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To characterize nontrivial boundary conditions of a liquid flowing past a solid, the slip length is commonly used
as ameasure. From the profile of a retracting liquid front (e.g., measured with atomic force microscopy), the slip length
can be extracted with the help of a Stokes model for a thin liquid film dewetting from a solid substrate. Specifically,
we use a lubrication model derived from the Stokes model for strong slippage and linearize the film profile around
the flat, unperturbed film. For small slip lengths, we expand the linearized full Stokes model for small slopes up to
third order. Using the respective model, we obtain, in addition to the slip length, the capillary number, from which
we can estimate the viscosity of the fluid film. We compare numerical and experimental results, test the consistency
and the validity of the models/approximations, and give an easy-to-follow guide of how they can be used to analyze
experiments.

studiest’13we introduced a new method of gaining interfacial
flow properties, namely, the analysis of the profile of a liquid
front. A discussion of viscoelastic effects can be found in the
lubrication models that are derived and analyzed in refsi6t
and 17 and 18, respectively. To induce the flow of a liquid film
experimentally, we use the dewetting proc¥s3! The lubrication
model that governs this process is derived in a systematic
asymptotic expansion from the underlying Stokes equations
together with appropriate boundary conditions at the free surface
and at the liquid/solid interface. This enables us in turn to
; 4 . . . determine the validity of our new method based on the lubrication
s_hppage is typically ch_aractenzed by the dd;»ﬂelov_vthe SO.“GF model for strong slippage and moreover to improve the method
liquid interface at which the extrapolated velqmty vanl.shes. using a direct linearization of the Stokes model that is valid even
‘Todate, anumber of methods exist to determine the sliplength, for eak slippage. Specifically, we exploit the fact that the amount
with most of them involving tracer particlés, fluorescence ot gjippage has a significant influence on the decay of the profile
recovery after photobleachirid,colloidal probe microscopy? onto the unperturbed films, where the model equations can be
or surface forces apparatuséDetailed reviews can be found  |inearized. A more comprehensive asymptotic analysis of the
in recent articles by Lauga et &bor Neto et al® In our previous entire profile in the presence of large slippage, which necessarily
must consider all nonlinearities, is a separate research direction
(in part still ongoing®? For our purpose here, the information
obtained from the linearized model(s) is sufficient to obtain the

1. Introduction

In microfluidic devices, the drag of a fluid is a substantial
concern because, for a given pumping power, it limits the
microfluidic channel length that can be filled. It therefore also
sets limits on, for example, the number of possible analysis steps
to be performed in microfluidic immunoassays. Drag can be
reduced by decreasing the friction at the liquid/solid interface,
leading to an increase in the fluid velocity at the interface. This
results in a sliding of the fluid over the solid and a nonzero
boundary condition for the interface velocity. The amount of
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slip length by fitting the eigenvalues that govern the decay of (—oyH, 1) (1,0,H)

the profile to the experimentally measured film profiles. This n= e t= I e (5)
method works well for viscous fluids dewetting from a solid 1+ (a,H) 1+ (94H)

surface.

To test the lubrication model, we also discuss here the full 2D where the local mean curvaturedss V-n. At Z= 0, we assume
description using the underlying Stokes model. We find that the impermeability of the substrate and the Navier slip boundary
whereas the strong-slip lubrication model is valid in most of the condition
interesting parameter regimes (i.e., where changes in slippage
have a significant impact on the film profile), the validity can W=0 and U=B3aU (6)
be extended to smaller slip lengths by using a third-order Taylor
expansion for small slopes for the eigenvalue relation CharaCter'respectively with Navier slip lengtB.
izing the linearized film profile. The third-order Taylor expansion We nondi}nensionalize the above system of equations using
of the Stokes model is able to extract the slip length and capillary the following scales:
number quite accurately from experiments on dewetting fluids
where the form of the profile is accessible, for example, by atomic 7=Hz X=Lx_H=Hh B=Hb
force microscopy (AFM). Via the capillary number, the viscosity U= Ul; W= \7VW T— (I:|/\’/_V)t P—p '
can be obtained if the dewetting velocity and the surface tension L= ' ' P
are known. In the following text, we will develop the theoretical ' =P¢ (7)
approach, compare numerical and experimental results, introduce ) _ ) )
the Stokes model and its approximations, test their validity, and 1N€ verticallength scale s fixed by the average film thickness,

give a description of how they can be used to analyze experiments2nd the lateral length scaleis fixed by the competition of the
effective interface potential and the surface tension (i.e., by the

2. Formulation dispersive capillary length). The vertical and horizontal velocity
scales are linked via the incompressibility conditidr= L W/H.
The choice of the pressure scdeand the velocity scalé)
together with the magnitude df fixes the flow regime.

