the shock is
the undercompressive shock framc to b = 0.1, which separates from the rarefaction wave. Shown in Fig. 9

are the initial condition (dashed line), the PDE solution at time 1400 (a subset of the computational values

are shown as diamonds) and the expected inviscid limit of the rarefaction—undercompressive shock combination in
Eq. (33) atr = 1400 (shown as a dot-dashed line). Note that the latter two are almost identical, except where the
fourth order diffusion smooths the shock and the connection to the rarefaction.
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Fig. 9. Ararefaction undercompressive shock solution for smoothed Riemann initial datayith0.8 andb = 0.1. The initial condition (34) is
shown as a dashed line and the numerical solution attisn@400 is shown as diamonds. The theoretical inviscid nonclassical rarefaction—shock
is shown as a dot-dashed line.

5. Traveling waves with fourth order diffusion

In this section, we examine traveling wave solutions of Eq. (29). These solutions satisfy the third order ordinary
differential equation

—sth—h_)+ f(h) — f(h_) = —h3h", (35)

whereh_ = limg_, _oh(£). (In integrating the equation once, we have assunféd) — 0 asé — —o0.)

Eq. (35) has two parameteits ands. For the present, the singularity/at= 0 is unimportant; we také_ > 0
and restrict: to be bounded away from zero.

Writing Eqg. (35) as

h' =ghih_,s), (36)
where
ghshoys) = —h=3(=s(h — h_) + f(h) — f(h-)), (37)

we see that equilibria = h (zeroes of(.; h_, s)) are given by the Rankine—Hugoniot condition (20) for shocks.
Moreover, the linearized ordinary differential equaticti = (dg/dh)(hy; h—, s)u has three eigenvalues, namely
the three cube roots ¢bg/dh) (hy; h_, s). Note further thatdg /oh) (hy; h—, s) = —(1/ hi)(f/(h+) —s), sothat
the sign of(dg/dh)(hy; h—, s) is related to whether characteristicsiat, traveling with speed”(h.), are faster
or slower than the speadof the traveling wave.

To further understand equilibria, and trajectories joining different equilibria, we write Eq. (36) as a first order
system:

W=, v = w, w =gh; h_,s). (38)

For a specific equilibriuntz, v, w) = (hy, 0, 0), withg(h; h—, s) = 0, the three cuberoots 6dg/dh)(h; h—, s)
give rise to the following structure of invariant manifolds containing the equilibrium.
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1. If f/(hy) < s, then(dg/oh)(hy; h_,s) > 0, sothat(h., 0, 0) has a one-dimensional unstable manifold and
a two-dimensional stable manifold on which solutions spiral into the equilibrium due to the complex conjugate
pair of eigenvalues with negative real part.

2. If f/(hy) > s, then(dg/dh)(hy; h_,s) < 0, so that(h,, 0, 0) has a one-dimensional stable manifold and a
two-dimensional unstable manifold on which solutions spiral away from the equilibrium due to the complex
conjugate pair of eigenvalues with positive real part.

Now equilibria of Eq. (38) correspond to intersections of the line with skaheough(z_, f(h_)) with the graph
of f. Alternatively, we can fix: . # h_ and define through the Rankine—Hugoniot condition (20). Specifically,
for the flux functionf (h) = h? — h3,

s=h_~+hy —h® —h_hy —h>. (39)
+

Consider the case of a weak Lax shock, specificaby B, < h_ < 1/3, with h_ — hy small. Then(h_, 0, 0)
has a two-dimensional unstable manifold ahd, 0, 0) has a two-dimensional stable manifold. If they intersect
transversally (away from the equilibria), then the curve of intersection is a trajectory for Eq. (38j/#rqi@, 0)
to (h4, 0, 0). We refer to the corresponding solution of the partial differential equation (29) as a capillary shock
profile fromh_ to hy.

The existence of capillary shock profiles for weak Lax shocks away from the inflectioripeirit/3 is provided
by the analysis of Kopell and Howard [35].

Theorem 2. Let0 < h4 < 1/3. There existg = €(hy) > Osuch thatifd < hy < h_ < hy + €, thenthere is a
capillary shock profile fronk_ to /.

Note that while Theorem 1 concerns the existence of arbitrarily strong capillary shock profiles for Lax shocks,
the proof depends on the convexity of the flux function. In Theorem 2, the flux is nonconvex, but the hypotheses
are designed to relegate the nonconvexity to higher order terms which do not affect the existence of the traveling
wave profiles. It might be possible therefore to modify the proof of Theorem 1 so that it applies to Theorem 2, but
instead we appeal directly to the result of Kopell and Howard.

