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1 Introduction

Spreading viscous films are of considerable interest in industrial applications,
especially in coating processes, where, in general, a uniform quality of the final
coating is preferred. Experiments show that the contact-line of, in this case,
liquid films driven down an inclined plane through gravity, rapidly desta-
bilizes, forming either sawtooth or finger patterns. For the latter situation,
portions of the contact-line may stop to move at all, leaving uncovered re-
gions on the plane. Theoretical investigations using linear stability analysis
for the lubrication approximation are in good agreement with experimen-
tal results for large to moderate inclination angles [2,4,8,12]. However, for
small inclination angles, they predict stability in contrast to experimental
observations.

The present work studies this regime. We use a contact-line model and
investigate variations in the slip parameter as a possible source of instability,
in analogy to the non-constant precursor height used by Bertozzi and Brenner
[2]. Using a linear analysis, we find a considerable impact on the fluid profile
and contact-line. Furthermore, for the first time for this model, we attempt a
step into the nonlinear regime by a weakly nonlinear analysis which includes
two additional modes, and find that they reinforce the response shown by the
linearized model.

2 Formulation

We introduce a coordinate system attached to the inclined plane, with the
x, y, z axis pointing in the stream-, spanwise, and normal direction, respec-
tively. h(x, y, t) denotes the height of the fluid profile, and Γ (y, t) is the
position of the moving contact-line.

The bulk of the liquid is governed by the Navier-Stokes equation, with a
contribution from gravity ρg = (ρg sin α, 0, −ρg cosα), and by the equation
of continuity. Here, ρ denotes the fluid density, g the gravitational constant,
and α is the inclination angle. At the liquid/gas interface, we have a kinematic
boundary condition, a pressure jump due to surface tension, and continuity
of tangential stress. For thin films of sufficiently viscous fluids, lubrication
theory allows these equations to be used in a simplified form (see, for example,
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Fig. 1. A thin fluid sheet spreading down an inclined plane.

[5], [6]), namely

px = ρg sin α + µuzz, py = µvzz, pz = −ρg cosα, ux + vy + wz = 0, (1)

ht + uhx + vhy = w, p − pa = σ(hxx + hyy), uz = vz = 0 at z = h, (2)

where p, u, v, w are the pressure field and the three velocity components,
respectively, µ is the viscosity, σ the surface tension, and pa the external
pressure.

At the contact-line, h vanishes, and we assume a linear relationship be-
tween the dynamic contact angle θ and the velocity of the contact-line, valid
for small velocities [3],

Γt(1 + Γ 2
y )−1/2 = κ(θ − θS), tan θ(y, t) = −hx|x=Γ (y,t)(1 + Γ 2

y )1/2,

where κ is a material constant and θS the static contact angle. Far upstream,
we assume a flat film with a constant fluid height h∞ and a constant flow
rate.

Since the plate is assumed to be at rest and impermeable, the normal
velocity component vanishes for z = 0. For the tangential components u and
v, in order to avoid the stress singularity at the moving contact-line, we allow
the fluid to slip, according to

u = λ(x, y)h−1 uz, v = λ(x, y)h−1 vz, at z = 0, (3)

with λ(x, y) > 0 small compared to the square of the typical fluid height
away from the contact-line. This ensures that slip is negligible except very
close to Γ , where h vanishes.

This contact-line model, but with constant slip parameter λ(x, y) ≡ λ0,
was used by Greenspan [5] to investigate the spreading of droplets on a hori-
zontal surface and by Lopez et al. [8] for fluid spreading on an inclined plane.

Greenspan’s model actually originates from a careful study by Neogi &
Miller [10] of the spreading of fluids on porous surfaces, where the slip term
coincides with (3) to leading order. So (3) may be considered to reflect the
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average effect of microscopic roughness on the velocity field near the contact-
line. Therefore it appears reasonable to assume that variations in surface
roughness affect the local value of λ. Instead of being constant, we therefore
allow λ to vary about its average value λ0, so that

λ(x, y) = λ0(1 + δϕ(x, y)). (4)

In view of our later analysis, we assume the function ϕ, which describes the
variations in the slip parameter, has order one and δ � 1, but the model
itself only requires λ(x, y) to be positive.

