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Slip vs. viscoelasticity in dewetting thin films
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Abstract. Ultrathin polymer films on non-wettable substrates display dynamic features which have been
attributed to either viscoelastic or slip effects. Here we show that in the weak- and strong-slip regime,
effects of viscoelastic relaxation are either absent or essentially indistinguishable from slip effects. Strong
slip modifies the fastest unstable mode in a rupturing thin film, which questions the standard approach to
reconstruct the effective interface potential from dewetting experiments.

PACS. 83.60.Bc Linear viscoelatiscity – 47.50.-d Non-Newtonian fluid flows – 68.15.+e Liquid thin films

Introduction

In recent years it has been shown that the physics of poly-
meric thin films on non-wettable surfaces can be described,
to an astonishing level of detail, by lubrication models de-
rived from the Navier-Stokes equation for simple liquids [1,
2]. However, ultrathin dewetting films exhibit unusual fea-
tures in their rupture dynamics which show up in the mor-
phology and velocities of dewetting holes [3]. It has been
suggested that viscoelasticity plays an important role in
these films, in particular when the polymer length scales
become comparable to the film thickness. There is now a
large number of modelling attempts to explain these fea-
tures [4–8]. Most of them assume a generalized Maxwell-
or Jeffreys-type dynamics for the stress-strain relation in
these films, sometimes in combination with additional flow
functions; all these assumptions are, while not entirely
artificial, hard to solidly justify at present. The earlier
work of Safran and Klein also included an explicit zero-
frequency shear modulus or elasticity [9]. Here we are ex-
clusively concerned with liquid-polymer films and, in the
absence of better knowledge, we believe that the Jeffreys
model remains a useful starting point for modeling, with
the idea to later confront the predictions with experiment.

As has been shown very recently, thin-film lubrication
models can be classified into different slip classes, and sep-
arate models have to be derived for each class. There are
models valid specifically in the limit of strong slip [10,11]
but also in intermediate slip regimes [11]. The distinction
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of different slip classes is essential for the description of
dewetting experiments of PS-films on substrates with dif-
ferent slip properties [12]. This last result has shown that
slip effects can indeed explain the anomalies in the shape
of dewetting films.

As we demonstrate here, the distinction of different slip
classes remains true for viscoelastic thin films of Jeffreys
type. We show that it is easy to generalize the recently
proposed lubrication model for Newtonian liquids in the
strong-slip regime [10,11] to a Jeffreys model. We here ap-
ply this model, as well as the recently developed model for
the weak-slip case [13], to determine the onset conditions
of rupture in unstable thin films.

Model assumptions and lubrication equations

We begin with the bulk dynamic equations for the vis-
coelastic liquid. It is assumed as incompressible, hence the
velocity field u = (ux, uy, uz) fulfills the mass conservation
equation

∇ · u = 0 . (1)

The equation of momentum conservation is given by

%
du

dt
= −∇pR + ∇ · τ (2)

where pR = p + V ′ is the augmented pressure, with p as
capillary pressure and −V ′ as disjoining pressure due to
van der Waals-type dispersion forces. The traceless part
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of the stress tensor is described by a symmetric matrix τ .
Further, in equation (2), d/dt is the total derivative, and
∇ abbreviates the partial derivative vector with entries
∂i, i = x, y, z.

To complete the model we have to choose a consti-
tutive relation for the stress tensor τ . As argued in the
introduction, we opt for the linear Jeffreys model defined
by

(1 + λ1∂t)τ = η(1 + λ2∂t)γ̇ (3)

in which γ̇ is the strain rate, γ̇ij = ∂iuj + ∂jui. The rates
λ1 > λ2 govern the relaxation of the stress and strain rate,
respectively.