In the following subsection we discuss numerical computations of the structure of phase space in order to identify
values ofz_ for which there are capillary shock profiles for Lax shocks, and to understand transitions in the vector
field (38). In arecent paper [34], Kataoka and Troian compute several trajectories for the ODE (36), and discuss the
stability of the corresponding traveling waves to two-dimensional perturbations. In the subsequent subsection we
discuss the stability of the capillary shock profiles with respect to the dynamics of the PDE (29). In Section 7 we
derive a priori upper and lower bounds for capillary shock profiles, and also derive an upper bound on the values of
h_ for which capillary shock profiles exist.

5.1. Structure of phase space

We next investigate the appearance of capillary shock profiles for différerty numerically exploring the
structure of the phase space. In order to do so, we determine the unstable and stable manifolds of the three equilibria

B = (h+5 07 0)’ M = (h75 07 0)5 T = (1_h7 - h+’ 07 O)

(withhy < h_ < 1—h_—hy)byintegrating Eg. (36) either forwards or backwards,irespectively, starting with

initial data(x(0), 4’ (0), h”(0)) atadistance of about 18- - - 10~/ from an equilibrium. The necessary computations
were carried out using the explicit Adams method of the LSODE package [25], which features automatic step size
selection and adaptivity.
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Certain trajectories are visualized in a perspective plot of the three-dimensional phase space. Additionally, we
show the intersection of the stable manifditf(B) of B, the unstable manifold"(M) of M, and the unstable
manifold WY(T') of T with the plane

P={hh h");h=@2h_+hy)/3).

We refer to the plané as a Poincaré section. Sin8e>(B) and WY(M) are surfaces, their intersections with
P appear as two curves, whereas the one-dimensional mamifé{@) appears in the Poincaré section as a point.
Capillary profiles for Lax shocks correspond to intersectionsvd{M) and WS(B). A capillary profile for an
undercompressive shock appears whétiB) contains the curvé/!(T).

In the discussion below, we assurhe = b = 0.1; however, the same qualitative picture emerges for other
positive values ob < 1/3. We discuss the dynamics of the phase spack &bwose to Y3 in the next section. The
results of the computations are shown in Figs. 10-15, for valués dficreasing from (8 to 0.355. The notation
for the different curves and significant points carries over from one figure to the next, with new symbols added as
needed. We discuss in turn three cases, corresponding to the first three cases identified in Section 4. (Case 4 of
Section 4 is the same as Case 3 here, because of the parameterization of the vector:field/bigh is always
taken to be the middle equilibrium in this section.)

Case 1(h_ < h1. Unique capillary shock profile). For each valuehof < 1/3 we find a maximum valug; for
h_, with the property that there is a unique orbit frahto B providedh < h_ < h1. This is the samé as in
the previous section. Far, = 0.1, we find

hy1 = 0.3286

Fig. 10 shows an example with. = 0.3. The three-dimensional phase portrait is shown in Fig. 10(a) with the
unstable manifold$¥"(T) and WY(B) shown as dotted lines. The orbit connectiBgo M is shown as a solid

line and the orbit fromM to T is a dot-dashed line. In Fig. 10(b), the Poincaré section shows that the curves
wY(M) N P andW3(B) N P intersect only once, demonstrating uniqueness of the orbit connédtitegB. This

orbit corresponds to the traveling wave solution shown in Fig. 4. Note the spiraling structuré(sf) N P. It
indicates that the surfad&" (M) winds tightly around the one-dimensional unstable manifgl{7) of 7', which

forms part of its boundary.

Case 2(h1 < h_ < hy. Multiple capillary shock profiles). For each value/of < 1/3 there is a range of values
for h_ > hq, for which there exists more than one orbit connecfifigo B. This range ofi_ extends up to a finite
upper bound:y, as in the previous section. Fby. = 0.1, we find

hy = 0.3479

The number of connections can be computed numerically by examining the number of intersection points of the
curvesWY(M) N P and W3(B) N P on the Poincaré section. We present several computations below, all with
hy =0.1.

For h_ = 0.33, the Poincaré section, shown in Fig. 11(b), indicates three intersectioWs$(af) N P and
WY(M) N P. Fig. 11(a) shows the corresponding orbits in three-dimensional phase space; on the scale of the graph,
two of the orbits nearly coincide with the largest separation fieadote thatW{(T') comes closer t& than in
Case 1 (for whicth_ = 0.3). However, in both case®&'(T') follows the same branch of the unstable manifold
WY(B) asé — oo.

