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To characterize nontrivial boundary conditions of a liquid flowing past a solid, the slip length is commonly used
as a measure. From the profile of a retracting liquid front (e.g., measured with atomic force microscopy), the slip length
can be extracted with the help of a Stokes model for a thin liquid film dewetting from a solid substrate. Specifically,
we use a lubrication model derived from the Stokes model for strong slippage and linearize the film profile around
the flat, unperturbed film. For small slip lengths, we expand the linearized full Stokes model for small slopes up to
third order. Using the respective model, we obtain, in addition to the slip length, the capillary number, from which
we can estimate the viscosity of the fluid film. We compare numerical and experimental results, test the consistency
and the validity of the models/approximations, and give an easy-to-follow guide of how they can be used to analyze
experiments.

1. Introduction

In microfluidic devices, the drag of a fluid is a substantial
concern because, for a given pumping power, it limits the
microfluidic channel length that can be filled. It therefore also
sets limits on, for example, the number of possible analysis steps
to be performed in microfluidic immunoassays. Drag can be
reduced by decreasing the friction at the liquid/solid interface,
leading to an increase in the fluid velocity at the interface. This
results in a sliding of the fluid over the solid and a nonzero
boundary condition for the interface velocity. The amount of
slippage is typically characterized by the depthbbelow the solid-
liquid interface at which the extrapolated velocity vanishes.

To date, a number of methods exist to determine the slip length,
with most of them involving tracer particles,1,2 fluorescence
recovery after photobleaching,3,4 colloidal probe microscopy,5,6

or surface forces apparatuses.7,8 Detailed reviews can be found
in recent articles by Lauga et al.9 or Neto et al.10 In our previous

studies,11-13 we introduced a new method of gaining interfacial
flow properties, namely, the analysis of the profile of a liquid
front. A discussion of viscoelastic effects can be found in the
lubrication models that are derived and analyzed in refs 14-16
and 17 and 18, respectively. To induce the flow of a liquid film
experimentally, we use the dewetting process.19-21The lubrication
model that governs this process is derived in a systematic
asymptotic expansion from the underlying Stokes equations
together with appropriate boundary conditions at the free surface
and at the liquid/solid interface. This enables us in turn to
determine the validity of our new method based on the lubrication
model for strong slippage and moreover to improve the method
using a direct linearization of the Stokes model that is valid even
for weak slippage. Specifically, we exploit the fact that the amount
of slippage has a significant influence on the decay of the profile
onto the unperturbed films, where the model equations can be
linearized. A more comprehensive asymptotic analysis of the
entire profile in the presence of large slippage, which necessarily
must consider all nonlinearities, is a separate research direction
(in part still ongoing).22 For our purpose here, the information
obtained from the linearized model(s) is sufficient to obtain the
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slip length by fitting the eigenvalues that govern the decay of
the profile to the experimentally measured film profiles. This
method works well for viscous fluids dewetting from a solid
surface.

To test the lubrication model, we also discuss here the full 2D
description using the underlying Stokes model. We find that
whereas the strong-slip lubrication model is valid in most of the
interesting parameter regimes (i.e., where changes in slippage
have a significant impact on the film profile), the validity can
be extended to smaller slip lengths by using a third-order Taylor
expansion for small slopes for the eigenvalue relation character-
izing the linearized film profile. The third-order Taylor expansion
of the Stokes model is able to extract the slip length and capillary
number quite accurately from experiments on dewetting fluids
where the form of the profile is accessible, for example, by atomic
force microscopy (AFM). Via the capillary number, the viscosity
can be obtained if the dewetting velocity and the surface tension
are known. In the following text, we will develop the theoretical
approach, compare numerical and experimental results, introduce
the Stokes model and its approximations, test their validity, and
give a description of how they can be used to analyze experiments.

2. Formulation

Recently we have shown that the dewetting process of highly
viscous polystyrene (PS) melts on hydrophobized silicon wafers
is well described by a lubrication model in the regime of large
slip lengths.11,13 For the situation considered here, the flow is
very slow, and inertia terms will not play any role. For the analyzed
stage of dewetting, the shear rate is also low, which results in
Weissenberg numbers below 0.07 for the short-chain PS films
investigated. Therefore, non-Newtonian properties such as the
viscoelasticity of the melt can be neglected.23 For clarity of
presentation and as in our previous studies, we will consider the
effectively 2D situation of a liquid ridge, which is translationally
invariant in theY direction parallel to the flat, homogeneous
substrate. Hence, we begin our theoretical discussion with the
Stokes equations for an incompressible fluid layer on 0e Z e
H(X, T) in two dimensions

together with appropriate boundary conditions (see below). Here,
U ) U(X, Z, T)êx + W(X, Z, T)êz denotes the velocity field,η
denotes the viscosity, andP ) P(X, Z, T) is the pressure field.