Inref 12, it is shown that for large slip lengths (i.e., for>
1) the scale separatidf/L = ¢ < 1 allows for the derivation
of a simplified lubrication model, where the flow field is
essentially plug flow. This implies a balance of the pressure
gradient with the dominant viscosity contribution in the vertical
momentum equation, which yields the scaling

Recently we have shown that the dewetting process of highly
viscous polystyrene (PS) melts on hydrophobized silicon wafers
is well described by a lubrication model in the regime of large
slip lengthstt13 For the situation considered here, the flow is
very slow, and inertia terms will not play any role. For the analyzed
stage of dewetting, the shear rate is also low, which results in
Weissenberg numbers below 0.07 for the short-chain PS films
investigated. Therefore, non-Newtonian properties such as the
viscoelasticity of the melt can be neglectéd-or clarity of
presentation and as in our previous studies, we will consider the P
effectively 2D situation of a liquid ridge, which is translationally —~€
invariant in theY direction parallel to the flat, homogeneous nuU

substrate. Hence, we begin our theoretical discussion with the .
Stokes equations for an incompressible fluid layer on 2 < We assume that surface tension and pressure balance the normal

H(X, T) in two dimensions shear stress (and therefore surface tension does play a role in the
’ dynamics of the film)
~VP+yv?U=0 V-U=0 (1)

o -2
——~ _~¢€

Rl
T

together with appropriate boundary conditions (see below). Here,

U= U(X Z, Té& + W(X, Z, T)&, denotes the velocity fieldy

denotes the viscosity, arl= P(X, Z, T) is the pressure field. ~ So that
At the free surfac& = H(X, T), we have the usual kinematic _

condition for nonvolative fluids U % and Ca= % = (8)

H
aH=—a,[ U 2 dz 2
T xfo VX 2) @ In addition, we assume that= f/e2 with f = O(c°) (i.e., that

the slip length is large compared to the lateral length scile

and normal and tangential stress boundary conditions with . . . : 2
The nondimensional problem in strong-slip scaling is therefore

constant surface tensian

nen—(P— @'(H) =20« and n-ot=0 (3) —p+ falu+tau=0 ©)

with the stress tensor —ap+ 2w+ 3 w=0 (10)
=n[VU + (VU)" 4

r=nvu+ (V)] @ au+aw=0 (11)

and whered’'(H) = d®/dH denotes the contribution due to the

effective interface potentiab(H) (of the Born/van der Waals  with boundary conditions a = h(x, t)

type). See ref 19 for details of the potential. The normal and

tangential unit vectors are given by oh—w+ush=0 (12)

(23) Note that in the very early stage of dewetting viscoelastic effects may  (9.u + ) w)(1 — 62(8 h)2) + 26%9 h(o,w — a,u) =0 (13)
become visible. z X X x \Yz X
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b ¢t (1= €3N — gh(du + o) N a) b)
- - &
1+ €43 .h)
3,.%h 0 (14) {500 nm
1+ X(3,h)H* “onm
and boundary conditions at= 0 10 pm el Lol
5 Figure 1. (a) Optical image of a hole in a 130-nm-thick PS(13.7Kk)
_ _ _ P film, dewetted from OTS on Si at 12TC. (b) AFM image of a
w=0andu = bju= 6282u (19) section of the rim around the hole shown in part a. A cross section

taken in radial direction (indicated by the white line) gives the rim

As shown in detail in ref 12, assuming thatv, pandhhave ~ Profile that will be compared to theory.

the asymptotic expansions a) T
500}
ux, z, t; €) = Uy(x, z t) + €uy(x, z, t) + O(¢”)  (16) =
. T
WX, Z, t; €) = Wy(X, Z, 1) + €Wy(x, , t) + O(™)  (17) 250l
Pzt ) =pxzt) +ep(x z) + O @8 ] O Nl
h(x, t; €) = hy(x, t) + €°hy(x, t) + O(e”) (19) % 2000
b
and integrating the problem (e?), the lubrication model for ) 500
strong slip is found to be £
T ,
4 2, 1 uO _ 'l \“‘;.
h—oax(h0 d, Ug) + 38,(3,"hg — ¢'(hy)) — ﬁ_ho =0 (20 2507
. . L f e
where the solution of the leading-order problem impliestgat [ ... b=29
= Up(X, t). The first term on the left side is proportional to the 0§ 65 0% 55
[nm]

divergence of the total longitudinal shear stress integrated over
the film thickness. The second term is the gradient of pressureFigure 2. (a) Rim profiles of holes of radius Xan in 130-nm-thick