As h_ increases fromi, WY(T') comes even closer tB until at a special value

h_ = h, = 0.33205
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Fig. 10. Phase portrait fégr— = 0.3: The unique connection frolf to B is denoted by a solid line in (a) and appears as the unique intersection
point WY(M) N WS(B) N P in (b), P = {h = (h4+ + 2h_)/2}. The circle indicates that this connection corresponds to a uniqustaht®
traveling wave solution of the PDE (29). The dashed lines in (a) are the unstable maniffldad8, and a cross in the Poiné&section shows
wY(T)n P.

WHY(T) actually connects t@. This special orbit is shown in Fig. 12(a) emphasized with diamonds. The Poincaré
section in Fig. 12(b) shows thiitS(B) passes through the center of the spiral structun®'6far).

The qualitative structure of the phase space suggests that there are infinitely many titt@4nn P, and
consequently a countably infinite number of intersection$vd{M) N P with WS(B) N P whenh = h,. To
understand this, we first remark that, in the neighborhodf, dfie connection from¥/ to T is governed by the two
complex eigenvalues of the linearization of Eq. (38) around this equilibrium. These eigenvalues have negative real
part, so that the trajectory approactiethrough a spiral with an infinite number of turns. A neighboring trajectory,
contained inW" (M) but not inWS(T), will initially stay close to the orbit connectiny to 7', and undergo some
turns, until it finally is repulsed from the vicinity &f along one of the two branches 8fY(T). Since it seems
reasonable to expect that an arbitrary number of turns can be achieved just by picking an orbit close enough to the
connection fromM to T, the spiral structure ofv!(M), which consists of the union of all these individual orbits,
can be expected to have an infinite number of turns.

The infinite number of intersections &Y(M) N P with WS(B) N P whenh = h, corresponds to an infinite
number of different orbits connecting to B. Each orbit corresponds to a different traveling wave solution of the
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Fig. 11. Phase portrait fdr— = 0.33: Solid lines in (a) represent the three connections fééito B, which appear as three intersection points
WwY(M) N WS(B)N P in (b). Circles and boxes indicate whether they correspond to stable or unstable traveling wave solutions of the PDE (29),
respectively. For better visibility, one branchW™(7T") has been emphasized witi"

PDE (29). All of these traveling waves have the same speed. Note that Fig. 12(b) resolves only a few turns of the
spirals of WY(M) N P. A closeup of the area &(T) N P in Fig. 13 shows at least two more turns of the spiral,
and in numerical trials we could resolve a total of six turns and five intersection poin&i(i) N WS(B) N P.
The accumulation point of the intersection points in the Poincaré section corresponds to the special orbit connecting
T to B. This orbit yields a special traveling wave solution of the PDE (29). This is the undercompressive capillary
shock discussed in Case 3 of the previous section. Notétheatdiyc are related byiyc = 1 — hy — h,.

The casei, < h_ < hp is analogous té&1 < h_ < h,. For example, there are two capillary shock profiles
in the caser_ = 0.333. Note that¥"(T) N P now lies on the other side d¥S(B) N P, see Fig. 14(b). In the
three-dimensional plot (Fig. 14(a)), the unstable manifold cfgain gets close t®, but then follows the other
branch ofW"(B) asé¢ — oo.

Case 3(h2 < h—_. No capillary shock profiles). Fdr_ larger tham,, WS(B) N WY (M) = @, implying that there
are no orbits fromV to B. Figs. 15(a and b) show the calse = 0.355WY(T) and W"(M) have moved further
away fromW=S(B). The Poincaré section, shown in Fig. 15(b), illustrates very well the nonintersection.
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Fig. 12. Phase portrait far_ = h, = 0.33205: Solid lines indicate two of the (probably infinite amount of) connections fbto B in (a),
which appear as intersection points in (b). The diamonds in (a) emphasize the special connectibd®mwhich only exists for this value
of h_. It corresponds to the undercompressive shock profile of Eq. (29). Note that the cross in (b) reprége¢ing P now is on top of the

dotted line forWS(B) N P.
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Fig. 13. Close-up of the Poindasection for: _ = h, = 0.33205, showing additional turns &f"(M).
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Fig. 14. Phase portrait for_ = 0.333: Note that¥"(T') gets close ta, then leaves the vicinity of this fixed point along the other branch of
WY(B) N P than in Fig. 11(a). Correspondingy'(T) andWS(B) N P have changed sides in the Poirieaection, compared to Fig. 11(b).

5.2. Stability of the capillary shock profiles

The next question relates to the stability of the capillary shock profiles as traveling wave solutions of the underlying
PDE (29). We explore this question numerically. Though every connectibhtofr in the three-dimensional phase
space of the ODE (36) corresponds to a traveling wave solution of Eq. (29), not all of thestaldesolutions
of the PDE. In the stable case, small perturbations of the profile decay with time, whereas for unstable traveling
waves, the perturbed solution is observed to evolve into either a different traveling wave or a double shock solution
as described in Section 4.

