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Abstract. This paper considers the stability of thin liquid layers of binary mixtures of a volatile
(solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent
near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong
compositional gradients can lead to Bénard–Marangoni-type convection that is similar to the kind
which is observed in films that are heated from below. The onset of the instability is investigated
by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading
to a nonautonomous linearized system which impedes the use of normal modes. However, the time
scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale,
so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of
the linearized problem. This is determined to leading and to next order. The corrections indicate
that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of
the linear operator, but it requires these eigenvalues to be well separated. The approximations are
applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir,
25 (2009), pp. 624–632].
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1. Introduction. Convective instabilities play an important role in a number
of practical applications and have therefore been the focus of both experimental and
theoretical research for many years. The earliest quantitative experiments were un-
dertaken by Bénard [2, 3, 4]. His work inspired Rayleigh [36] to formulate a theory
for convective instabilities driven by buoyancy, i.e., by density variations in the liquid
that are induced by a thermal gradient. However, experiments by Block [6] and an
analytical investigation by Pearson [35] for a one-layer model of a film with a passive
gas layer on top and a nondeformable gas/liquid interface showed that the liquid lay-
ers in Bénard’s experiments were too thin to give rise to buoyancy-driven convection,
but that an instability can arise from surface tension variations. These initial in-
vestigations have spawned continuing scientific interest in convective instabilities; for
an overview of the thriving field, see the review by Bodenschatz, Pesch, and Ahlers
[7] and the monographs by Colinet, Legros, and Velarde [12] and Nepomnyaschy,
Simanovskii, and Legros [34].

Pearson’s analysis assumes a flat interface, and the instability sets in for Marangoni
numbers above a critical value. The case of a deformable interface is considered
by Scriven and Sternling [40] for a two-layer model; they find it is unstable at all
Marangoni numbers with respect to very long waves. Smith [42] shows for a one-layer
model in which the inclusion of gravity suppresses the long-wave instability below a
nonzero Marangoni number. In fact, Pearson’s model is regained in the limit of small
capillary and large Galileo number; see Davis [14] or Colinet, Legros, and Velarde
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[12]. In this paper, we will focus on models with nondeformable interfaces.
For an evaporating liquid layer, Marangoni-driven convective instabilities can

occur even in the absence of external heating if either the latent heat of evaporation
induces a temperature gradient that drives the instability, or the liquid is a mixture
with constituents of different volatility and a surface tension that increases as the
more volatile species is depleted. In the latter case, the preferred evaporation of
one component leads to a concentration gradient which plays a similar role as the
temperature gradient. The relevance of compositional Marangoni effects is already
discussed by Pearson, but theoretical investigations are less frequent than for the
thermocapillary instability, despite the practical importance of the phenomenon in,
for example, the preparation of thin polymer films from dilute solutions [8, 19]; we
note in passing that solutal Marangoni effects are also thought to play a role in
the leveling of drying paint; see Howison et al. [21]. For a system with two layers of
solvent/polymer mixtures (with the same solvent but different immiscible polymers in
each of the layers), a linear stability analysis is carried out by Souche and Clarke [44].
Recently, Machrafi et al. [30, 29] performed a linear stability analysis for a two-layer
model for evaporating water/ethanol mixtures with a flat interface; their approach
takes into account the instabilities arising from solutal and thermal Marangoni effects
as well as from buoyancy.

An aspect that comes into play for evaporating layers is that the concentration
profiles and the layer thickness evolve in time as the volatile component is removed.
For the linear stability analysis, this means that the base state which is then perturbed
is time dependent; thus the resulting linearized equations have time-dependent coeffi-
cients. For such problems, the usual normal-modes approach or generalizations where
the spatial and temporal variables can be separated works only in exceptional cases
such as in the problem studied by Smolka and Witelski [43] on the extensional motion
of a liquid sheet. Floquet theory [5, 37] is designed for time-periodic base flows, which
is not the case here. One possible way of handling this difficulty is to circumvent it
by modifying the model. This approach was chosen by Souche and Clarke [44], who
impose a flux at the lower boundary layer that exactly matches the evaporation at
the interface. Thus, the model permits stationary base states, but the modification
remains somewhat ad hoc and its impact on the result needs to be assessed.