At the free surfaceZ ) H(X, T), we have the usual kinematic
condition for nonvolative fluids

and normal and tangential stress boundary conditions with
constant surface tensionσ

with the stress tensor

and whereΦ′(H) ) dΦ/dH denotes the contribution due to the
effective interface potentialΦ(H) (of the Born/van der Waals
type). See ref 19 for details of the potential. The normal and
tangential unit vectors are given by

where the local mean curvature isκ ) ∇‚n. At Z ) 0, we assume
the impermeability of the substrate and the Navier slip boundary
condition

respectively, with Navier slip lengthB.
We nondimensionalize the above system of equations using

the following scales:

The vertical length scaleHh is fixed by the average film thickness,
and the lateral length scaleLh is fixed by the competition of the
effective interface potential and the surface tension (i.e., by the
dispersive capillary length). The vertical and horizontal velocity
scales are linked via the incompressibility conditionUh ) Lh Wh /Hh .
The choice of the pressure scalePh and the velocity scaleUh
together with the magnitude ofb fixes the flow regime.

In ref 12, it is shown that for large slip lengths (i.e., forb .
1) the scale separationHh /Lh ) ε , 1 allows for the derivation
of a simplified lubrication model, where the flow field is
essentially plug flow. This implies a balance of the pressure
gradient with the dominant viscosity contribution in the vertical
momentum equation, which yields the scaling

We assume that surface tension and pressure balance the normal
shear stress (and therefore surface tension does play a role in the
dynamics of the film)

so that

In addition, we assume thatb ) â/ε2 with â ) O(ε0) (i.e., that
the slip length is large compared to the lateral length scaleLh).
The nondimensional problem in strong-slip scaling is therefore

with boundary conditions atz ) h(x, t)

(23) Note that in the very early stage of dewetting viscoelastic effects may
become visible.

-∇P + η∇2U ) 0 ∇‚U ) 0 (1)

∂TH ) -∂X∫0

H
U(X, Z) dZ (2)

n‚τ‚n - (P - Φ′(H)) ) 2σκ and n‚τ‚t ) 0 (3)

τ ) η[∇U + (∇U)T] (4)

n )
(-∂XH, 1)

x1 + (∂XH)2
and t )

(1, ∂XH)

x1 + (∂XH)2
(5)

W ) 0 and U ) B ∂ZU (6)

Z ) Hh z, X ) Lhx, H ) Hh h, B ) Hh b,
U ) Uh u, W ) Wh w, T ) (Hh /Wh )t, P ) Php,
Φ′ ) Phφ′ (7)

PhHh
ηUh

∼ ε

σ
Ph Hh

∼ ε
-2

Uh ) σε

η
and Ca) ηUh

σ
) ε (8)

-ε
2
∂xp + ε

2
∂x

2u + ∂z
2u ) 0 (9)

-∂zp + ε
2
∂x

2w + ∂z
2w ) 0 (10)

∂xu + ∂zw ) 0 (11)

∂th - w + u∂xh ) 0 (12)

(∂zu + ε
2
∂xw)(1 - ε

2(∂xh)2) + 2ε
2
∂xh(∂zw - ∂xu) ) 0 (13)
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and boundary conditions atz ) 0

As shown in detail in ref 12, assuming thatu, w, p andh have
the asymptotic expansions

and integrating the problem toO(ε2), the lubrication model for
strong slip is found to be

where the solution of the leading-order problem implies thatu0

) u0(x, t). The first term on the left side is proportional to the
divergence of the total longitudinal shear stress integrated over
the film thickness. The second term is the gradient of pressure
in the film. This equation, coupled with the kinematic condition
(eq 2)

gives a closed system foru0(x, t) andh0(x, t), which is called the
strong-slip model.12

3. Experiments and Comparison with Numerical Results

To test the theoretical strong-slip model, we performed dewetting
experiments with thin films of short-chained polystyrene (PS) on
top of hydrophobized silicon wafers. We achieved 130-nm-thick
films of atactic PS (molecular weight 13.7 kg/mol,Mw/Mn ) 1.03,
PSS Mainz, Germany) by spin coating a toluene solution on mica,
floating the films on fresh Millipore water, and transferring them
onto the coated wafers. To hydrophobize the substrates, we coated
silicon wafers (2.1 nm native oxide layer, Wacker, Burghausen,
Germany) with two different silane monolayers, octadecyltrichlo-
rosilane (OTS) and the shorter dodecyltrichlorosilane (DTS), using
standard techniques.24The rms roughness of both types of substrates
as measured by atomic force microscopy (AFM) at 1µm2 scan size
is below 0.15 nm. The contact angle of polystyrene droplets is 67-
(3)° on both coatings, as AFM scans revealed.