We determine the stability of a capillary shock profile obtained from the ODE (36) by using it as initial data for
the PDE (29), which we then solve using the same numerical procedure as in Section 4. Although numerical and
interpolation errors supply sufficient perturbations of the profile, we also investigate what happens with the unstable
traveling waves if we explicitly apply a small perturbation (height betwe®t &nd 0025) with compact support
centered at the maximum of the initial profile. We discuss the results of this investigation for each range of
identified in the previous subsection.
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Fig. 15. Phase portrait far_ = 0.355: In (b) we see tha’S(B) and W"(M) are well apart, suggesting that no connection frhto 7', i.e.
no traveling wave solution of Eq. (29), exists.

InCase 1h_ < h1, we find that the unique traveling wave is stable. Stability is indicated in the Poincaré section
of Fig. 10(b) forh_ = 0.3, by labeling the intersection point i with a circle.

ForCase 2:h1 < h_ < hp, we distinguish between the two subcases< h, andh_ > h,.

Case 2a:h1 < h— < h,. We label the capillary shock profiles according to their place along the spiral curve
wY(M) N P, using circles and boxes at the intersection points with(B) N P to indicate stable and unstable
traveling waves, respectively. The stability properties alternate, with a stable traveling wave farthest away from
the centeW"(T) N P of the spiral. We find numerically that the unstable traveling waves evolve into either the
preceding or the following traveling wave, both of which are stable. Specifically, the application of a small nega-
tive/positive perturbation selects the preceding/following traveling wave, respectively. These findings are illustrated
in the Poincarésections of Fig. 11(b), for = 0.33, and in Fig. 12(b), foh_ = h..

Case 2b:h, < h_ < hy. Again, stable and unstable capillary shock profiles alternate, starting with a stable
traveling wave farthest away frofir¥(7) N P. Since we now have an even number of capillary shock profiles, the
last one is unstable. It decays into the preceding traveling wave if perturbed negatively, and into the double shock
profile for positive perturbations. We remark that in Case 2a, such a double shock profile cannot persist, since the
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Fig. 16.h_ = 0.3323: The stable (—) and unstable (- - -) capillary shock profiles.
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Fig. 17. The Poinca&sectionP corresponding to Fig. 16; symbols carry over from Fig. 10(b)-14(b).

Lax shock would have to travel at a higher speed than the undercompressive shock. Fig. 14(b) shows the Poincaré
section for this case, with_ = 0.333.

As another example for Case 2b, we show the results fo= 0.3323. We remind the reader that in Section 4,
the long-time solutions of the PDE were computed for these parameter valués+.6.,, = 0.1 andh,, = h_ =
0.3323, and that, depending on the shape of the initial data (30)—(32), either one of two capillary shock profiles in
Fig. 5 or the double shock profile Fig. 6 emerged. As one might expect, the two capillary profiles are those solutions
of the ODE which are stable solutions of the PDE. Besides these, two more traveling waves are found as solutions
of the ODE, which are unstable and hence do not appear as long-time solutions of the PDE.

All four traveling waves are shown in Figs. 16 and 17, where the solid/dashed lines distinguish the stable and
unstable profiles. The Poincaré section shows that this is the complete set of capillary shock profiles=for
0.3323 k4 = 0.1. The numbers refer to the order in which the capillary shock profiles appear on the spiral formed
by WY(M). For negative perturbations, the (unstable) second and fourth capillary shock profiles decay into the first
and third, respectively. For positive perturbations, the solutions tend towards the third capillary shock profile or the
double shock profile, respectively.

We end this section with a summary of our numerical investigation of the phase space of the ODE (36) and of
the stability of the capillary shock profiles as solutions of the PDE (29). We find thiat, ash, increasesWs(B)
moves through the spiral structure Bf'(M), and new capillary shock profiles emerge each time a new turn of
the spiral is crossed. More precisely, at each crossing, a new capillary shock profile appears, which then separates
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into a pair of traveling waves, one stable and the other unstable, suggesting a saddle—node type of bifurcation. The
cascade of bifurcations leads to infinitely many traveling wave solutions whea h., with a heteroclinic orbit

from T to B as an accumulation point of the orbits fravhto B. The structure of this accumulation point might

be investigated rigorously using Sil'nikov’'s method [21]. Similar behavior is observédagproacheg, from

above. Furthermore, fdr_ < hj, we find a unique and stable capillary shock profile existsfifor> ko, there

are no capillary shock profiles connectingitp. In Section 7 we derive a priori bounds for the left statethat a

capillary shock profile can connect from as a function of the right état@hese bounds are shown in Fig. 20; the

graph shows that the upper bound far is only slightly larger than the numerical valuesiafc computed from

the phase portrait.