We non-dimensionalize x, y, z, with h∞ and t with h∞ sin α/V , where
the velocity scale is set by the upstream depth-averaged flow rate, i. e. V =
h2
∞

ρg sinα(1 + 3λ0h
−2
∞

)/σ. We average (1) with respect to z and, by using
the boundary conditions at the plane and the surface of the film, obtain

a2(1 + d2
0)ht = −∇ ·

[

(h3 + d2
0(1 + δϕ(x, y))h)

(

∇4h − a2 cosα∇h + a2 sin α

(

1
0

))]

, (5)

D1Γt = hyΓy − hx − θS(1 + Γ 2
y )1/2, h = 0 at x = Γ, (6)

lim
x→−∞

h = 1, lim
x→−∞

∂νh

∂xν
= 0, ν ∈ IN. (7)

The following dimensionless quantities appear in (5)–(7):

a2 =
ρgh2

∞

σ
, D1 =

ρgh2
∞

(1 + d2
0)

3µκ
, d2

0 =
3λ0

h2
∞

.

3 Linear Analysis

In experimental situations (see, for example, [4,7]) one observes that, after
the fluid is released at the top of the plane, it initially forms a traveling
wave with a straight contact-line. Indeed, in the absence of slip parameter
variations (ϕ ≡ 0), inserting the ansatz

h(x, y, t) = h0(x − t sin α), Γ (y, t) = t sinα,

into (5)–(7) and integrating once, one obtains

h′′′

0 − a2 cosα h′

0 = a2 sinα
1 − h2

0

h2
0 + d2

0

,

h0(0) = 0, h′

0(0) = −D1 sin α − θS ,

h0(−∞) = 1, h(ν)(−∞) = 0, ν ∈ IN.

A traveling wave has been computed numerically, [8,9] and derived asymp-
totically, for small inclination angles [12].
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In experimental situations, the contact-line and the profile of the traveling
wave quickly corrugate, forming a periodic structure, which rapidly evolves
into a finger- or sawtooth-like pattern. Much of the work done so far has
been devoted to investigating this instability by analyzing the growth/decay
of initially infinitesimally small disturbances of the profile and the contact-
line, but with a constant slip parameter (ϕ ≡ 0). This results in a linear
eigenvalue problem for the growth/decay rate as a function of the wavenum-
ber k. The predicted preferred wavelength, i.e. the one which maximizes the
growth rate, was found to be in good agreement with experiments, for large
to moderate inclination angles. For small α, however, some questions remain.
The wavelength actually observed in experiments of, for example, Johnson [7]
was consistently overestimated, [8,9], and in one case, the interval of measured
wavenumbers was about the theoretical cut-off wavenumber kc. Interestingly,
in the second reference, Lopez et al. mention pinning through surface defects
as a possible explanation for the decreased wavelength. Also, in the third
author’s PhD thesis [9] and in an upcoming paper [11], a long wave approxi-
mation shows that, for small θS/a, stabilization occurs below a certain critical
inclination angle α∗. In experiments carried out by de Bruyn [4], however,
instability has actually been observed at distinctively lower values. Further-
more, in an extension of the normal mode analysis into the weakly nonlinear
regime, we found a supercritical bifurcation at the cut-off wavenumber, which
hints to a further stabilizing nonlinear mechanism, see [9,11].

For this reason, we investigate a different mechanism as a cause of insta-
bility, where initial perturbations are neglected but a nontrivial shape for ϕ
is assumed instead. More precisely, we attempt to assess the impact of slip
parameter variations by analyzing the effect of a deviation from constant slip
(4), localized in the streamwise direction, on h and Γ . We expect a response
in the same order of δ � 1, i.e, we decompose h and Γ as

h(x, y, t) = h0(ξ) + δh∗(ξ, y, t), (8)

Γ (y, t) = t sin α + δγ∗(y, t). (9)

Here, we have simultaneously introduced new coordinates for the streamwise
direction, ξ = x − Γ (y, t), to map the spatial variables to a fixed domain, so
that the contact-line is now represented by ξ = 0 independent of time t. This
avoids having to expand the boundary conditions in terms of δγ∗, which is of
some advantage especially for the weakly nonlinear extension of the analysis
in the next section.