A general approach is to solve the linearized system numerically as an initial
value problem, used by Foster [17] for buoyancy-driven thermal instabilities. For
Rayleigh–Marangoni–Bénard convection driven by evaporation, an extension of the
amplification method was used by Doumenc et al. [15] and Touazi et al. [45] for a
model that includes the temperature gradients induced by the evaporation but not
the compositional variations. The results are compared to experiments with polymer
solutions by Toussaint et al. [46]. Instead of solving the linearized system for an
arbitrary choice of initial perturbation, the optimal choice is determined, which maxi-
mizes the amplification of the energy of the perturbation at a given time. The general
method was introduced and explored earlier by a number of authors in particular for
problems with steady base states but nonnormal linearized operators, where transient
amplifications can be larger than the asymptotic behavior indicated by the linear oper-
ator’s spectrum; see Schmid and Henningson [39] and the references therein. Trouette
et al. [47] extend the numerical work to treat the nonlinear model and include other
geometries and also stochastic perturbations. Stochastic forcing was treated earlier
for convection instabilities in rapidly heated layers by Jhaveri and Homsy [22].

The question naturally arises if the linearized problem can be treated by some
analytical approximation. An analytic approach to the initial phase where the base
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976 MATTHEW G. HENNESSY AND ANDREAS MÜNCH

state changes rapidly but where the gradient is confined to a thin boundary layer was
carried out by Kang and Choi [23] for a case of Bénard–Marangoni convection for a
horizontal liquid layer that is suddenly cooled from above. They use a propagation
method that essentially seeks the solution of the linearized problem in the evolving
boundary layer.

On the other hand, after the boundary layer has penetrated the film, the base
state often settles into a quasi-equilibrium, where further changes of the gradient are
slow compared to the time scale of the instability. For the concentration field, this
happens specifically if the solvent loss due to evaporation occurs on a much longer time
than diffusion. This has been exploited, for example, by the “frozen time” approach.
The time dependence of the coefficients in the linearized equation is neglected but
retained for the perturbation itself. This system can be solved by normal modes and
the solution will grow or decay depending on the sign of the real part of the leading
eigenvalue. This approach has been used by Lick [27] and Currie [13] to investigate
thermal convective instabilities (and also by Kang and Choi [23] for late times), and
by Machrafi et al. [30, 29] in their work on evaporating water/ethanol mixtures.

In the “frozen time” approach, the eigenvalues are effectively treated as constant,
while, in fact, they slowly change as the base state evolves. This implies that it is
possible for modes which are initially unstable to stabilize in the long term. It has
been repeatedly observed that by integrating the eigenvalue in time and using this as
the argument of the exponential function rather than its initial value multiplied by
time, an often surprisingly good approximation of the evolution of the perturbation
can be obtained. In particular, this approximation is able to capture the change from
growth to decay, or vice versa if the leading eigenvalue changes sign. This or similar
approximations have been used, for example, by Lick [27], Mahler and Schechter [31],
Warner, Craster, and Matar [49], Edmonstone, Craster, and Matar [16], King, Münch,
and Wagner [26], and Münch and Wagner [32] for a range of different problems where
the base state changes slowly. It is tempting to think that this approximation can
be justified by one of the techniques using expansions with multiple time scales as
in Kevorkian [24] or Kevorkian and Cole [25]. However, as far as we know, this has
not been done for the type of slowly changing base states as they arise in convective
instabilities, though we note that multiple scale ideas have been used in the context
of boundary layer instabilities where the boundary layer varies slowly in space by,
for example, Bouthier [10, 11]. In our paper, we will show how the intuitive result
can be recovered from a systematic multiple-scale approach including higher-order
corrections that provide insight into the validity of the approximation.

Other approaches that account for the slow change of the base state include, for
example, Shen’s work [41], which investigates the stability of an incompressible time-
dependent flow (inviscid and viscous) by considering the ratio of the kinetic energy of
the perturbation velocity field to the energy of the (time-dependent) velocity profile.
The derivative of the log of this quantity is then a measure of the growth or decay of
the perturbation relative to the base state, and this can be expressed as the sum of
the leading “frozen time” eigenvalue and a contribution from the evolving base state.
Stability boundaries using energy stability concepts without requiring a separation of
time scales were also derived by Homsy [20] for convective instabilities.