In order to derive the equations for a thin film of height
z = h(x, y, t) we have, for the incompressible case, the
kinematic condition

∂th = −∇‖ ·
∫ h

0

dz u‖ (4)

where ∇‖ = (∂x, ∂y), and u‖ = (ux, uy). The boundary
conditions at the free surface correspond to the vanishing
of the stress tensor components tangential to the film sur-
face (i.e., we neglect the vapor phase), while the normal
component of the stress tensor obeys

(τ − pR1) · n = 2σκn , (5)

where σ is the surface tension of the film, 1 a 3 × 3
unit matrix, and κ the local mean curvature with sign
convention that κ < 0 for a spherical drop. Finally, in
equation (5), the normal vector to the film is given by
n = (−∇‖h, 1)/

√
g, with g = 1 + (∇‖h)

2. The model is
completed by the boundary conditions at the substrate
which are of Navier type, i.e.,

uz = 0 , ui =
b

η
τiz , (6)

where b is the slip length.
We now sketch the derivation of the lubrication model

for strong and weak slip that can be derived from this bulk
dynamics; for the technical details we refer the readers to
references [11,13] and Appendix A to this paper.

The basis of the lubrication approach is the introduc-
tion of a relative scale of the thin-film height to its lateral
extension. Denoting the direction of the film height by z
and the lateral extension by the two-dimensional vector
(x, y), we introduce the scale H in the direction of the
film height and L in the lateral direction. Thus, we have

z = Hz∗ (x, y) = (Lx∗, Ly∗) , b = Hb∗. (7)

We then define

ε ≡ H

L
¿ 1 (8)

as our (small) scaling parameter which will serve to control
the different orders of the approximation. Further, time is
scaled by T = L/U , where U is the corresponding velocity
scale. The stress tensor scales as

τij =
η

T
τ∗ij (9)

for (i, j) = (x, y) and, additionally, i = j. The remaining
components scale as

τij =
η

εT
τij . (10)

The distinction between weak- and strong-slip lengths
arises from the choice of balancing conditions between the
forces acting on the film. In the weak-slip limit, one has
with the pressure scale P [13]

PH

ηU
∼ ε−1 , (11)

while in the strong-slip limit we need [11]

PH

ηU
∼ ε . (12)

The Reynolds number Re = %UL/η now scales as either

Re = ε3Re∗ (13)

in the weak-slip case, or as

Re = εRe∗ (14)

in the strong-slip case, where Re∗ is the reduced Reynolds
number of order unity. In the weak-slip regime the non-
dimensional slip length b = O(1) —i.e., it has no depen-
dence on ε, while in the strong-slip regime, the dependence
is b∗ = O(1/ε2) which is made explicit by the definition

b∗ ≡ βs
ε2

, (15)

where βs is a constant.
We now first state the result for the strong-slip case,

details are given in Appendix A. Being interested here
only in the conditions of thin-film rupture, we restrict the
discussion to the (laterally) one-dimensional case; the ex-
tension to the full two-dimensional case is straightforward.

In the strong-slip lubrication limit one ends up with
the following system of equations (we put σ = 1):

hRe∗(∂tu+ u∂xu) = h∂x[∂
2
xh− V ′(h)] + ∂x(4hq)−

u

βs
,

(1 + λ1∂t)q = (1 + λ2∂t)∂xu , (16)

∂th+ ∂x(hu) = 0 ,

where q is related to the stress tensor, see Appendix A.
Note that the system (16) readily reduces to the Newto-
nian case if λ1 = λ2 = 0; the added complexity of the
viscoelasticity is thus relatively minor in this limit.

By contrast, in the weak-slip limit, one is able to derive
the equation [13]

(1 + λ2∂t)∂th+ (λ2 − λ1)∂x

(

h2

2
Q− hR

)

∂th =

−∂x
[(

(1+λ1∂t)
h3

3
+(1+λ2∂t)bh

2

)

∂x(∂
2
xh−V ′(h))

]

,

(17)
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where the two functions Q and R fulfill the differential
equations

(1 + λ2∂t)Q = −∂x(∂2
xh− V ′(h)) (18)

and
(1 + λ2∂t)R = −h∂x(∂2

xh− V ′(h)) . (19)

Note that for λ2 → 0, equation (17) collapses to a
single equation; this limit corresponds to the simplest
Maxwell model. In the case λ1 = λ2 one recovers the
thin-film equation of the Newtonian liquid with an extra
multiplicative factor (1 + λ1∂t) on both sides.