6. Perturbation analysis fork near 1/3

In this section, we investigate solutions of Eq. (29) riear 1/3. To this end, we rescale parameters and variables
usings = % — b, with 0 < § « 1. Specifically, we set

woo =07 (hoo = 3),  w=5"(n-3),
and introduce rescaled independent variables

£ = 3523 (x - %t) , T = 35%3,
Then, to leading order i, we obtain the equation

ur — e = —uggss. (40)
with boundary conditions &t = +oo

limu = -1, im u=uq, lim ug = lim wuge =0.
§—>00 §——00 o £—+oo § £—>+00 &

Next, we seek traveling wave solutions for Eq. (40), which obey

im u=ug, lim ug = lim uge =0.
E—>+o0 + E—+to0 § E—+o0 &

Substitutinge = u(n), n = & — ot into Eq. (40), and integrating once, we obtain
o= —(u3+u_u++ui), Uppp = (U —u_)(u —up) @ +u_ +uy). (42)

It is convenient to reduce the number of parameters in Eq. (42), as follows. When the equilibria and
—(u— 4+ uy) are distinct, an appropriate change of variables in the ODE yields

Uy = W? — 1) (u — p) (42)

with a single parameterl < p < 1. By symmetry, and bearing in mind the case = —1 corresponding to
h(c0) = b, we restrict attention to the range<0p < 1.
Eq. (42) is equivalent to the first order system

u =, vV =w, w =W —1u— p),

where’ = d/d¢. We again have three hyperbolic fixed poils= (-1, 0, 0), M = (p, 0,0) andT = (1,0, 0). As
for the unscaled equatio® and 7T have two-dimensional stable manifolds, aWdhas a one-dimensional stable
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Fig. 18. Sections of the phase portrait of Eq. (42) with= {u = (—14 2p)/3}, for p = 0.397. The enlarged view on the right resolves the four
intersection pointd¥Y(M) N WS(B) N P. Circles and boxes indicate whether they correspond to stable or unstable traveling wave solutions of
the PDE (40), respectively.

manifold. To investigate trajectories between equilibria, we study the intersections of stable and unstable manifolds
in a Poincaré section witl® = {u = (-1 + 2p)/3}. Fig. 18 shows an example fpr= 0.397. We observe that
WY(M) has the same spiral structure arou#il(7) as in Eq. (35).

As we varyp, the relative position of¥!(M) and WS(B) change, and we have three cases; p1 = 0.3793,
where we have a unique connection frafmto B, p1 < p < p2 = 0.4720, with multiple connections, and < p,
where no connection appears to exist at all. For a special valge-ofo, = 0.3959, we find tha” connects to
B, which corresponds to the undercompressive part of the double shock solution of Eq. (40). In conclusion, the
structure of the connecting orbits we are interested in is the same for Eq. (42) as for the more complicated unscaled
equation (35).

For the same example as before, pe= 0.397, for which the enlarged view of the Poincaré section in Fig. 18(b)
shows that four connections froM to B exist, we investigate the stability of the corresponding traveling wave
solutions of the PDE (40). We find the same stability pattern as before, i.e. if we rank the traveling wave solutions
according to their position on the spiral BfS(M), stable and unstable solutions of the PDE (40) alternate. Again,
numerical errors were sufficient to initiate the destabilization of the unstable traveling waves, but explicitly applying
an initial perturbation showed that the perturbed traveling wave could decay into either of the two neighboring
traveling waves, or into the Lax/undercompressive shock combination for the highest ranked traveling wave.

We conclude this section by comparing the numerical results for Eq. (42) to the computed solutions of Eq. (35)
for h, andh_ close to ¥3. We do so by using1, p« andpz (from Eq. (42)) to estimat&1, i, andhy, for smalls.

Forh, = b,and generat_, b < h_ < (1 — b)/2, the corresponding values fox. are

wp=-1  u=s"(n--1}).

We subsequently transform Eq. (41) via

P —2(u —uy) 1 Eo 2uy +u_ 2/35’
2ur +u_ 2
to get Eq. (42), after dropping the bars, wheris given by the following expression,
—3u_

p=2u++u_'
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Solving this forh_ yields
1 2 1
il
3 3+4p < 3)
from which we get the following asymptotic estimates by setfing p1, p. andpz, respectively,

1 1 1
hP= 3402245,  h%=31+02333,  hP=3}+02719.

Graphical comparison with, i, andh; in Fig. 21 shows good agreement foR8 < b < 1/3.