The layout of the paper is as follows. In section 2, we formulate a model for an
evaporating (laterally infinite) liquid layer consisting of a solution of a nonvolatile
polymer in a volatile solvent, with a passive gas on top. We restrict ourselves to the
simplest model with a flat, nondeformable interface and where the surface tension is
assumed to depend only on the composition. We thus neglect thermal Marangoni as
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well as buoyancy effects. Evaporation is assumed to be small on the diffusive time
scale, leading to a small Biot number on which the subsequent asymptotic analysis
is built. In section 3, we determine asymptotic approximations of the base state
to leading order in the Biot number and compare them with numerical results. In
section 4, we linearize the model about the full time-dependent base state and then
reduce the initial value problem to a finite-dimensional ODE system by projecting it
onto the leading modes of the slowly evolving eigenvalue problem. We then exploit
the separation of time scales to obtain asymptotic approximations for this system
and thus for the full linearized initial value problem via multiple-scale expansions.
We also solve the linearized system numerically and compare the solutions with the
asymptotic approximations. In section 5, we use our results to discuss the experiments
by Bassou and Rharbi [1]. We finally conclude in section 6.

2. Mathematical model.

Governing equations. We consider a liquid film consisting of a mixture of a
volatile solvent and a nonvolatile polymer. Coordinates x and z are introduced as
shown in Figure 2.1(a), and t represents time. Our focus will be on the onset of
the instability via a linear stability analysis, and for this purpose, investigating a
spatially two-dimensional model is sufficient. This is different for nonlinear effects,
which typically select distinctly three-dimensional hexagonal patterns [1, 4, 38]. Bulk
equations for the pressure field p = p(x, z, t), the two components of the velocity
u = u(x, z, t) and w = w(x, z, t) (as shown in the sketch), and the concentration of
the solvent c = c(x, z, t) consist of the Stokes equations, an incompressibility condition
that corresponds to conservation of mass, and a convection/diffusion equation for the
concentration field:

−∇p+ μΔu = 0,(2.1)

∇ · u = 0,(2.2)

ct + u · ∇c = DΔc,(2.3)

where x = (x, z) and u = (u,w), ∇ = (∂x, ∂z) and Δ = ∇2 = ∂2
x + ∂2

z . Also, μ is the
dynamic viscosity of the liquid and D the diffusion coefficient for the solvent, both of
which we assume to be independent of the concentration.

z=0

z=h(t)

Substrate

Solute/Solvent mixture
w

u z

x

(a)

cpert

cx

__ 0 + 0 +0

0 + 0 _ 0 + 0

(b)

Fig. 2.1. (a) Sketch of the physical situation with a thin liquid layer consisting of a mixture
of a volatile solvent and a nonvolatile polymer. (b) Sketch illustrating the basic instability in a
two-dimensional setting. Details are given in section 4.

At z = 0, i.e., at the surface of the substrate, we assume no-slip for the horizontal
velocity component. Moreover, we assume the substrate is impermeable for both
constituents of the fluid, so that

(2.4) u = 0, cz = 0.
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978 MATTHEW G. HENNESSY AND ANDREAS MÜNCH

We will assume that the interface is nondeformable and thus given as z = h(t).
Nondeformability has been frequently used in studies of thermally driven Bénard–
Marangoni convection under conditions where surface tension and gravity are strong
enough to keep the interface flat [14].

At z = h(t), we impose the kinematic condition and assume that the only volatile
component is the solvent, which evaporates from the liquid at a rate that is pro-
portional to its concentration. This simple relation for the evaporation rate is phe-
nomenological and motivated by applications in spin-coating [9]. It was also used by
Souche and Clarke in their investigation of Marangoni instabilities for a two-layer film
of liquid mixtures with an evaporating solvent [44]. Thus, the boundary conditions
are

ρ(u · ez − ht) = kmc,(2.5)

c(u · ez − ht)−D∇c · ez = kmc,

where km is the mass transfer coefficient (units: length/time). The symbols ex and ez
denote the unit vectors in the direction of the x and z axis, respectively. We neglect
variations of the density between the two species so that the density of the mixture ρ
is kept constant. We can eliminate ht and u · ez from the second equation with the
help of (2.5) and thus replace it by the slightly more compact form

(2.6) D∇c · ez = −km(1− c/ρ)c.