in the film. This equation, coupled with the kinematic condition PS(13.7K) films dewetted at 12@. Depending on the substrate,
(eq 2) OTS- or DTS-covered Si wafers, the profiles show an oscillatory

or monotonic decay toward the undisturbed film. (b) Rim profiles
_ calculated from the lubrication model for different slip lengths
3o + 8,(ho Ug) = 0 (21) nondimensionalized witld = 130 nm.
gives a closed system fag(x, t) andho(x, t), which is called the

strong-slip model? the dewetting velocity. Once the holes had a radius ofit?2 we

rapidly quenched the samples to room temperature and measured
3. Experiments and Comparison with Numerical Results tsr]:epé?gllﬁz (ifftgreahg/ISiSc;\II |}21:8ea-1tom|c foree microscope (AFWD:
Totestthe theoretical strong-slip model, we performed dewetting By comparing the profiles for PS films on OTS-and DTS-covered
experiments with thin films of short-chained polystyrene (PS) on wafers at identical temperature, we find substantial differences, as
top of hydrophobized silicon wafers. We achieved 130-nm-thick shown in Figure 2a for 12€C. Films on DTS exhibit a rim profile
films of atactic PS (molecular weight 13.7 kg/mM,/M, = 1.03, that decays monotonically toward the undisturbed film, whereas a
PSS Mainz, Germany) by spin coating a toluene solution on mica, film on the OTS layer exhibits an oscillatory decaying rim shape.
floating the films on fresh Millipore water, and transferring them To clarify the different rim morphologies, the inset to Figure 2a
onto the coated wafers. To hydrophobize the substrates, we coatedlepicts|H(X) — H| in a semilogarithmic plot. Herd{ denotes the
silicon wafers (2.1 nm native oxide layer, Wacker, Burghausen, prepared film-thickness.
Germany) with two different silane monolayers, octadecyltrichlo- In Figure 2b, rim profiles calculated by the lubrication model (egs
rosilane (OTS) and the shorter dodecyltrichlorosilane (DTS), using 20 and 21) are shown for different slip lengths. For details of the
standard techniqué$The rms roughness of both types of substrates simulations, we refer to refs 12 and 25. By increasing the slip length
as measured by atomic force microscopy (AFM) an¥® scan size b, we can observe a transition from oscillatory to monotonically
is below 0.15 nm. The contact angle of polystyrene droplets is 67- decaying rim profiles.
(3)° on both coatings, as AFM scans revealed. To understand this morphological transition of rim shapes observed
To mobilize the films that are glassy at room temperature, we in both the experiments and the simulations, we concentrate in the
heated the samples to different temperatures I8 °C) above next section on the region where the rim connects to the undisturbed
the glass-transition temperature of PS(13.7k)= 97 °C. The film and develop theoretical models to describe rim profiles.
dewetting process sets in by the nucleation of holes, which
instantaneously start to grow. The actual nucleation mechanism 4. Linear Stability Analysis of the Undisturbed
(homogeneous or heterogeneous) is irrelevant here, because we will Uniform Film
analyze only the shape of the dewetting rim around the hole. We

observed the growth of holes by optical microscopy to determine ' n€ Structure of the dewetting rim as it propagates into the

undisturbed film can be found via linearized analysis. Note that

(24) Wassermann, S. R.; Tao, Y.-T.; Whitesides, G.Ldngmuir1989 5,
1074. (25) Munch, A.J. Phys.: Condens. Matt&2005 17, S309.
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for later comparison with experiments the contribution from the of y andh. For the incompressible Stokes equations (eg+1),
intermolecular potential can be neglected. In the following text, we get
we analyze the shape of the rim close to the resting film. There,
the film thickness is still close to the thickness of the flat resting 8Z41/J + 2628x28221p + 648X41/) =0 (30)
film, which will be the base state. We linearize about this base
state with respect to infinitesimal perturbations of the film The boundary conditions at the film surfexe hin eqs 12-14
thickness, flow velocity, and so forth of sizeand obtain the become
shape of the leading edge of the rim.

4.1. _Lubrication Model. The base state of the str_ong-slip dh+ dﬂw(x’ ht)=0 (31)
modelin eqgs 20 and 21 gx, t) = 1, u(x, t) = 0, about which we X
linearize with respect to infinitesimal perturbations of size

X 0/ — €32) (1 — €(,h)) — 4e’,hd,dp =0 (32)
h(x, t) ~ 1+ oh(x, t), u(x t)~dl(xt), o<1 (22)

202 3, _ (493 2 2
to obtain the linearized equations €0, 0 + 3,9 — (€9, ¢ +€9,9,9)dh +

d 3,.°h
2~ 3 1.., 62_ _x
43,70+ 9,.°h — BU =0 (23) ax (1 4 EZ(BXh)2)3/2
(1 — 2 2 _ 2., 242
t X € 3 > >
X 1+ €X(3.h)