7. A priori bounds for capillary shock profiles

Recall that a capillary shock profile is a traveling wave solutigw,— st) of the PDE (10)
hi 4 (B2 = h%) = =(h®hoen)s + D(h%hy).. (43)

Here we derive bounds on the maximum height of any traveling wave solution and also bounds on the admissible
far field states: for such a solution. A traveling wave(x — st) connecting the state_ to the state: satisfies

—shy + (h* = 1% = —(h®hox)x + (D°hy),, (44)
wheres = h_ +hy — (W2 +h_hy + hi) is the speed of the wave. We can integrate Eg. (44) once to obtain
—sh + (h* = h%) = —h%hyx + D°h, + O, (45)

whereQ = —h_hy +h%hy +h%h_.

7.1. Bounds for the maximum and minimum height of a traveling wave

As in the proof of Theorem 1, Eq. (45) has a Lyapunov function

L(h) = hxxhx + R(h)»

where
0

!
R(h)_——z—i———l—ﬁ

so that

(L()x = (hxx)? + D(hy)2.

Unlike in Theorem 1 where we had a convex flux, the functiocan have three extrema. When + k. < 1, the
chord connecting these two points on the graph of the flux function intersects the flux at a third vatue-ds .
In such a case, the three extrema/areh, and 1— h_ — k. An example of such & is shown in Fig. 19.

Although the Conley index argument in the proof of Theorem 1 does not carry over to the case of a nonconvex
flux, the part of the proof addressing a priori pointwise upper and lower bounds can be extended. In particular, for
any traveling wave solution connecting the statesand#., there exist a priori upper and lower bounds for the
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Fig. 19. The functiorR in the Lyapunov function for the case with gravity and surface tension. Note that the fuRctleoreases for large
Pictured are the a priori upper and lower bouhgsandh, for a traveling wave solution connecting the statesandh, .

extrema of the traveling wave. For example, witen< h_ < 1 — hy — h_, the extrema of the traveling wave
satisfy

hy < hextrema< P,
whereh, andh,, are defined by (see Fig. 19)
he =min{h | R(h) > R(h-)},  hi = maXh|R(h) > R(h-)}.

7.2. Entropy-flux pairs and constraints on admissible capillary shock profiles

Another related question is to determine which statesand s, admit a traveling wave solution of Eq. (45).
Here we show that it is possible to use the concept of entropy—flux pairs to derive a priori bounds for admissible
capillary shocks. Any scalar conservation law of the form

he +(f(W)x =0
can be rewritten in the form
Gh); 4+ F(h), =0,

whereG, F are called an entropy—flux pair. Note th@tand F are related by’ (k) = G’ (h) f/(h). We apply this
idea to the traveling wave ODE (45).
First we review how to do this for the case of linear second order diffusion. We consider

hi + (f(h)x = €hxx

and we want to know what traveling wave solutions exist connecting the left/stdi® the right statér, < h_.
Let us assume that, > 0. If we have such a solution(x — st) it must satisfy

—shy + (f(h)x = €hyx. (46)

Now let us consider a function df, G(h), that satisfiesG”(h) > 0 on the range ofi. Multiplying Eq. (46) by
G’ (h), integrating from—oo to co, and integrating by parts gives

—s[GM] +[F(h)] = —¢ / G" (h)h?. (47)
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Here [A] = A(c0) — A(—00). EqQ. (47) gives us the inequality
—s[GW] +[F()] =0 (48)

which is the key equation used to derive bounds.on
We begin by noting that the casg(k) = 1 gives the shock speed if such a shock exists:

fho) = f(hy)
= 4
S (49)
Now consider the casé(h) = h™ /m for large positiven. ThenG(h_) > G(hy) so that [G(4)] is negative and
Eq. (48) yields the result that
F(h_)— F(hy)
§< —"———
G(h-) — G(hy)

Notice that
h_ h_
F(ho)—F(hy) = , /(WG (hydh = f'(h-)G(h-) — f'(h)G(hy) — , f"(h)G(h) dh
so that

LG = )Gy i f G dh
= Gl -Guy Gh) = Glhy) |

The first term on the right-hand side is

f'(ho) — f'(h)G(hy)/G(ho)
1-G(hy)/Gh) '

SinceG(hy)/G(h-) — 0 asm — oo, we see that aa — oo the first term goes tg”’(h_). Likewise, the second
term goes to zero as — oo. To see this, note that

h_
<[ anyman =—<_ (1_ (b/h_)m+1) 0 as m—oo. (50)
b m+1

h_
H/ " ()(G(h)/G(h-))dh

hy
The upshot is that taking — oo gives the right-hand side of the classical Lax entropy condition

s < f'(ho). (51)

Repeating the above argument for negativand takingnm — —oo gives the left-hand side of the Lax entropy
condition

fl(hy) <s. (52)

For a nonconvex flux function with a single inflection point, a capillary shock profile is admissible if and only if it
satisfies the two conditions (52).