Inserting (8) and (9), and expanding in orders of δ, the zeroth order terms
cancel out. Neglecting higher than first order terms yields a linear system of
PDEs/ODEs for h∗ and γ∗, with ϕ appearing as a forcing term. Since the
coefficients are independent of y, we use the theory of Fourier transforms,
and assume a special form for the slip variation ϕ and for the solution h∗,
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γ∗, i.e.,

ϕ(x, y) = ϕ1(x)eiky , (10)

h∗(ξ, y, t) = A(ξ, t)eiky , (11)

γ∗(y, t) = c(t)eiky , (12)

with a fixed wavenumber k. We thus obtain the following set of equations for
A and c, where the hats have been dropped,

bAt − bċh′

0 = P(h0, k
2; ∂µ

ξ )A + H(h0, k
2; ξ) c

+
∂

∂ξ

[

ϕ1(ξ + t sin α)d2
0h0b sinα

h2
0 + d2

0

]

, (13)

A = 0, D1ċ = −Aξ at ξ = 0, lim
ξ→−∞

∂νA

∂ξν = 0, ν ∈ IN0. (14)

where the abbreviation b = a2(1 + d2
0) has been used. P(h0, k

2; ∂µ
ξ ) denotes

the following differential operator,

P(h0, k
2; ∂µ

ξ ) = −(h3
0 + d2

0h0)
∂4

∂ξ4 − (3h2
0 + d2

0)h
′

0

∂3

∂ξ3

+(h3
0 + d2

0h0)(2k2 + a2 cosα)
∂2

∂ξ2

+

[

(3h2
0 + d2

0)h
′

0(k
2 + a2 cosα) −

2bh2
0

h2
0 + d2

0

sin α

]

∂

∂ξ

−

[

(h3
0 + d2

0h0)(k
4 + k2a2 cosα) +

4bd2
0h0h

′

0

(h2
0 + d2

0)
2

sinα

]

(15)

and H(h0, k
2; ξ) the following function,

H(h0, k
2; ξ) = −

[

(h3
0 + d2

0h0)h
′′

0

]

ξ
k2 + k4(h3

0 + d2
0h0)h

′

0

−k2(a2 sinα(1 − h2
0)h0). (16)

Note that here, due to the choice of coordinates, the traveling wave is sta-
tionary, but the support of ϕ is shifted upstream with a rate given by sin α.

For ϕ1, we choose a smooth bump of length x1 − x0 > 0 located at a
distance x0 > 0 of the initial position of the contact-line,

ϕ1(·) =















exp

(

−
x̃2

1 − x̃2

)

if x0 ≤ · ≤ x1,

0 otherwise,

(17)

where x̃ = 2(· − x0)/(x1 − x0) − 1.
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Before the traveling wave has reached this position, we assume it to remain
unperturbed,

A(ξ, 0) = 0 for all ξ, c(0) = 0. (18)

We remark that, even as the fluid passes over the slip parameter variation,
the forcing term remains bounded by ∼ sinα and in fact is negligible (of order
� d2

0) everywhere except near the contact-line ξ = 0. Thus, its impact on
the spreading diminishes as soon as the contact-line seizes to intersect with
the support of ϕ1(ξ + t sin α).

We solve (13)–(18) numerically using a pseudo-spectral discretization in
ξ and an implicit Euler in time, for a choice of parameters based on a typical
experimental situation [7], i. e. a2 = 0.265, θS = 0.178 and D1 = 1. For d2

0 we
chose a value for which we could obtain reliable numerical results, d2

0 = 0.003.
α was set to 0.0525, which is below the critical angle, and |x1−x0| was 21.44.