To describe the advancing edge of the ridge, it is convenient to

shift to a frame of reference that is moving in concert with the respectively. Note that in order to be able to express the pressure
ridge, & = x — s(t), and seek quasi-stationary solutions in the in terms ofy via egs 9 and 10, eq 33 is the total derivative of
form of travelling frontsh = h(&). Then, the continuity equation  eq 14 with respect ta. At z= 0, we get from eq 15

(eq 24) forcesll = sh(&). Inserting this into the momentum

equation (eq 23) yields =0 and 3,y — bafzp =0 (34)
45 8£2F‘+ 3535 _Sh=0 (25) As in the previous section, we now linearize about the
B undisturbed base state= 1,1y = 0 (i.e., about the flat, resting

To understand the qualitative forms of the advancing ridge in film) by perturbing via

this equation, we solve it with the ansdigf) = h exp@&), h=14+06h and =0y (35)
yielding the characteristic equation
with 6 < 1. We then transform to the moving-frame coordinate

T B =1 +a52—2=0 (26)  &=x— s(t) and use the ansatz

p y R _ R
X, z,t) = y(2) ex and h(x,t) =hex 36
Note that in this equatiop depends ohparametrically through W )= v(@ expbo) *.9 Pirs)  (36)

s(b). Keeping only theD(d) terms, we obtain the linearized problem
For the transitions in the ridge structure, we note that Descartes’for the full Stokes model in eq 30

law of signs shows that there is one positive real root and either A ) N

two negative or two complex conjugate roots. Physically relevant 3, + 2(ey)?9,7 + (ey)p =0 (37)

solutions, withh(& — «) — 0, must haveZ(y) < 0. The change

in roots from real to complex conjugate occurs when the in 0 <z < 1, with boundary conditions at the film surfacezat

discriminant vanishes, equivalently, = 1 (corresponding to egs 32 and 33)
1-2%¢=0 27) ()’ =3P =0 (38)

. . . . . (Ey)?g .
From eq 27, we obtain an estimate of the critical ridge speed 3(67)23z1/’ + Klp + 3231/, =0 (39)

that separates real decaying profilesréal) from oscillatory

profiles (complex conjugate) in terms of the slippage and at the substrate surfacezat 0 (derived from eq 34)

33

Serit = 316

4.2. Stokes Model.To show the range of validity and The general solution for the linear ordinary differential equation
applicability of this result, it is instructive to go back to the full N €4 37 is

Stokes model. We start with eqs-25 (i.e., the Stokes model A ez ieyz

in the strong-slip scaling), but we keep all terms. P(2) =ce”" +ce

Intwo dimensions, itis convenient to express the flow velocities
in terms of the stream function

(28) p=0 and 9, —bd P =0 (40)

ieyz

+ c,z€7 + ¢ ze " (41)
Inserting this into the boundary conditions (eqs-3®) yields
a system of linear homogeneous equations for coeffic@nts,
0y =u and —oy =w (29) c4. This system has a nontrivial solution, indicating an eigen-
solution of eqs 3#40 if the determinant of this system is zero.
Then we can formulate the incompressible Stokes problem in The determinant is easily found to be (after multiplication with
eqs 9-11 coupled to the kinematic condition in eq 12 in terms  $b(ey)#16)
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2yib 9 = (—Ezsy + 4—1b)sin(2ey) + (;—; + %)COS(gy) _
2(1 + %)es(ey)2 - (% + %)ey + ;—z (42)

For eq 42, we seek the solutiopshat have a negative real part
because we require that the perturbed profildipet) — 1 as
x — oo, Furthermore, we focus on the case where the decay is
consistent with the basic assumption of lubrication theory, namely,
that the length scale ratio, measured, for example, by the typical
spatial derivative of the unscaled film thickness, is of oreer
For the scale variabli(x, t) given in eq 36, this can be satisfied
by requiring thath,/h = y is of order 1.

Thus,ey is assumed to be small, and we can approximgate
by its Taylor expansion foey < 1.

(b, = (1 n 3—1b)(ey)3 ¥ 465(1 + 2—1b)(ey)2 . E—bs —0 (43)

If we now recallb = f3/€? for the strong-slip regime and take the
limit ¢ — 0 keepings = O(1) fixed, we obtain to leading order
the characteristic equatiopu(y; B, ) for the strong-slip
lubrication model (i.e., eq 26).