Linear stability analysis

We now turn to the linear stability analysis of a thin
film of thickness h0 which experiences a dispersion force
which destabilizes it (i.e., V ′′(h0) < 0). The two different
cases yield:

A) Weak slip. The linear stability analysis is easily
determined by assuming that one has up to first order, as
indicated by the index, the relations

h = h0 + δh1 , Q = δQ1 , R = δR1, (20)

where 0 < δ ¿ 1 with, in addition,

(h1(x, t), Q1(x, t), R1(x, t)) ≡ (ĥ1, Q̂1, R̂1)e
ikx+ωt . (21)

Note that the zero-order contributions to Q and R vanish.
The resulting dispersion relation ω(k) can be expressed

as
(1 + λ2ω)ω = ωN (1 + Λω) , (22)

where

ωN (k) =

(

h3
0

3
+ bh2

0

)

Ω(k) (23)

with
Ω(k) = −(k4 + k2V ′′(h0)) (24)

is the dispersion relation of the Newtonian liquid. Finally,
the (positive) parameter Λ appearing in equation (22) is
given by

Λ ≡ λ2 +
(λ1 − λ2)h

3
0

h3
0 + 3bh2

0

. (25)

From an analysis of equation (22) one finds two solu-
tion branches, one strictly negative and stable and one
which has the same sign and zeroes as ωN (k). Further,
since the wave vector k does not appear explicitly in
equation (22), also the fastest unstable mode is unaffected
by viscoelastic relaxation. The instability of a weakly
slipping Jeffreys film is therefore identical to that of the
Newtonian film. In Appendix B we compare this finding
to the results obtained earlier by Safran and Klein [9].

B) Strong slip. In complete analogy to case A) one puts

h = h0 + δh1 , q = δq1 , u = δu1 (26)

and, with equation (21), one finds the dispersion relation

(1 + λ1ω)(h0Re∗ω + β −1
s )ω + 4h0k

2ω(1 + λ2ω)

−h2
0Ω(k)(1 + λ1ω) = 0 . (27)

Again it is immediately evident that there exists a solu-
tion branch with the same zeros as Ω(k). This branch has
the same sign as Ω(k), and the other branches are stable.
The range of unstable modes is therefore unaffected by
viscoelastic relaxation.

However, in contrast to the weak-slip case, the most
unstable wave number km is modified and satisfies the case
Re∗ = 0 (which applies to the systems studied in [12]),

4βsh
3
0k

4
m+h2

0

(

2k2
m+V ′′(h0)

) 1 + λ1βsh
2
0k

4
m

1 + λ2βsh2
0k

4
m

=0. (28)

This result shows that the most unstable mode is strongly
affected by slip, as was already observed for the case of
a Newtonian liquid [10]. In addition we find that km also
depends on the relaxation parameters λ1 and λ2. In the
limit λ1, λ2 À 1 or βs À 1 equation (28) simplifies to

k2
m = −ρ

4
+

√

ρ2

16
− V ′′(h0)ρ

4
, ρ =

λ1

βsh0λ2
. (29)

Note that the most unstable wavelength depends on the
combination of systems lengths βsh0 and diverges for
βs → ∞, in accordance with the Newtonian case stud-
ied in [10]. Note that this parameter combination plays a
role in the characterisation of the different morphologies
of the rims of holes in dewetting films [14,15]. Our result
(29) also holds for Re∗ 6= 0, but the condition correspond-
ing to equation (28) is much more involved.

Conclusion

Based on the derivation of lubrication models for thin-film
dynamics of Jeffreys type we conclude that both in the
weak- and strong-slip limits, linear viscoelastistic effects
are essentially absent for film rupture. By contrast, strong
slip affects the most preferred wave number, which now
also depends on the relaxation parameters. In particular,
from equation (28) it appears that the standard approach
for the reconstruction of the interface potential, which is
based on the wavelength of the fastest-growing mode, is
questionable for films subject to strong slip.

M.R. acknowledges support by the German Science Foundation
(DFG) under grant RA1061/2-1, and A.M. and B.W. under
grant MU1626/5-1, both in the priority programme SPP1164.