To mobilize the films that are glassy at room temperature, we
heated the samples to different temperatures (105-130 °C) above
the glass-transition temperature of PS(13.7k),Tg ) 97 °C. The
dewetting process sets in by the nucleation of holes, which
instantaneously start to grow. The actual nucleation mechanism
(homogeneous or heterogeneous) is irrelevant here, because we will
analyze only the shape of the dewetting rim around the hole. We
observed the growth of holes by optical microscopy to determine

the dewetting velocity. Once the holes had a radius of 12µm, we
rapidly quenched the samples to room temperature and measured
the profiles of the holes with an atomic force microscope (AFM).
See Figure 1 for a typical image.

By comparing the profiles for PS films on OTS- and DTS-covered
wafers at identical temperature, we find substantial differences, as
shown in Figure 2a for 120°C. Films on DTS exhibit a rim profile
that decays monotonically toward the undisturbed film, whereas a
film on the OTS layer exhibits an oscillatory decaying rim shape.
To clarify the different rim morphologies, the inset to Figure 2a
depicts|H(X) - Hh | in a semilogarithmic plot. Here,Hh denotes the
prepared film-thickness.

In Figure 2b, rim profiles calculated by the lubrication model (eqs
20 and 21) are shown for different slip lengths. For details of the
simulations, we refer to refs 12 and 25. By increasing the slip length
b, we can observe a transition from oscillatory to monotonically
decaying rim profiles.

To understand this morphological transition of rim shapes observed
in both the experiments and the simulations, we concentrate in the
next section on the region where the rim connects to the undisturbed
film and develop theoretical models to describe rim profiles.

4. Linear Stability Analysis of the Undisturbed
Uniform Film

The structure of the dewetting rim as it propagates into the
undisturbed film can be found via linearized analysis. Note that

(24) Wassermann, S. R.; Tao, Y.-T.; Whitesides, G. M.Langmuir1989, 5,
1074. (25) Münch, A. J. Phys.: Condens. Matter2005, 17, S309.

p - φ′(h) - 2
(1 - ε

2(∂xh)2)∂zw - ∂xh(∂zu + ε
2
∂xw)

1 + ε
2(∂xh)2

+

∂x
2h

(1 + ε
2(∂xh)2)3/2

) 0 (14)

w ) 0 andu ) b∂zu ) â
ε

2
∂zu (15)

u(x, z, t; ε) ) u0(x, z, t) + ε
2u1(x, z, t) + O(ε4) (16)

w(x, z, t; ε) ) w0(x, z, t) + ε
2w1(x, z, t) + O(ε4) (17)

p(x, z, t; ε) ) p0(x, z, t) + ε
2p1(x, z, t) + O(ε4) (18)

h(x, t; ε) ) h0(x, t) + ε
2h1(x, t) + O(ε4) (19)

4
h0

∂x(h0 ∂x u0) + ∂x(∂x
2h0 - φ′(h0)) -

u0

â h0
) 0 (20)

∂th0 + ∂x(h0 u0) ) 0 (21)

Figure 1. (a) Optical image of a hole in a 130-nm-thick PS(13.7k)
film, dewetted from OTS on Si at 120°C. (b) AFM image of a
section of the rim around the hole shown in part a. A cross section
taken in radial direction (indicated by the white line) gives the rim
profile that will be compared to theory.

Figure 2. (a) Rim profiles of holes of radius 12µm in 130-nm-thick
PS(13.7k) films dewetted at 120°C. Depending on the substrate,
OTS- or DTS-covered Si wafers, the profiles show an oscillatory
or monotonic decay toward the undisturbed film. (b) Rim profiles
calculated from the lubrication model for different slip lengthsb
nondimensionalized withHh ) 130 nm.
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for later comparison with experiments the contribution from the
intermolecular potential can be neglected. In the following text,
we analyze the shape of the rim close to the resting film. There,
the film thickness is still close to the thickness of the flat resting
film, which will be the base state. We linearize about this base
state with respect to infinitesimal perturbations of the film
thickness, flow velocity, and so forth of sizeδ and obtain the
shape of the leading edge of the rim.

4.1. Lubrication Model. The base state of the strong-slip
model in eqs 20 and 21 ish(x, t) ) 1,u(x, t) ) 0, about which we
linearize with respect to infinitesimal perturbations of sizeδ

to obtain the linearized equations

To describe the advancing edge of the ridge, it is convenient to
shift to a frame of reference that is moving in concert with the
ridge, ê ) x - s(t), and seek quasi-stationary solutions in the
form of travelling fronts,h̃) h̃(ê). Then, the continuity equation
(eq 24) forcesũ ) s̆h̃(ê). Inserting this into the momentum
equation (eq 23) yields

To understand the qualitative forms of the advancing ridge in
this equation, we solve it with the ansatzh̃(ê) ) ĥ exp(γê),

yielding the characteristic equation

Note that in this equationγ depends ont parametrically through
s(t).