Before proceeding, let us note that by rescaling the dewetting
speed t& = €%, taking the limite — 0, and keeping* = O(1)
andb = O(1) fixed (in contrast to scaling= B/e? with 8 = O(1)
in the rest of the article), one finds to leading ordereithe
characteristic equation for the weak-slip regime

hey —a 3 S

Next, we focus on the two dominant decaying mogeand
y» for the spatial decay of the film profile for each of the three
characteristic equations (i.@un, s, andyr). These modes are
given byy = 0 with R€y) < 0 for which the modulus is the
smallest. They can be either two real negative or a complex
conjugate pair of values. Note thgt and y,, are cubic
polynomials with at most three zeros apgls a transcendental
equation that can have infinitely many solutions fer= 0.

An inspection of these two dominant modes shows that for
each of the threg's the eigenvalues are complex conjugates for
(b, §) below a certain line and real above it. The line is

Langmuir, Vol. 23, No. 21, 200D563

Xs

_—— X
== X

I =T==

10

Figure 3. Comparison of the criticad(b), given by eq 45, at which
the dominant eigenvaluesthat govern the spatial decay of the film
profile change from complex conjugates (for &;i(b)) to two real
eigenvalues (fos > &;ii(b)). The solid, dashed, and dashed-dotted
lines are, respectively, the criticali(b) for the eigenvalues obtained
for the full Stokes model (i.ey = ys), for third-order Taylor
approximation of¢s (i.e, y = x1) and for the strong-slip lubrication
model, wherey = yip.

150
500+
— | 140
£
L 130
T | 2500 5000
| i % Data
. Fit
Op= . .
0 2500 5000 = [nm]

Figure 4. Profile of the rim shown in Figure 1 in the region where
it decays toward the undisturbed film (i.e., for small perturbations)
is well fit by an exponentially decaying oscillation.

5. Method to Quantify Slippage and Its Validity

5.1. Method.The process of determining the slip length from
the shape of a moving rim essentially reverses the above
considerations: from the experimentally measured rim shape,

characterized by a merging of the two values to one real double e tyo dominant decaying spatial mogeandy- are extracted.

root of the equation, in other words, for thobeg(b)) that satisfy
. _ d .. _
x(v;b,§ =0 and d—yx(y b,§=0 (45)

For ys, these equations have to be solved numerically to obtain
es5(b) whereas foryr andy,, we obtain

T _3/3 b+1/3

T (b+—1/2)3’2 (46)
N 47)

Using these values, the slip lenghand the capillary number
Ca can be determined from the characteristic equagtien 0.
As the full Stokes mode)s ends up in quite cumbersome
expressions foB andCa, we focus in the following section on
the strong-slip lubrication model.

To get the values fop; andy, (or rather their dimensional
formI'y = 1y1 L) from the experimentally observed rim profiles,
one has to fit the respective functief{Z) = H + oH(E) to the
data in the region of small perturbations of the undisturbed film
of thicknessH. Note that= = L& denotes the dimensional form
of the absciss&. For the least-squares fitting procedure, we used
data points of the profiles up to a maximal height of about 120%
of H. In the case of oscillatory decaying profildg,andT"; are
a pair of complex conjugate numbéis, =TI, - iT’; with negative
I'.. Here, an exponentially damped oscillatiéflosc = OHo-

respectively. The comparison is made in Figure 3 and shows thatexp(r,Z) cos(iE + ) (fit parameters aréHo, T, I, and)

the result fores!, yields a good approximation for the curve
s>.(b) of the full model for all values ofb whereas the
approximation quality ofes'c“,?t obtained from the strong-slip

lubrication model deteriorates for smallas expected.

captures the decay toward the resting film thicknss the
experimental data very well (Figure 4). From the fit, we gain the
inverse decay length, and the wave numbdr;, and thud'; »
=T+ il'. In the case of monotonically decaying rims, the data
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100M =
5 o OTS, osci G A A o OTS, osci
= A DTS, osci o 4 A DTS, osci
o 10M| o 4 DTS, mono A A DTS, mono
o, 2 * rheometer
= 1000 L _ i
ML b4 . .
* =] A
: 0 $
100k : 8
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Figure 5. Viscosity as a function of temperature. The results of rim ) .
shape analysis of PS films on OTS and DTS are compared with Figure 6. Slip lengthB for PS(13.7k) on OTS and DTS coatings

viscosity data from independent rheometric measurements; “osci” &S & function of melt temperature. The data are extracted from rim
and “mono” indicate fitting functiondHoes.anddHmenthat are used, profiles of holes of radius 12m in 130-nm-thick films.