The concentration gradients along the liquid/air interface induce a Marangoni shear
stress,

(2.7) μ ex · (∇u +∇uT ) · ez = −γc∇c · ex.
Here, we have assumed that surface tension decreases linearly with increasing concen-
tration of the solvent, so that γc is a positive parameter.

Finally, we have initial conditions at t = 0,

(2.8) h(0) = hi, c(x, z, 0) = ci(x, z),

with some specified thickness hi and initial concentration field ci. We denote the
mean value of the initial concentration field by

(2.9) cm = lim
L→∞

1

2hiL

∫ L

−L

∫ hi

0

ci(x, z)dzdx.

Nondimensionalization. We nondimensionalize the governing equations using
the initial film thickness hi as the length scale for x, z, and h, the diffusive time scale
h2
i /D for t, the ratio of the two, D/hi, as the velocity scale for u and w, and the

pressure scale μD/h2
i for p. For the concentration field, we write c = cm + hicsc̃,

where cs measures the typical concentration gradient. Notice that for a well-mixed
fluid c̃i = 0. An estimate for the concentration gradient can be obtained from (2.6)
if we replace c by its initial mean value cm, yielding |cz | ∼ km(1 − cm/ρ)cm/D ≡ cs.
With these scalings, we obtain the equations for the bulk (after dropping the tildes
from c and ci),

−px + uxx + uzz = 0,(2.10a)

−pz + wxx + wzz = 0,(2.10b)

ux + wz = 0,(2.10c)

ct + ucx + wcz = cxx + czz.(2.10d)
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For the boundary conditions at z = 0 we find

(2.10e) u = 0, w = 0, cz = 0,

and at the liquid gas interface z = h(t),

w − ht = δβ(1 + δ(1 − β)c),(2.10f)

cz = −(1 + δ(1 − β)c)(1 − δβc),(2.10g)

uz + wx = −Ma cx;(2.10h)

the initial conditions are

(2.10i) h(0) = 1, c(x, z, 0) = ci(x, z),

where the latter is now assumed to have a mean value zero. Three parameters appear
in this system:

(2.11) β = cm/ρ, δ =
kmhi

D
, Ma = δ

β(1 − β)γcρhi

μD
.

These are the initial solvent volume fraction, the evaporative Biot number, and the
Marangoni number, respectively.

To obtain typical values for these parameters, we consider recent experiments
by Bassou and Rharbi [1] and find that β is typically around 0.85, while δ is in
the range of 0.36 to 0.036 (with the lower values arising for the thinner films) and
Marangoni numbers lie between 33 and 2.6 × 103. Details of the computation are
given in section 5. This suggests that we can consider the limit of small Biot-number,
0 < δ � 1, with fixed β and Ma, for all but the thickest films. For most of the
computations in sections 3 and 4, we have typically used slightly smaller values for
δ = 0.01 and β = 0.3, but note that this does not affect the results qualitatively. For
the comparison of the experiments in section 5, we return to the parameter values
that we obtained from Bassou and Rharbi’s data.

3. Base state. We seek one-dimensional solutions of (2.10a)–(2.10i), i.e., solu-
tions for which u is zero and w, c, p do not depend on x. We find that w = 0, p = 0,
while c = C(z, t) satisfies a diffusion equation in the bulk,

(3.1a) Ct = Czz,

and the boundary and initial conditions

Cz(0, t) = 0,(3.1b)

ht(t) = −δβ(1 + δ(1− β)C(h(t), t)),(3.1c)

Cz(h(t), t) = −(1 + δ(1− β)C(h(t), t))(1 − δβC(h(t), t)),(3.1d)

h(0) = 1, C(z, 0) = 0.(3.1e)

In the following, we seek asymptotic solutions to this system of equations for
small Biot numbers δ � 1 and fixed initial volume fraction β and compare them to
numerical solutions. It turns out that we need to consider two time regimes. In the
first, the concentration field forms a boundary layer that quickly penetrates the film
and then reaches a quasi-equilibrium, while the film thickness remains constant to
leading order. In the second, i.e., the slow time regime, the leading-order solution
for the thickness and the leading contribution to concentration gradient decrease as
a result of the loss of solvent due to evaporation.
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3.1. Early time regime t = O(1). Brief inspection of the equations shows
that the solution is trivial unless we balance the left- and right-hand sides of (3.1d).
We therefore expand C and h as