For the transitions in the ridge structure, we note that Descartes’
law of signs shows that there is one positive real root and either
two negative or two complex conjugate roots. Physically relevant
solutions, withh̃(ê f ∞) f 0, must haveR(γ) < 0. The change
in roots from real to complex conjugate occurs when the
discriminant vanishes, equivalently,

From eq 27, we obtain an estimate of the critical ridge speed
that separates real decaying profiles (γ real) from oscillatory
profiles (complex conjugateγ) in terms of the slippage

4.2. Stokes Model.To show the range of validity and
applicability of this result, it is instructive to go back to the full
Stokes model. We start with eqs 9-15 (i.e., the Stokes model
in the strong-slip scaling), but we keep all terms.

In two dimensions, it is convenient to express the flow velocities
in terms of the stream function

Then we can formulate the incompressible Stokes problem in
eqs 9-11 coupled to the kinematic condition in eq 12 in terms

of ψ andh. For the incompressible Stokes equations (eqs 9-11),
we get

The boundary conditions at the film surfacez) h in eqs 12-14
become

respectively. Note that in order to be able to express the pressure
in terms ofψ via eqs 9 and 10, eq 33 is the total derivative of
eq 14 with respect tox. At z ) 0, we get from eq 15

As in the previous section, we now linearize about the
undisturbed base stateh ) 1, ψ ) 0 (i.e., about the flat, resting
film) by perturbing via

with δ , 1. We then transform to the moving-frame coordinate
ê ) x - s(t) and use the ansatz

Keeping only theO(δ) terms, we obtain the linearized problem
for the full Stokes model in eq 30

in 0 < z < 1, with boundary conditions at the film surface atz
) 1 (corresponding to eqs 32 and 33)

and at the substrate surface atz ) 0 (derived from eq 34)

The general solution for the linear ordinary differential equation
in eq 37 is

Inserting this into the boundary conditions (eqs 38-40) yields
a system of linear homogeneous equations for coefficientsc1, ...,
c4. This system has a nontrivial solution, indicating an eigen-
solution of eqs 37-40 if the determinant of this system is zero.
The determinant is easily found to be (after multiplication with
s̆b(εγ)4/16)

h(x, t) ≈ 1 + δh̃(x, t), u(x, t) ≈ δũ(x, t), δ , 1 (22)

4∂x
2ũ + ∂x

3h̃ - 1
â

ũ ) 0 (23)

∂th̃ + ∂xũ ) 0 (24)

4s̆ ∂ê
2h̃ + ∂ê

3h̃ - s̆
â

h̃ ) 0 (25)

ølub(γ; â, s̆) ) γ3 + 4 s̆γ2 - s̆
â

) 0 (26)

1 - 256
27

â s̆2 ) 0 (27)

s̆crit ≈ x3
â

3
16

(28)

∂zψ ) u and -∂xψ ) w (29)

∂z
4ψ + 2ε

2
∂x

2
∂z

2ψ + ε
4
∂x

4ψ ) 0 (30)

∂th + d
dx

ψ(x, h, t) ) 0 (31)

(∂z
2ψ - ε

2
∂x

2ψ)(1 - ε
2(∂xh)2) - 4ε

2
∂xh∂x∂zψ ) 0 (32)

ε
2
∂x

2
∂zψ + ∂z

3ψ - (ε4
∂x

3ψ + ε
2
∂x∂z

2ψ)∂xh +

ε
2 d
dx

∂x
2h

(1 + ε
2(∂xh)2)3/2

-

2ε
2 ∂

∂x

-(1 - ε
2(∂xh)2)∂x∂zψ - ∂xh(∂z

2ψ - ε
2
∂x

2ψ)

1 + ε
2(∂xh)2

) 0 (33)

ψ ) 0 and ∂zψ - b∂z
2ψ ) 0 (34)

h ) 1 + δh̃ and ψ ) δψ̃ (35)

ψ̃(x, z, t) ) ψ̂(z) exp(γê) and h̃(x, t) ) ĥ exp(γê) (36)

∂z
4ψ̂ + 2(εγ)2

∂z
2ψ̂ + (εγ)4ψ̂ ) 0 (37)

(εγ)2ψ̂ - ∂z
2ψ̂ ) 0 (38)

3(εγ)2
∂zψ̂ +

(εγ)3

ε s̆
ψ̂ + ∂z

3ψ̂ ) 0 (39)