respectively.
0 1000 2000 3000 4o00 BINM

can be fitted by a superposition of two exponentiston =

OHiexp(C1E) + oHexp(-E) (fit parametersdH; , and 'y ) 8 o OTS, osci .
with inverse decay lengthg; andT>. - gg osd
After extractingl'; andT,, these values can now be used to 03} sirm'larlugnm : -

determine the slip length and the capillary number of the
investigated system. For this purpose, we recall the characteristic
equation of the strong-slip lubrication model (eq 26) in

dimensional form 0.2
2u(T; B, Ca) = (AT)? + 4Ca(AT)? — Cal = 0 (48) &%’ '
B 0.1},
where the capillary number Ga= nSo with the characteristic %
speed of the rinB = Us. By knowing two rootsl'; andT'; of
eq 48, we get two equations with two unknowBisnd Ca for 0.0
which we can solve and get 0 500 1000

Figure 7. Capillary numbeiCa extracted from the rims analyzed
1 T2+ 1., + T2 in Figure 6. In the plot o€aversus the respective slip lengths, the
By =— 1 12 2 data collapses onto one curve. The solid line indicates the result of
4H r12r22 ! simulations. The inset depicts an enlargement of the region of slip

lengths below lum.
g2+ TI,+T,2 g b

CQUb == Z rl + FZ (49)

5.2. Results and Discussiorll tests performed in the previous
section show consistent results for both the viscosity and the slip

Additionally, the film viscosityy can be determined frofia length. Therefore, we can rely on the analysis method. In Figure
using the surface tensiom = 30.8 mN/m and the observed 6, the results for polystyrene films of constant molecular weight
dewetting velocityS We emphasize that to determine only the (13.7 kg/mol) and constant initial film thickness (130 nm) are
slip length, knowledge of neither the dewetting velocity nor the summarized. All data shown here are extracted from rims of the
viscosity is required. same volume. As indicated by the error bars, there is no systematic

To check the consistency of the above-explained analysis, wedifference in the accuracy of the gained results between oscillatory
performed a couple of tests with the experimental data. First, we and monotonically decaying profiles up to slip lengths of about
determined the viscosity from the extracted capillary number 1xm. However, the results are less accurate for still larger slip
from profiles on OTS and DTS at different temperatures. The lengths. (See also section 5.3). We find that the amount of slippage
viscosity was found to be in line with rheometric data (Figure depends on both the substrate underneath and the melt temper-
5). A second test was the variation of film thickness, which leads ature. For polystyrene films on the DTS coating, the slip length
to different values fol'; » and S but does not change the slip is about 1 order of magnitude larger than on OTS. On both
length and the viscosity. Indeed, the extracted slip length was coatings, however, slippage decreases for increasing melt
independent of the initial film thickness. In a third and last temperature.
consistency check, we analyzed holes of various sizes. With  Plotting the capillary number obtained by rim shape analysis
growing hole diameter, the rim gets larger. As friction forces versus the slip length, as shown in Figure 7, we find that the data
increase with rim size, the dewetting velocity slows down. As from different substrates collapses on one curve. By varying the
aconsequence, amore pronounced oscillatory shape can be foundlewetting temperature or the type of substrate underneath, we
resulting in a variation of'; andI'; with hole size. However, can change the amount of slippage and hence probe this curve
the slip lengths and viscosities obtained via eq 49 were successively. As expected, the dewetting veloSignd with it
independent of the hole size as expected. For details, refer to refthe capillary numbeCa = S0 increase for increasing slip
13. length, but this behavior is found to be clearly nonlinear.
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From the simulations shown in Figure 2b, which were based i Il T ' : :
on the lubrication model in egs 20 and 21, we can in addition 2000} tonic 1 local
to the rim profile calculate the dewetting velocBat the stage profile 1 Minimum
when the rim size matches that of the experiments. Doing this
for different slip lengths, we gain the capillary number as function —, 1500
of B. This curve is shown in Figure 7 as the solid line. The E
qualitative behavior is in good agreement with the experimental m

|
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|
|
I
data. However, a shift to lower capillary numbers can be observed. e
1
|
|
|
|

oscillatory profile
[ ]