(3.2) C(z, t) = C0(z, t) + δC1(z, t) + · · · , h(t) = h0(t) + δh1(t) + · · · .
The leading-order problem is

C0,t = C0,zz,(3.3a)

C0,z(0, t) = 0,(3.3b)

h0,t(t) = 0,(3.3c)

C0,z(h0(t), t) = −1,(3.3d)

h0(0) = 1, C0(z, 0) = 0.(3.3e)

This shows that in this time regime, h0 is constant and equal to one, while C0 satisfies
the heat equation and thus can be found by series expansions. Moreover, we can easily
see that

(3.4)

∫ 1

0

C0(z, t)dz = −t.

Using this mass-balance relation, (3.3a) and (3.3b), one finds that the long-time
asymptotic behavior t → ∞ for the leading-order solution is

(3.5) h0(t) ∼ 1, C0(z, t) ∼ −z2/2 + 1/6− t.

This will be used to match into the next time regime.

3.2. Late time regime t = O(δ−1). The previous regime breaks down at
t = O(δ−1) when evaporation begins to have a significant effect on the film thickness
h0. We rescale t = τ/δ and expand

(3.6) C(z, τ) = δ−1C0(z, τ) + C1(z, τ) + · · · , h(τ) = h0(τ) + δh1(τ) + · · · .
The leading-order problem is

C0,zz = 0,(3.7a)

C0,z(0, τ) = 0,(3.7b)

h0,τ (τ) = −β [1 + (1− β)C0(h0(τ), τ)] ,(3.7c)

C0,z(h0(τ), τ) = 0,(3.7d)

h0 ∼ 1, C0 ∼ −τ for τ → 0;(3.7e)

the last equation comes from matching to the initial time layer. The solution of (3.7)
is

(3.8) C0(z, τ) = C0(τ), h0(τ) = 1− βτ − β(1− β)

∫ τ

0

C0(s)ds,

with a C0 that is independent of z. The precise functional form for C0 needs to
be determined from a solvability condition arising from the next-order problem, the
relevant parts of which are

C1,zz = C0,τ ,(3.9a)

C1,z(0, τ) = 0,(3.9b)

C1,z(h0(τ), τ) = − [1 + (1− β)C0(τ)] [1− βC0(τ)] .(3.9c)
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Fig. 3.1. Comparison of the asymptotic approximations (correct to O(δ)) with numerical solu-
tions of the base state for the full one-dimensional equations (3.1). The film thickness is shown on
the left and the average concentration gradient (explained in the text) on the right. Note that the
leading order for h0 for t = O(1) is trivial and has therefore been omitted on the left. Parameter
values are β = 0.3 and δ = 0.01.

Integrating (3.9a) and using (3.7c) to express the resulting right-hand side in
terms for h0,τ yields (h0C0)τ = h0,τ/β, and therefore

(3.10) C0 = − (1− h0)

βh0
.

Using this in (3.7c) gives an ODE for h0 which has the implicit solution

(3.11) h0 − 1 + (1− β) ln

[
h0 − (1 − β)

β

]
= −τ.

System (3.9) has the solution

(3.12) C1(z, τ) = −h0 − 1 + β

2βh3
0

z2 + C1(0, τ),

stated here in terms of h0. The function C1(0, τ) is fixed by a solvability condition for
the second-order problem. We do not determine it here since it will not be required
for the linear stability analysis in section 4.

We now compare these asymptotic results with numerical results for (3.1) for
δ = 0.01 and β = 0.3. This initial volume fraction of solvent is somewhat small; most
physical experiments use solutions where the initial content of polymer is typically on
the order of a few percent. The important features of the evolution do not critically
depend on the value of β, so we will keep β = 0.3 for most of this paper. However, in
section 5, where we compare our numerical results with experiments by Bassou and
Rharbi [1], we will use a β that is much closer to one. Further details for β = 0.85
can also be found in [18].