ψ̂ ) 0 and ∂zψ̂ - b∂z
2ψ̂ ) 0 (40)

ψ̂(z) ) c1e
iεγz + c2e

-iεγz + c3ze
iεγz + c4ze

-iεγz (41)
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For eq 42, we seek the solutionsγ that have a negative real part
because we require that the perturbed profile beh̃(x, t) f 1 as
x f ∞. Furthermore, we focus on the case where the decay is
consistent with the basic assumption of lubrication theory, namely,
that the length scale ratio, measured, for example, by the typical
spatial derivative of the unscaled film thickness, is of orderε.
For the scale variableh̃(x, t) given in eq 36, this can be satisfied
by requiring thath̃x/h ) γ is of order 1.

Thus,εγ is assumed to be small, and we can approximateøS

by its Taylor expansion forεγ , 1.

If we now recallb ) â/ε2 for the strong-slip regime and take the
limit ε f 0 keepingâ ) O(1) fixed, we obtain to leading order
the characteristic equationølub(γ; â, s̆) for the strong-slip
lubrication model (i.e., eq 26).

Before proceeding, let us note that by rescaling the dewetting
speed tos̆) ε2s̆*, taking the limitε f 0, and keepings̆* ) O(1)
andb) O(1) fixed (in contrast to scalingb) â/ε2 with â ) O(1)
in the rest of the article), one finds to leading order inε the
characteristic equation for the weak-slip regime

Next, we focus on the two dominant decaying modesγ1 and
γ2 for the spatial decay of the film profile for each of the three
characteristic equations (i.e.,ølub, øS, andøT). These modes are
given byø ) 0 with Re(γ) < 0 for which the modulus is the
smallest. They can be either two real negative or a complex
conjugate pair of values. Note thatøT and ølub are cubic
polynomials with at most three zeros andøS is a transcendental
equation that can have infinitely many solutions forøS ) 0.

An inspection of these two dominant modes shows that for
each of the threeø’s the eigenvalues are complex conjugates for
(b, s̆) below a certain line and real above it. The line is
characterized by a merging of the two values to one real double
root of the equation, in other words, for those (b, s̆(b)) that satisfy

For øS, these equations have to be solved numerically to obtain
εs̆crit

S (b) whereas forøT andølub we obtain

respectively. The comparison is made in Figure 3 and shows that
the result forεs̆crit

T yields a good approximation for the curveε

s̆crit
S (b) of the full model for all values ofb whereas the

approximation quality ofεs̆crit
lub obtained from the strong-slip

lubrication model deteriorates for smallb as expected.

5. Method to Quantify Slippage and Its Validity

5.1. Method.The process of determining the slip length from
the shape of a moving rim essentially reverses the above
considerations: from the experimentally measured rim shape,
the two dominant decaying spatial modesγ1 andγ2 are extracted.
Using these values, the slip lengthB and the capillary number
Ca can be determined from the characteristic equationø ) 0.
As the full Stokes modeløS ends up in quite cumbersome
expressions forB andCa, we focus in the following section on
the strong-slip lubrication model.

To get the values forγ1 andγ2 (or rather their dimensional
formΓ1,2) γ1,2/Lh) from the experimentally observed rim profiles,
one has to fit the respective functionH(¥) ) Hh + δH̃(¥) to the
data in the region of small perturbations of the undisturbed film
of thicknessHh . Note that¥ ) Lhê denotes the dimensional form
of the abscissaê. For the least-squares fitting procedure, we used
data points of the profiles up to a maximal height of about 120%
of Hh . In the case of oscillatory decaying profiles,Γ1 andΓ2 are
a pair of complex conjugate numbersΓ1,2) Γr ( iΓi with negative
Γr. Here, an exponentially damped oscillationδH̃osc ) δH̃0-
exp(Γr¥) cos(Γi¥ + φ) (fit parameters areδH̃0, Γi, Γr, andφ)
captures the decay toward the resting film thicknessHh in the
experimental data very well (Figure 4). From the fit, we gain the
inverse decay lengthΓr and the wave numberΓi, and thusΓ1,2

) Γr ( iΓi. In the case of monotonically decaying rims, the data

øS(γ; b, s̆) ) (-ε
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4b)sin(2εγ) + (εs̆
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2 )cos(2εγ) -
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3b)(εγ)3 + 4εs̆(1 + 1

2b)(εγ)2 - εs̆
b

) 0 (43)

øweak(γ; b, s̆*) ) γ3 - s̆*
b + 1/3

) 0 (44)

ø(γ; b, s̆) ) 0 and
d
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(46)
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16
b-1/2 (47)

Figure 3. Comparison of the criticals̆(b), given by eq 45, at which
the dominant eigenvaluesγ that govern the spatial decay of the film
profile change from complex conjugates (fors̆< s̆crit(b)) to two real
eigenvalues (fors̆ > s̆crit(b)). The solid, dashed, and dashed-dotted
lines are, respectively, the criticals̆crit(b) for the eigenvalues obtained
for the full Stokes model (i.e.,ø ) øS), for third-order Taylor
approximation oføS (i.e,ø ) øT) and for the strong-slip lubrication
model, whereø ) ølub.