= Mono
o OSCi 4

This may have various causes. First, the calculation was made all
for straight fronts whereas in the experiments the growth of 500 - + |
circular holes is investigated. For the analyzed experiments with - ¢
hole radii of 12um, however, the curvature of the contact line 0
is negligible compared to the curvature of the rim in the radial 0 2000 4000 6000 8000
direction. Second, in the simulations only the linearized curvature hole radius R [nm]
of the long-wave approximation was taken into account. Figure 8. Near the transition between monotonically and oscillatory
Results for the weak slip model with linearized curvature and decaying rims, profiles with a clear minimum can be fitted by both
with nonlinear curvature in the expression for the surface tension Iﬁgcrt'e%ﬁgﬂgg ag;gérr&scohLllasgggrt?ﬁaf#?gﬁizail;oé {ﬁgr E‘Jﬁ)ﬁggo\r]‘\'ﬂth
hat the former ten nderestimate the dewetting’ ~ 4 .
?:tgegSS‘;[Tthiztistcgnsc?steitvtv?thdtaetc())buse?\?azf); tha;te h}gﬁe(rjgorigctgdH‘m The data correspond to a 130-nm-thick PS(13.7k) film
. . o . dewetting from OTS at 110C, as captured by in situ AFM.
angles are typically associated with higher dewetting f&&27
and the inclusion of nonlinear curvature generally leads to higher
contact angles. The static contact anglefor the nonlinear
curvature case is given by
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are not independent d®. The identical rim profiles fitted by
OHoscresultin a constant slip length. In addition, we found slightly
better quality for the fit when usingHosc compared to the fit
1 1. of OHmonto the profiles in this regime. For holes with radii larger
1-(1+tarfo) 2=— gmhlnqb(h) than 5um, the functiondHnmon does not capture the oscillatory
rim profiles at all. The described consistency check for various
or rim sizes provides a general argument that excludes the case of
L negative coefficientéFILz in the fitting functiondHmen for real
_ — L I
1= cosfs Gmhlnqﬁ(h) (50) 5.3. Limitation of Validity. For the rim analysis described
above, we need two inverse decay lendthandIl",. However,
in the case of extremely large slip lengths and asymmetric rims,
the second inverse decay length is too large to be observed
1 1 . experimentally. As a consequence, itis not possible to determine
Etar? 0= — Emhlnqb(h) (51) either the capillary number or the slip length solely from the rim
profile. However, if the capillary number is measured indepen-
One easily finds that for & 6s < /2, eq 51 results in larger ~ dently, then one of the inverse decay lengths is sufficient to
contact angles than eq 50. Note also the steeper fronts in thedetermine the slip lengt#f. In our experiments, the described
dewetting profiles for the nonlinear curvature models in ref 26. Situation occurs for 130-nm-thick PS(13.7k) films on the DTS
All these facts may explain the shift in capillary number shown coating, dewetting at 10%. By using independently measured
in Figure 7. viscosity and velocity data, the capillary number can be
Let us for a moment focus on a special region in MB) determined. From the fit to the rim profile, we haF@ By
plot. There is a specific regime near the transition from oscillatory insertingCaandTI'; into the characteristic equation (eq 48), the
to monotonic rims where the fitting procedure is not straight- Slip length in this situation is found to be aboup&, which
forward. Note that the “monotonic” fitting functioFimen = corresponds to the ratio= B/H ~ 40. The same experiment
OH1exp[1E) + oH.exp(2E), which is the solution for redl; at 110°C exhibits a slip length of aboutm, henceb ~ 20.
andT,, exhibits a local minimum and approximates zero from This is approximately the limit up to which both inverse decay
negative values if e|the§ﬂl or 6|:|2 is negative. Hence, for |ength§‘1andrzcan be extracted from the measured rim profile.
profiles showing a local minimum between the rim and the For polystyrene films of higher molecular weight (above 100
undisturbed film that do not show a clearly pronounced second kg/mol), the rim gets more and more asymmetfimdicating
maximum, botmﬂoscandéﬂmonmay Capture the data We have an inCI'eaSing Sllp |ength Hence, in most cases the S“p |ength
fitted both functions to a number of profiles in that regime and S expected to exceed the upper limittof 20.
have extracted the slip lengths as well as the respective capillary Inthe examples described above, we used the strong-slip model
numbers. The results f& shown in Figure 8 Correspond to a to extract the Capillary number and the Sllp Iength from the rim
growing hole in a 130-nm-thick PS film dewetting from OTS profiles. However, this model is valid only for slip lengths larger
at 110°C as captured by in situ AFM. For small holes, the than the film thickness. The smalle& observed in our
function 0Hmon captures the monotonic profiles very well, and ~experiments for PS(13.7) films on OTS at 13D was on the
the results for the slip length are reasonable. For radii betweenorder of H. For systems with much smaller slip lengths, the
about 1.5 and &m, the rim profile exhibits a local minimum. ~ strong slip model will produce systematic errors. As shown in
The functiondHmen still captures the rim shapes provided either
oH1 or 6z is chosen negative; however, the extracted slip lengths

(see, forexample, ref 19), and from this we obtain for the linearized
curvature case (tafis < 1)

(29) In fact, if the capillary number is known, then one inverse decay length
is alwayssulfficient to extract the slip length, independent of its value. However,
as long as two modes are observable experimentally, it is more accurate to fit both
(26) Munch, A.; Wagner, BPhysica D2005 209, 178. modes.