Appendix A. Strong-slip lubrication limit for

the Jeffreys model

The derivation of the strong-slip lubrication model for the
linear Jeffreys case follows closely both the calculation in
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the weak-slip regime, and the strong-slip Newtonian case.
As in [11], the starting point is the ansatz

(u,w, h, pR, τij) = (u0, w0, h0, pR0, τij0)

+ε2(u1, w1, h1, pR1, τij1), (A.1)

where u and w are the velocity field components in x-
and z-directions, neglecting the transverse y-direction. To
leading order we find the equations

τxz0 = 0 , (A.2)

(1 + λ2∂t)∂zu0 = 0 (A.3)

with the solution

∂zu0 = c(x, z) exp(−t/λ2) . (A.4)

We select the solution c ≡ 0 since any other solution would
correspond to a strong prestressing of the film at times
t → −∞. Therefore, u0 = f(x, t), and from the mass
conservation we have ∂xf = −∂zw0, hence w0 = −z∂xf .
It thus follows

(1 + λ1∂t)τzz0 = −(1 + λ2∂t)∂xf (A.5)

which reads in integrated form as

τzz0 = − 2

λ1

∫ t

−∞

dt′e(t−t′)/λ1(1 + λ2∂t)∂xf = −τxx0 .

(A.6)
To solve for f(x, t), we need to make use of the next order,
which gives

Re∗(∂t + f∂x)f = ∂xτxx0 + ∂zτxz1 = −∂xpR0 , (A.7)

where pR0 = −∂xxh0 − τzz0 . This can be written as

Re∗(∂t + f∂x)f = ∂zτxz1 + ∂xxxh0

+
4

λ1
∂x

∫ t

−∞

dt′e(t−t′)/λ1(1 + λ2∂t)∂xf .

(A.8)

From the boundary condition at the free surface we find
to second order

((τxx0 − τzz0) + τxz0(∂xh0))(∂xh0) = τxz1 (A.9)

and hence

τxz1 = −2(∂xh0)τzz0 . (A.10)

It remains to determine the second-order result from the
boundary condition at the substrate. We have τxz1 = f/β
and we can now integrate equation (A.8) with respect to
z across the film from 0 to h0 and obtain the system of
equations given in the text (with f ≡ u), and where

q = −τzz0
2

. (A.11)

Appendix B. Comparison to the dispersion

relations obtained by Safran and Klein

The instability of thin viscoelastic films had been previ-
ously discussed by Safran and Klein [9]. These authors
start from the relationship between the stress and rate-of-
strain tensor given by

τ(ω) = η(ω)γ̇(ω) (B.1)

(the authors use ε instead of γ, which we avoid to not
confuse with the lubrication parameter). For viscoelastic
materials with a single relaxation time τr = 1/ωr they
have

η(ω) = η∞ +
E

ω + ωr
. (B.2)

This expression is equivalent to our equation (3) provided
one puts for η in our equation (3)

η = η∞
λ1

λ2
(B.3)

and
1

λ1
= ωr ,

1

λ2
=

E

η∞
+ ωr . (B.4)

It is then apparent that the paper by Safran and Klein
contains an error. While their dispersion relation equa-
tion (24),

ω(q) = −a(q)

2
± 1

2

[

a2(q) + 4b(q)
] 1/2

(B.5)

is correct, the coefficients of this equation given in the
subsequent equations (25) and (26) are not. The correct
coefficients are

a(q) = αq2[q2 − q2
c ] +

E

η∞
+ ωr (B.6)

and
b(q) = −ωrαq2[q2 − q2

c ] , (B.7)

in accord with our finding here. A comparison of this re-
sult with equation (19) in Safran and Klein confirms this,
and shows that their eqs. (24-26) have the wrong zeros
in wave vector. The error progresses on in their paper to
equation (31).

As a final remark, we note that the elastic limit is ob-
tained by letting ωr → 0, which in our model corresponds
to the (singular) limit 1/λ1 → 0 with λ1/λ2 finite. The
analysis shows that, as found by Klein and Safran, elas-
tic behaviour at small wavelengths can stabilize the film.
This also holds qualitatively for the strong-slip case.
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