Figure 4. Profile of the rim shown in Figure 1 in the region where
it decays toward the undisturbed film (i.e., for small perturbations)
is well fit by an exponentially decaying oscillation.
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can be fitted by a superposition of two exponentialsδH̃mon )
δH̃1exp(Γ1¥) + δH̃2exp(Γ2¥) (fit parametersδH̃1,2 and Γ1,2)
with inverse decay lengthsΓ1 andΓ2.

After extractingΓ1 andΓ2, these values can now be used to
determine the slip length and the capillary number of the
investigated system. For this purpose, we recall the characteristic
equation of the strong-slip lubrication model (eq 26) in
dimensional form

where the capillary number isCa) ηṠ/σ with the characteristic
speed of the rimṠ ) Uh s̆. By knowing two rootsΓ1 andΓ2 of
eq 48, we get two equations with two unknownsB andCa for
which we can solve and get

Additionally, the film viscosityη can be determined fromCa
using the surface tensionσ ) 30.8 mN/m and the observed
dewetting velocityṠ. We emphasize that to determine only the
slip length, knowledge of neither the dewetting velocity nor the
viscosity is required.

To check the consistency of the above-explained analysis, we
performed a couple of tests with the experimental data. First, we
determined the viscosity from the extracted capillary number
from profiles on OTS and DTS at different temperatures. The
viscosity was found to be in line with rheometric data (Figure
5). A second test was the variation of film thickness, which leads
to different values forΓ1,2 and Ṡ but does not change the slip
length and the viscosity. Indeed, the extracted slip length was
independent of the initial film thickness. In a third and last
consistency check, we analyzed holes of various sizes. With
growing hole diameter, the rim gets larger. As friction forces
increase with rim size, the dewetting velocity slows down. As
a consequence, a more pronounced oscillatory shape can be found,
resulting in a variation ofΓ1 andΓ2 with hole size. However,
the slip lengths and viscosities obtained via eq 49 were
independent of the hole size as expected. For details, refer to ref
13.

5.2. Results and Discussion.All tests performed in the previous
section show consistent results for both the viscosity and the slip
length. Therefore, we can rely on the analysis method. In Figure
6, the results for polystyrene films of constant molecular weight
(13.7 kg/mol) and constant initial film thickness (130 nm) are
summarized. All data shown here are extracted from rims of the
same volume. As indicated by the error bars, there is no systematic
difference in the accuracy of the gained results between oscillatory
and monotonically decaying profiles up to slip lengths of about
1 µm. However, the results are less accurate for still larger slip
lengths. (See also section 5.3). We find that the amount of slippage
depends on both the substrate underneath and the melt temper-
ature. For polystyrene films on the DTS coating, the slip length
is about 1 order of magnitude larger than on OTS. On both
coatings, however, slippage decreases for increasing melt
temperature.

Plotting the capillary number obtained by rim shape analysis
versus the slip length, as shown in Figure 7, we find that the data
from different substrates collapses on one curve. By varying the
dewetting temperature or the type of substrate underneath, we
can change the amount of slippage and hence probe this curve
successively. As expected, the dewetting velocityṠand with it
the capillary numberCa ) ηṠ/σ increase for increasing slip
length, but this behavior is found to be clearly nonlinear.

Figure 5. Viscosity as a function of temperature. The results of rim
shape analysis of PS films on OTS and DTS are compared with
viscosity data from independent rheometric measurements; “osci”
and “mono” indicate fitting functionsδH̃oscandδH̃monthat are used,
respectively.

ølub(Γ; B, Ca) ) (Hh Γ)3 + 4Ca(Hh Γ)2 - Ca
Hh
B

) 0 (48)
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2
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2Γ2
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,

Calub ) - Hh
4
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2
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Figure 6. Slip lengthB for PS(13.7k) on OTS and DTS coatings
as a function of melt temperature. The data are extracted from rim
profiles of holes of radius 12µm in 130-nm-thick films.