The impact of the slip parameter variation on the profile and the contact-
line of the travelling wave as it passes over the localised slip parameter vari-
ation is shown in fig. 2, where ||A|| := supξ|A(ξ, t)|. We see that the contact-
line is modified by a perturbation on the order of 0.4 . . .0.6. For values of δ
within the range of validity of linear theory, δ ≈ 0.5, we obtain a corruga-
tion of 0.2 . . . 0.3 lengthscales. The effect on the profile appears to be much
smaller, but we remark that ||A|| only measures the perturbation amplitude
in the fixed domain coordinates (ξ, y, t). Transforming back to physical co-
ordinates would yield an additional contribution related to the contact-line
corrugation. Trials with different d2

0 showed that the maximum value of ||A||
and c depended only weakly on d2

0.
Since we are in a regime of α where the linear system is stable in the

sense that for all k unforced perturbations eventually die off, ||A|| and c
decay exponentially after the contact-line has left the region where the slip
parameter varies. However, at its peak, the perturbation could be strong
enough to incite possibly amplifying nonlinear effects. We shall address this
question in the next section.

4 Weakly Nonlinear Analysis

The aforementioned mechanism cannot give rise to a persistent instability
without the aid of nonlinear effects. This raises at least two questions, whether
the induced perturbations of the profile/contact-line are sufficient to excite
the nonlinearities and whether they amplify or stabilize the perturbations.

A definite answer could be obtained by solving (5) – (7) directly, with
an unperturbed traveling wave as initial data. But doing so even numerically
is a demanding task, since a strongly nonlinear, spatially two dimensional
and time dependent problem has to be solved. The high order of the PDE
and the presence of small length-scales – d2

0 – near the contact-line, which
have to be resolved accurately, further contribute to the difficulties. Until
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now, we believe, no two-dimensional solution of a problem like this has been
performed.

As a first step to answering the two questions we instead generalize an
approach used by Benney [1] for the investigation of surface waves on falling
liquid films, and perform a weakly nonlinear analysis. Here, we study how the
evolution of the profile/contact-line perturbation is modified if the interaction
of the fundamental mode (of order δ) with itself and with the side modes it
forces predominantly (at order δ2) is taken into account. Thus in replacement
of the single-mode ansatz (8), (9) and (11)–(12) we put

h(ξ, y, t) = h0(ξ) + δ
{

A1(ξ, t)e
iy + Ā1(ξ, t)e

−iy
}

+δ2
{

A0(ξ, t) + A2(ξ, t)e
2iy + Ā2(ξ, t)e

−2iy
}

, (19)

Γ (y, t) = t sinα + δ
{

c1(t)e
iy + c̄1(t)e

−iy
}

+δ2
{

c0(t) + c2(t)e
2iy + c̄2(t)e

−2iy
}

, (20)

where again δ � 1 and the Al, cl are possibly complex valued functions
(except for l = 0) and the bar denotes complex conjugation. For ϕ, rather
than just taking twice the real part of (10), we assume a slightly more general
form, where we include contributions to the side mode at the same order of
magnitude at which they are forced by the fundamental mode, i.e., consistent
with (19) and (20),

ϕ(x, y) = ϕ1(x)eiky + ϕ̄1(x)e−iky

+δ
{

ϕ0(x) + ϕ2(x)e2iky + ϕ̄2(x)e−2iky
}

. (21)

We insert (19)–(21) into (5)–(7), after having mapped the latter to a fixed
domain using ξ = x − Γ (y, t), and, since we intend to include only those
interactions with the strongest impact on the fundamental mode, retain only
terms up to third order in δ. Note that (21) too has to be expressed in terms
of the fixed domain coordinates (ξ, y, t), so that, in these coordinates, the
variation of the slip parameter explicitly depends on time. The zeroth order
terms fulfill the traveling wave equation, so they drop out and we divide
the equations by δ or δ2, respectively. We obtain an initial boundary value
problem for a nonlinearly coupled system of PDEs, which we solve using a
pseudo-spectral and implicit Euler discretization, for, as in the linear case,
vanishing initial data.