In Figure 3.1, we specifically look at the evolution of the film thickness h(t) and
the average concentration gradient ν(t) = (c(h(t), t) − c(0, t))/h(t). We clearly see
that for t less than or equal to about one, the film thickness remains approximately
constant while the concentration gradient builds up until it plateaus at slightly less
than t = 1. This in good qualitative and quantitative agreement with the asymptotic
solution for the t = O(1) time regime. At later times, in fact shortly after t = 1, the
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982 MATTHEW G. HENNESSY AND ANDREAS MÜNCH

evolution is captured by the asymptotic results of the t = O(δ−1) regime where the
film thickness and the concentration change slowly until the solvent reaches depletion
at a very late stage. We will exploit this to obtain approximations to the solutions of
the linearized equations for small perturbations of the one-dimensional base state in
the next section.

4. Linear stability. In the previous section, we have seen that there is no flow
in the base state and the concentration field has no lateral variations but a negative
gradient in the normal direction. We will now seek to understand how this may change
when small perturbations are introduced, reflecting the ubiquitous presence of “noise”
in real world systems. We focus on the long-time regime where the base state only
changes slowly in time.

For a brief qualitative discussion of the basic instability mechanism, we neglect
the change of the base state for the moment. We introduce a perturbation of the con-
centration field cpert = c−C along the liquid/air interface (indicated in Figure 2.1(b)
by +, − signs and 0). As a result, we have lateral concentration gradients cx that
change sign along the interface, and these give rise to Marangoni shear stresses (see
(2.10h)) and thus to a Couette-type flow. The direction is such that liquid at the
surface is moved away from regions of higher solvent concentration to regions of lower
solvent concentration. Mass conservation requires liquid to rise from the bottom to
the top in the former instance, which is solvent rich and thus provides a mechanism
to overcome the leveling tendencies of diffusion. If this happens in a linearized theory,
it typically leads to an exponential growth of the perturbation. Nonlinear effects (for
example, from the convection terms in (2.10d)) are expected to eventually put a halt
to this growth and typically lead to a hexagonal pattern seen in three-dimensional
thermal convection [14], but these are not discussed in this paper. The question re-
mains how the slow change of the base state interacts with the basic instability and
how it can be incorporated into the linear stability analysis; this will be addressed in
the following sections.

4.1. Formulation. We begin by seeking a solution to the governing equations
of the form

u(x, z, t) = α

∫ ∞

−∞
û(z, t; k)eikxdk,(4.1a)

w(x, z, t) = α

∫ ∞

−∞
ŵ(z, t; k)eikxdk,(4.1b)

p(x, z, t) = α

∫ ∞

−∞
p̂(z, t; k)eikxdk,(4.1c)

c(x, z, t) = C(z, t) + α

∫ ∞

−∞
ĉ(z, t; k)eikxdk,(4.1d)

h(t) = h(t) + α

∫ ∞

−∞
ĥ(t; k)eikxdk,(4.1e)

where we assume that 0 < α � 1 so that (4.1) represent a slightly perturbed base

state. Since we have assumed that the liquid/air interface remains flat, ĥ(t; k) is
proportional to a delta function. We are interested in perturbations that can give rize
to laterally nontrivial patterns, and therefore restrict our attention to the case k �= 0,
where ĥ(t; k) is zero.

We insert this ansatz into (2.10) and expand. To O(1), we recover the equations
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for the base state (3.1). After eliminating û, the O(α) equations in the bulk are

p̂zz − k2p̂ = 0,(4.2a)

ŵzz − k2ŵ = p̂z,(4.2b)

ĉt + ŵCz = ĉzz − k2ĉ,(4.2c)

with boundary conditions at z = 0,

ŵ = 0, ŵz = 0, ĉz = 0,(4.2d)

and at z = h(t),

ŵ = δ2β(1 − β)ĉ,(4.2e)

ĉz = −δ [1− 2β − 2δβ(1− β)C] ĉ,(4.2f)

p̂z = −k2(Ma + 2δ2β(1− β))ĉ.(4.2g)

The initial condition is

ĉ(z, 0; k) = ĉi(z; k).(4.2h)

Also notice that we can solve (4.2a), (4.2b), (4.2d), (4.2e), and (4.2f) for ŵ and p̂
and that the solution for the former can be written as ĉ(h(t), t) times a function of z
and of time, say g(z, τ ;Ma, δ), that is independent of ĉ. The time dependence of this
function enters due to the evolving domain, i.e., via boundary conditions imposed at
z = h. We do not give the explicit expression for g here, since it is not particularly
interesting. With the help of g, we can reduce the linearized problem to one for ĉ
only:

ĉt(z, t) = ĉzz(z, t)− k2ĉ(z, t)− ĉ(h(τ), t)g(z, τ ;Ma, δ)Cz(z, τ),(4.3a)

ĉz(0, t) = 0,(4.3b)

ĉz(h(τ), t) = −δ [1− 2β − 2δβ(1− β)C(τ, δ)] ĉ(h(τ), t),(4.3c)

ĉ(z, 0) = ĉi(z).(4.3d)

For future reference, we introduce a bulk and a boundary operator, L(τ, δ) and B(τ, δ),
respectively, so that (4.3a) can be written as ĉt(z, t) = L(τ, δ) ĉ(z, t) and the boundary
conditions (4.3b), (4.3c) as B(τ, δ)ĉ(z, t) = 0.

We finally remark that in a three-dimensional linear stability analysis, the wave-
number is replaced by a wave vector with two components, k = (kx, ky). However,
only the modulus of the wave vector (k2x + k2y)

1/2 appears in the linearized equations
(in place of k), and thus our restriction to a two-dimensional model is done without
loss of generality.

4.2. Reduction to a finite-dimensional system. For each wavenumber k,
the system (4.3) represents an initial/boundary value problem that is coupled to the
initial/boundary value problem for the base state (3.1) and that needs to be solved
for any initial perturbation ĉi(z) and wavenumber k. If the perturbation undergoes
sufficient amplification, the base state would be deemed to be unstable with respect
to this perturbation. Such a solution can be obtained numerically, but we also seek
asymptotic approximations that exploit the slow evolution of the base state in the
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984 MATTHEW G. HENNESSY AND ANDREAS MÜNCH

time regime t = O(δ−1). For this reason, we have expressed the base state variables
C and h in (4.3) in terms of the slow time τ = δt.

We now approximate ĉ by first expanding in terms of the eigenfunctions of (L,B)
using only the first N leading modes (i.e., the eigenfunctions for the eigenvalues with
the largest real part),

(4.4) ĉ(z, t) ≈
N∑
j=1

cj(t)vj(z; τ).

If the spectrum of the operator is discrete and the eigenfunctions form a complete
set, we can expect this representation of ĉ to become exact if N → ∞. If the modes
included in (4.4) are sufficiently well separated from the neglected part of the spec-
trum, we will usually only need a few modes to obtain a good approximation of ĉ for
all but perhaps very early times.

The eigenvalues λ = λj and the eigenfunctions v = vj satisfy

L(τ, δ) v = λv,(4.5a)

vz = 0 at z = 0,(4.5b)

vz = −δ [1− 2β − 2δβ(1− β)C(τ, δ)] v at z = h(τ).(4.5c)

We assume that the eigenvalues are ordered such that 
(λj) ≥ 
(λl) for l > j, where

(·) denotes the real part of a complex number. To emphasize that the eigensolutions
are parameterized by τ , we will occasionally write λ = λ(τ) and v = v(z; τ).

Let (L∗,B∗) denote the adjoint of (L,B) with respect to the standard inner pro-
duction (which for two functions f1 and f2 is given by integrating f1f̄2 with respect
to z from 0 to h(τ), with the bar denoting complex conjugation) and let v∗j be the
adjoint eigenfunctions of (L,B), i.e., the eigenfunctions of (L∗,B∗) for the eigenvalues
λ = λj . We impose the following normalizations:

(4.6)

∫ h(τ)

0

|vj(z; τ)|2dz = 1,

∫ h(τ)

0

v∗l (z; τ)v̄j(z; τ)dz = δjl,

where the bar denotes complex conjugation and δjl is the Kronecker symbol.
Inserting (4.4) into (4.3a) and then forming inner products with the adjoint eigen-

functions yields the ODE system

cl,t(t)− (λl(τ) + δγll(τ)) cl(t) = δ
N∑

j=1,j �=l

γlj(τ)cj(t)(4.7a)

with initial conditions

cl(0) = cli ≡
∫ 1

0

v∗l (z; 0) ĉi(z) dz(4.7b)

for l = 1, 2, . . . , N and where

γlj(τ) ≡ −
∫ h(τ)

0

v∗l (z; τ) v̄j,τ (z; τ) dz.(4.7c)
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An alternative expression for the γlj with j �= l can be found by taking the derivative
of (4.5a) with respect to τ for λ = λj and forming the inner product with v∗l , leading
to

(4.8) γlj =
1

λj − λl

∫ h(τ)

0

v∗j (z)(Lτ v̄l)(z) dz.