Figure 7. Capillary numberCa extracted from the rims analyzed
in Figure 6. In the plot ofCa versus the respective slip lengths, the
data collapses onto one curve. The solid line indicates the result of
simulations. The inset depicts an enlargement of the region of slip
lengths below 1µm.
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From the simulations shown in Figure 2b, which were based
on the lubrication model in eqs 20 and 21, we can in addition
to the rim profile calculate the dewetting velocityṠat the stage
when the rim size matches that of the experiments. Doing this
for different slip lengths, we gain the capillary number as function
of B. This curve is shown in Figure 7 as the solid line. The
qualitative behavior is in good agreement with the experimental
data. However, a shift to lower capillary numbers can be observed.
This may have various causes. First, the calculation was made
for straight fronts whereas in the experiments the growth of
circular holes is investigated. For the analyzed experiments with
hole radii of 12µm, however, the curvature of the contact line
is negligible compared to the curvature of the rim in the radial
direction. Second, in the simulations only the linearized curvature
of the long-wave approximation was taken into account.

Results for the weak slip model with linearized curvature and
with nonlinear curvature in the expression for the surface tension
suggest that the former tends to underestimate the dewetting
rate.25,26This is consistent with the observation that higher contact
angles are typically associated with higher dewetting rates20,25,27

and the inclusion of nonlinear curvature generally leads to higher
contact angles. The static contact angleθS for the nonlinear
curvature case is given by

or

(see, for example, ref 19), and from this we obtain for the linearized
curvature case (tanθS , 1)

One easily finds that for 0e θS e π/2, eq 51 results in larger
contact angles than eq 50. Note also the steeper fronts in the
dewetting profiles for the nonlinear curvature models in ref 26.
All these facts may explain the shift in capillary number shown
in Figure 7.

Let us for a moment focus on a special region in theCa(B)
plot. There is a specific regime near the transition from oscillatory
to monotonic rims where the fitting procedure is not straight-
forward. Note that the “monotonic” fitting functionδH̃mon )
δH̃1exp(Γ1¥) + δH̃2exp(Γ2¥), which is the solution for realΓ1

andΓ2, exhibits a local minimum and approximates zero from
negative values if eitherδH̃1 or δH̃2 is negative. Hence, for
profiles showing a local minimum between the rim and the
undisturbed film that do not show a clearly pronounced second
maximum, bothδH̃oscandδH̃monmay capture the data. We have
fitted both functions to a number of profiles in that regime and
have extracted the slip lengths as well as the respective capillary
numbers. The results forB shown in Figure 8 correspond to a
growing hole in a 130-nm-thick PS film dewetting from OTS
at 110 °C as captured by in situ AFM. For small holes, the
functionδH̃mon captures the monotonic profiles very well, and
the results for the slip length are reasonable. For radii between
about 1.5 and 5µm, the rim profile exhibits a local minimum.
The functionδH̃monstill captures the rim shapes provided either
δH̃1orδH̃2 is chosen negative; however, the extracted slip lengths

are not independent ofR. The identical rim profiles fitted by
δH̃oscresult in a constant slip length. In addition, we found slightly
better quality for the fit when usingδH̃osc compared to the fit
of δH̃monto the profiles in this regime. For holes with radii larger
than 5µm, the functionδH̃mon does not capture the oscillatory
rim profiles at all. The described consistency check for various
rim sizes provides a general argument that excludes the case of
negative coefficientsδH̃1,2 in the fitting functionδH̃mon for real
Γ1,2.

5.3. Limitation of Validity. For the rim analysis described
above, we need two inverse decay lengthsΓ1 andΓ2. However,
in the case of extremely large slip lengths and asymmetric rims,
the second inverse decay length is too large to be observed
experimentally. As a consequence, it is not possible to determine
either the capillary number or the slip length solely from the rim
profile. However, if the capillary number is measured indepen-
dently, then one of the inverse decay lengths is sufficient to
determine the slip length.29 In our experiments, the described
situation occurs for 130-nm-thick PS(13.7k) films on the DTS
coating, dewetting at 105°C. By using independently measured
viscosity and velocity data, the capillary number can be
determined. From the fit to the rim profile, we haveΓ1. By
insertingCa andΓ1 into the characteristic equation (eq 48), the
slip length in this situation is found to be about 5µm, which
corresponds to the ratiob ) B/Hh ≈ 40. The same experiment
at 110°C exhibits a slip length of about 3µm, henceb ≈ 20.
This is approximately the limit up to which both inverse decay
lengthsΓ1 andΓ2 can be extracted from the measured rim profile.
For polystyrene films of higher molecular weight (above 100
kg/mol), the rim gets more and more asymmetric,30 indicating
an increasing slip length. Hence, in most cases the slip length
is expected to exceed the upper limit ofb ≈ 20.