For the problem with fourth order diffusion, we will not be able to show that all convex entropy funigns
yield such inequalities. Instead, we will have a restricted class of entropies for which such conditions hold.

To make this work, we appeal to some previous work on dissipative entropies for fourth order degenerate diffusion
(see [2,6,8]). Consider the class of equations

—shy + (f(h)x = —€(h"hyxo)x, (53)
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Fig. 20. Graphs of the left- and right-hand side of Eq. (56) for fixgd= 0.1 as a function of_. The graph shows that far, = 0.1 the entropy
bound restricts admissible connections framm= 0.1 to lie in the rangé&s. = 0.1 < h_ < 0.627.

with n > 0 and solutiom: > 0. We again ask what restriction the equation imposes on solutions that connect the
stateh_ atx — —oo to the statéh, atx — oo. Again, we consider a convex entropy functi6iiz) such that
G”(h) is nonnegative on the range lof Multiplying Eq. (53) byG’ (k) and integrating by parts gives

SS[GU] +[F)] = ¢ / G (K hehs. (54)

We can derive an inequality similar to Eq. (48) provided that we can find a convex fur@tionsuch that the
right-hand side of Eq. (54) has a nonpositive sign. Following the analysis in [8] and later used in [2,6] to prove
results about weak solutions to fourth order degenerate diffusion equations, we see thathfoe= 17", the
right-hand side of Eq. (54) is honpositive whenevé* < p < 1. This gives us a range of power-law entropies and
corresponding inequalities,

—s[G(W] + [F(h)] < 0. (55)

We now consider the cage= 3. We expect that the bounds given by the entropy will include valués @f the
set [Q &2] U hyc determined numerically in Sections 4 and 5. The gase 1, with G(k) = —logh, above gives
us the sharpest constraint. The bound (55) becomes

3h2 /2 — 2h_ — 3h2 )2+ 2h,
—log(h-) + log(h)

The left- and right-hand sides of this inequality are shown in Fig. 20. This bound implies thatgivirere are
maximum and minimum values &f_ for which traveling waves exist. These bounds are displayed graphically in
Fig. 21.

Fig. 21 compares the bounds bn for 0 < h4 < 1/3 with the numerical values aéfyc () (dark triangles) of
the undercompressive connection and with the valy@) (circles) above which classical shocks are no longer
observed. Also the values far, andh1 are shown as squares and light triangles; these values are extremely close
to each other. Fig. 21(b) shows a close up riear= 1/3 and compares with the values predicted by the asymptotic
theory in Section 6. Note that the upper bound given by the theory is not much larger than the numerical value
for hyc.

he +hy — (h% +h_hy +h3) > (56)

8. Concluding remarks

In this paper, we have investigated solutions of the nonlinear partial differential equation (29) that has a nonconvex
flux and nonlinear fourth order diffusion. The numerical investigation has uncovered a variety of phenomena
associated with traveling wave solutions of the equation. These phenomena also occur in the simpler equation (40)
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Fig. 21. The upper and lower bounds, shown as solid lines, gras determined by the entrogi(/) = —log(h), for various values of ;.. We

compare these bounds with the numerical values for the undercompressive shodky¢aldark triangles) and the thresholds (squares),
hy (circles) as well ag, (light triangles). The figure on the right shows a closeup neae= 1/3. We compare with the asymptotic theory of
Section 6, shown by dashekh{, grey ) , and dot-dashed:) lines.

with linear fourth order diffusion. The numerics shows that for shock dynamicsg; the O limit of Eq. (2) has
different behavior from the classical results for the= 0 hyperbolic conservation law. In particular, initial data
corresponding to strong Lax shocks can give rise to a double wave structure that includes an undercompressive
shock as the leading front. It is especially interesting that such dynamics arise from a purely diffusive (albeit
fourth order) regularization of the PDE. Since the double wave structure has a leading shock that is often much
larger than the jump for the Lax shock, this is a striking example of how fourth order diffusion can violate the
maximum principle. Also along these lines, in the numerical studies of the undercompressive shock, we note that
the shock height¢ increases as the downstream film thicknesgecreases. The rigorous bound in Section 7
shows thatyc < 1 while the numerics shows thayc is as large as.9 for b on the order of 10%. We conjecture

thathye — 1 asb — 0. If true, this has some interesting consequences for the dynamics of the PDE (29)
with jump initial data. In particular, for very smal, with the exception of very small values 6§, any i

less thanic will yield a solution to the PDE that evolves as a double shock structure. Moreover, the leading
undercompressive shock will travel at very small speeds: note thg if> 1 asb — 0, thens,, the speed of the
undercompressive shock, goes to zero. Moreover, there will be a wide rangge af 2/3 for which the trailing

Lax shock actually travels backwards! This is extremely unusual as the characteristics f3f3 always travel
forwards. We note that this is a different singular behavior frombthe 0 limit when the flux function is convex,

e.g. f(h) = h? or k3. In these cases, @s— 0, the Lax shock speed approaches a bounded constant determined
by h~, but the shape of the capillary Lax shock becomes singular. This size of the bump becomes unbounded as
b— 0.