(27) Reiter, G.; Khanna, R.angmuir200Q 16, 6351. (30) Seemann, R.; Herminghaus, S.; JacobsPKys. Re. Lett 2001, 87,
(28) Flitton, J. C.; King, J. RJ. Eng Math. 2004 50, 241. 196101.
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yiub instead of the full Stokes modg, the relative error for the
extracted slip length increases significantly for decreasing
10l ] slippage. However, when using, the deviation of the calculated
slip length is quite small, even for weak slippage. Because no

# limitation for small slip lengths is given for the third-order Taylor
o ol expansion of the full Stokes model, the respective equation (eq
P 2 il AU 53) is recommended for the determination of slippage by rim
— by shape analysis.
1 10
S 6. Conclusions and Outlook

Figure 9. Comparison of slip parameters that yield the same two
(real or complex) spatially decaying modes using either the strong-  |n this article, we have shown both experimentally and
S ol (S e e ncr paron o e tneoretcaly tht ippage signfcanty afects th rim shepe o
data correspond to the rim profiles analyzed in Figure 6. dewetting thin liquid films: slowly moving fronts with no slip
or weak slip at the solid/liquid interface develop an oscillatory

Figure 3, the critical dewetting velocityi(b) as obtained from decaying rim (i.e., complex eigenvalues of the characteristic
the strong-slip model significantly deviates from the actual value equationy of linear stability analysis in a co-moving frame)
obtained from the full Stokes model for small whereas strong slippage and faster dewetting result in a

The validity and accuracy of the strong slip lubrication monotonically decaying shape corresponding to real negative
approximation can be assessed by comparison with the result folygots ofy. The critical line between complex and real solutions
the full Stokes model. Figure 9 shows slip parameters determined(j e where this morphological transition of rim shape occurs)
by the lubrication modejiup, bun = Bup/H_in comparison to  ¢oyid be very accurately predicted by a new model: instead of
results using the Stokes modg), bs = Bs/H. There are quite  ;ging 4 lubrication modehus, that accounts only for large slip
strong dewatl'or!s for wgak slippage (".e" for< 1). qu fim lengths, we calculated the third-order Taylor expangioof the
shape analysis in practice, however, it is not convenient to USe oy, 5 4 steristic equation obtained from the full Stokes mgédel
the full Stokes modejs because the expressions ByandCas The analytical solution for the transition line usiggcompares

are rather long and cumbersome, so we use the Taylor : ) .
S - ) . .~ very well to the numerical solution obtained from the Stokes
approximation thatis valid even for weak slippage. The respective ;
model, even for weak slippage.

characteristic equation (eq 43) in dimensional form is given by
Moreover, we developed a method for extracting the slip lengths
27 B, Ca)= of dewetting liquid films using rim shape analysis. For short-
H\ 53 H\ 52 H chain polystyrene films on the DTS coating, we found slip lengths
(1 + @)(HF) + 405(1 + E)(HF) ~Cag=0(52)  ipat were about 1 order of magnitude larger than for the same
films on OTS. Additionally, on both coatings, the slip length
Knowing two rootsl’; andI™; of eq 52 from rim shape analysis,  decreases with increasing melt temperature. As already seen for

we get two equations with the two unknowiandCafor which the critical line of the morphology transition, the results for the
we can solve and obtain slip length gained from the lubrication modgl, are a rather
) , good approximation in the regime of strong slippage. More
B, = i_ r°+nrr,+I; _H accurate results for the whole range of slip lengths, however, can
4H F12F22 2’ be obtained by usingr, the third-order Taylor expansion of the

G T2 GT2+T0,+ T2 full Stokes model.

& =T, +r, 4 TI,+T,

(53)

Acknowledgment. We thank O. Bamchen for helpful
discussions. This work was supported in part by Heisenberg
scholarship DFG grant MU 1626/3 (A.M.), the DFG Research
Center Matheon Berlin (A.M. and B.W.), DFG grants MU 1626/5
(A.M. and B.W.), RA 1061/2 (M.R.), and Ja 905/3 (K.J.) within
the priority program SPP 1164, and the European Graduate School

9GRK 532 (R.F.).R.F.and K.J. acknowledge the generous support
of Si wafers from Siltronic AG, Burghausen, Germany.

Note that the expression fd@r in eq 53 differs from the
lubrication resulBy,, in eq 49 by exactlyd/2. Note also that eqs
52 and 53 are also valid for small valuesBfi.e., for the regime
in which one would use the weak slip lubrication model that
leads to eqs 44). However, using the characteristic equation (e
44), one cannot determine bo@a andB from the rim shape.

The results fobr = Br/H are shown in Figure 9in comparison
to the value$y, andbs. Using the strong-slip lubrication model  LA7010698