In the examples described above, we used the strong-slip model
to extract the capillary number and the slip length from the rim
profiles. However, this model is valid only for slip lengths larger
than the film thickness. The smallestB observed in our
experiments for PS(13.7) films on OTS at 130°C was on the
order of Hh . For systems with much smaller slip lengths, the
strong slip model will produce systematic errors. As shown in

(26) Münch, A.; Wagner, B.Physica D2005, 209, 178.
(27) Reiter, G.; Khanna, R.Langmuir2000, 16, 6351.
(28) Flitton, J. C.; King, J. R.J. Eng. Math. 2004, 50, 241.

(29) In fact, if the capillary number is known, then one inverse decay length
is alwayssufficient to extract the slip length, independent of its value. However,
as long as two modes are observable experimentally, it is more accurate to fit both
modes.

(30) Seemann, R.; Herminghaus, S.; Jacobs, K.Phys. ReV. Lett. 2001, 87,
196101.
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Figure 8. Near the transition between monotonically and oscillatory
decaying rims, profiles with a clear minimum can be fitted by both
functionsδH̃mon andδH̃osc. Using the function for realΓ1,2, δH̃mon,
the results forB are much larger than for fitting the profiles with
δH̃osc. The data correspond to a 130-nm-thick PS(13.7k) film
dewetting from OTS at 110°C, as captured by in situ AFM.
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Figure 3, the critical dewetting velocitys̆crit(b) as obtained from
the strong-slip model significantly deviates from the actual value
obtained from the full Stokes model for smallb.

The validity and accuracy of the strong slip lubrication
approximation can be assessed by comparison with the result for
the full Stokes model. Figure 9 shows slip parameters determined
by the lubrication modelølub, blub ) Blub/Hh in comparison to
results using the Stokes modeløS, bS ) BS/Hh . There are quite
strong deviations for weak slippage (i.e., forb < 1). For rim
shape analysis in practice, however, it is not convenient to use
the full Stokes modeløS because the expressions forBS andCaS

are rather long and cumbersome, so we use the Taylor
approximation that is valid even for weak slippage. The respective
characteristic equation (eq 43) in dimensional form is given by

Knowing two rootsΓ1 andΓ2 of eq 52 from rim shape analysis,
we get two equations with the two unknownsBandCafor which
we can solve and obtain

Note that the expression forBT in eq 53 differs from the
lubrication resultBlub in eq 49 by exactlyHh /2. Note also that eqs
52 and 53 are also valid for small values ofB (i.e., for the regime
in which one would use the weak slip lubrication model that
leads to eqs 44). However, using the characteristic equation (eq
44), one cannot determine bothCa andB from the rim shape.

The results forbT ) BT/Hh are shown in Figure 9 in comparison
to the valuesblub andbS. Using the strong-slip lubrication model

ølub instead of the full Stokes modeløS, the relative error for the
extracted slip length increases significantly for decreasing
slippage. However, when usingøT, the deviation of the calculated
slip length is quite small, even for weak slippage. Because no
limitation for small slip lengths is given for the third-order Taylor
expansion of the full Stokes model, the respective equation (eq
53) is recommended for the determination of slippage by rim
shape analysis.

6. Conclusions and Outlook

In this article, we have shown both experimentally and
theoretically that slippage significantly affects the rim shape of
dewetting thin liquid films: slowly moving fronts with no slip
or weak slip at the solid/liquid interface develop an oscillatory
decaying rim (i.e., complex eigenvalues of the characteristic
equationø of linear stability analysis in a co-moving frame)
whereas strong slippage and faster dewetting result in a
monotonically decaying shape corresponding to real negative
roots ofø. The critical line between complex and real solutions
(i.e., where this morphological transition of rim shape occurs)
could be very accurately predicted by a new model: instead of
using a lubrication modelølub that accounts only for large slip
lengths, we calculated the third-order Taylor expansionøT of the
characteristic equation obtained from the full Stokes modeløS.
The analytical solution for the transition line usingøT compares
very well to the numerical solution obtained from the Stokes
model, even for weak slippage.

Moreover, we developed a method for extracting the slip lengths
of dewetting liquid films using rim shape analysis. For short-
chain polystyrene films on the DTS coating, we found slip lengths
that were about 1 order of magnitude larger than for the same
films on OTS. Additionally, on both coatings, the slip length
decreases with increasing melt temperature. As already seen for
the critical line of the morphology transition, the results for the
slip length gained from the lubrication modelølub are a rather
good approximation in the regime of strong slippage. More
accurate results for the whole range of slip lengths, however, can
be obtained by usingøT, the third-order Taylor expansion of the
full Stokes model.
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Figure 9. Comparison of slip parameters that yield the same two
(real or complex) spatially decaying modes using either the strong-
slip modelølub (open circles), the third Taylor expansion of the
Stokes modeløT (stars), or the full Stokes modeløS (solid line). The
data correspond to the rim profiles analyzed in Figure 6.
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