Since these are scalar equations in one space dimension and time, the analysis of the phenomena will be simpler
than for a system or with more space dimensions. In particular, the phase portraits uncovered in Section 5 might
be established quite easily, including the existence of parameter values for which the vector field has a separatrix
corresponding to an undercompressive shock. The proof of stability of the corresponding traveling wave to small
perturbations in one dimension might be quite difficult, but there are now a variety of methods for attacking
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such a problem. A recent paper of Engelberg [15] establishes the stability of weak compressive capillary shock
profiles (given by Theorem 2). The stability of the undercompressive viscous-dispersive profile described in [29]
is proved in [13], based on the Evans function to study the spectrum of the linearized equation, a technique
that has proved effective in other contexts [31,32], including the stability of undercompressive viscous profiles
[18]. The stability of undercompressive viscous profiles has also been established for certain systems of equations
using a combination of properties of the linearized viscous equation, the hyperbolic equation, and the nonlinearity
[38].

In Sections 4 and 5 we discuss stability of the traveling waves as solutions of the PDE (29). Our numerical
evidence indicates that when multiple traveling waves exist connecting the far fieldistaads ., some of these
waves are stable and others are not. On the Poincaré sections pictured in Section 5, the stable and unstable waves
occur as alternating points along the spiral representing the intersection of the unstable manifald fvitmthe
Poincaré plane. These stability results are consistent with the idea that a saddle—node bifurcation occurs whenever
more traveling waves emerge/as is varied (while keeping . fixed). At the center of the spiral is the connection
from h_ to the state + h_ — k. When the stable manifold froi, intersects this point, we have a heteroclinic
connection from the top state-1/4_ — hy to the bottom staté., which takes the form of an undercompressive
capillary shock. This shock, although it is the limiting solution of an infinite family of alternating stable and unstable
Lax shocks connecting_ to i, appears to be quite stable as a solution of the PDE (29). It would be interesting
to try to understand better the relationship of the stability of the infinite family of Lax shocks to the stability of the
undercompressive shock. In addition, a very relevant stability question related to the dynamics of driven contact
lines in thin films, is whether the traveling waves are stable as solutions of the 2D equation

b + (f(h)x = =V - (BPV Ah)

describing the effects of transverse perturbations of the film. The capillary shocks that arise for convex fluxes of
the form f(h) = h? [33] or f(h) = h® [3,46], are always linearly unstable with respect to perturbations in the
transverse variable. This instability is believed to play a role in fingering of a driven contact line (as in paint dripping
down a wall). For the case of the nonconvex flux considered here (e.g. Eq. (29)), recent results [4] indicate that while
the capillary Lax shocks are linearly unstable to transverse perturbations, the undercompressive shock is stable.
This is believed to be play a role in recent experimental results [17] in which the contact line is much more stable
for intermediate film thicknesses.

In this paper, we have investigated new phenomena only for purely fourth order diffusion. When second order
diffusion is included, withD positive but small in Eqg. (10), then we expect the results to be unchanged, as this
is a lower order perturbation that will modify the vector field in a benign way. Howevel) a&screases, the
undercompressive shocks must become less important as the compressive waves establish themselves, since in
the limit D — oo, as in Section 3.1, there are no undercompressive traveling waves. It would be interesting to
understand this transition, and whether it takes place at a finite valie Gfur preliminary computations with
positive D indicate that for smalD the situation is very much like the cage= 0 that we consider here. In [3],
it was shown that for the convex flug(h) = h® (gravity driven films), for eactb, there is a criticalD above
which the capillary ridge, or bump in the shock profile disappears. The disappearance of the bump was related
to the change in linear stability of the front with respect to 2D perturbations. If there is a critical Hirdtgove
which undercompressive shocks no longer exist, it would be interesting to know its relationship to the 2D stability
problem.

Finally we note that we have used a precursor model for the study of driven contact lines. Many other such models
exist, including the slip models [20,22] in which degenerate fourth order diffusion plays a role [6,7]. There are also
models that include long range van der Waals interactions [12] involving second order super-diffusive terms [5].
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