Examples of the result of the computations are shown in fig. 3. Here, we
used the bump profile (17) for all three functions ϕ0, ϕ1, ϕ2 but with |x1−x0|
set to 42.88, and a = 0.35, θS = 0.25, α = 0.0525, for the parameters. D1

and d2
0 were as before, and the wavenumber was k = 0.165, to the right of kc.

For δ = 0, we recover the linear behavior, where the corrugation eventually
decays. For δ = 0.175 and δ = 0.195, the increase in amplitude is reinforced
markedly, both for the profile and the contact-line perturbations. The im-
pact increases for larger δ and, for the second of the two values shown here,
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we get a finite time blowup, interestingly for the amplitudes of the profile
perturbation.

In both cases, care was taken that the fundamental mode clearly domi-
nated the side modes, i. e.

||A1|| � δ||A2|| and |c1| � δ|cl| l = 0, 2.

for all times, in order to be consistent with the ansatz (19)–(21).

In the absence of information about the neglected higher modes, though,
we remark that the weakly nonlinear ansatz using (19)–(20) is strictly valid
only in the limit of small amplitudes δ ↘ 0. The influence of the higher modes
in the exact solution may rapidly increase to equal order as the side modes
retained in (19)–(20) and modify the solution’s behavior. In fact, we expect
such a mechanism to become important where the finite time blow-up of the
three-mode approximation occurs in the case δ = 0.195.

In spite of its limitations, the analysis performed here indicates that the
profile/contact-line perturbation induced by slip parameter variations at a
fraction of its value is enough to excite a strong nonlinear effect, one that is
capable of promoting further destabilization.

5 Discussion and Conclusion

In this paper, we investigate the influence of variations of the slip parame-
ter on the contact-line and profile of a traveling wave solution for a liquid
film spreading down an inclined plane. We find a significant impact even for
the linearized model. An extension using weakly nonlinear theory indicates
that this effect is strong enough to incite a further destabilizing nonlinear
mechanism, so that, the slip variations could play a role in the onset of a
macroscopic, visible instability.

This compares favorably with a previous result by Bertozzi and Brenner
[2] for the situation of completely wetting fluids. Instead of a slip law, they
assume the presence of a very thin precursor layer in front of the contact-
line, where the small precursor height b represents the average effect of the
microscopic physics in the lubrication model, hence taking the role of the
slip parameter d2

0. They then place a small bump (of the same order b in
height) on this precursor as a simple model for the microscopic fluctuations,
and find that the solution of the linearized problem undergoes significant
”transient growth” of order 0.3h∞ and more as the bump traverses the front
of the traveling wave, and argue that this is ”enough” to incite nonlinear,
possibly destabilizing effects which can lead to finger formation. Thus, both
models give qualitatively similar answers, which indicates that our results
reflect some essential effect of the physics at the contact-line and are not a
mere artifact of a special way in which we introduce the (still incompletely
understood) microscopic physics into the lubrication model.
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Fig. 2. Evolution of amplitude of the perturbation of the profile (left) and contact-
line (right) in time, for wavenumbers k = 0 (—), k = 0.125 (- - -) and k = 0.25
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Fig. 3. Evolution of the amplitude of the perturbation of the profile (left), and
contact-line (right), for the fundamental mode, with δ = 0.195 (—), δ = 0.175
(- - -) and δ = 0 (- · -).
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An interesting aspect of our findings is that the slip variation needs to
act for a sufficient length of time in order to have a macroscopic impact.
Remember that in our case the support of ϕ1 had a length of 21 or more
dimensionless units, which, for typical h∞ ∼ 1 mm, corresponds to 2 cm or
more. A bump of comparable length was also used by Bertozzi and Brenner
in their numerical trials. This could originate from surface defects which pin
the contact-line, surface contaminations or small but long deviations from a
perfectly flat plane.

Systematic experimental studies for small inclination angles should be
done to verify our predictions, for example, about the critical inclination
angle. Perhaps one could also probe our and Bertozzi & Brenner’s findings
[2] by looking at how deliberately introduced variations of the plate’s surface
affect the spreading.
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