For fixed τ and δ → 0, the operators L and B can be expanded as

L(τ, δ) = L0(τ) + δL1(τ) + · · · ,(4.9a)

B(τ, δ) = B0(τ) + δB1(τ) + · · · ,(4.9b)

where we will in particular need the leading-order operators. The expansions start
with O(1) terms even though C is O(δ−1); see (3.6). In B, this is offset by a factor of
δ2, and the leading term C0 does not contribute to L at all since it does not depend
on z (cf. (3.8)). From the expansion for L and (4.8) we can conclude that the γlj
are O(1) for l �= j, thus ensuring that the equations in (4.7) are indeed only weakly
coupled.

4.3. Multiple-scale analysis. The presence of slow and fast time scales allows
us to seek asymptotic expansions for the cl using the “explicit” multiple-scale method
[24, 25], where the dependence on the slow time is fixed by eliminating secular terms
from higher-order corrections. The situation here differs slightly from the typical
application of this method in that the leading-order problem has solutions that decay
or grow exponentially rather than being periodic. We will limit our derivation here
to the case of two modes N = 2 and assume that these two modes are real; numerical
inspection of the leading modes for (L,B) suggests that this is reasonable.

We begin by substituting the ansatz

(4.10) cj(t) = dj(T ) exp (Sj(t))

into (4.7) (truncated to two equations for c1 and c2), where

(4.11) T ≡ S1(t)− S2(t)

is a new fast time, and

Sj(t) ≡
∫ δt

0

δ−1λj(ρ)dρ+

∫ δt

0

γjj(ρ)dρ.(4.12)

We obtain

d1,T (T ) =
δγ12(τ)

λ(τ) + δγ(τ)
exp (−T )d2(T ),(4.13a)

d2,T (T ) =
δγ21(τ)

λ(τ) + δγ(τ)
exp (T )d1(T ),(4.13b)

d1(0) = c1i, d2(0) = c2i,(4.13c)

with λ ≡ λ1 − λ2 and γ ≡ γ11 − γ22. Since the problem is linear, we may assume,
without loss of generality, that (c1i, c2i) have a 2-norm of one, (c21i+ c22i)

1/2 = 1. Also
notice that the eigenvalues of (L,B) can be expanded as

λ(τ) = λ(0)(τ) + δλ(1)(τ) + δ2λ(2)(τ) + · · ·(4.14)
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986 MATTHEW G. HENNESSY AND ANDREAS MÜNCH

and that similar expansions can be obtained for the (adjoint) eigenfunctions, the
quantities γ, γ12, γ21, and the initial conditions c1i and c2i.

We now expand dl as

dl(T ) = d
(0)
l (T, τ) + δd

(1)
l (T, τ) + δ2d

(2)
l (T, τ) + · · · , l = 1, 2,(4.15)

and the derivatives as

dl,T = d
(0)
l,T + δ

(
d
(1)
l,T +

1

λ(0)
d
(0)
l,τ

)
+ δ2

(
d
(2)
l,T +

1

λ(0)
d
(1)
l,τ − λ(1) + γ(0)(

λ(0)
)2 d

(0)
l,τ

)
+ · · ·

(4.16)

and consider the problems for the d
(n)
l order by order.

To leading order, we find that d
(0)
1 = d

(0)
1 (τ) and d

(0)
2 = d

(0)
2 (τ) are independent

of T and satisfy the initial conditions

(4.17) d
(0)
1 (0) = c

(0)
1i and d

(0)
2 (0) = c

(0)
2i .

The functions d
(0)
l (τ), l = 1, 2, are determined by considering the next-order

problem, which is

d
(1)
1,T (T, τ) =

γ
(0)
12 (τ)

λ(0)(τ)
exp(−T )d

(0)
2 (τ) − d

(0)
1,τ (τ)

λ(0)(τ)
,(4.18a)

d
(1)
2,T (T, τ) =

γ
(0)
21 (τ)

λ(0)(τ)
exp(T )d

(0)
1 (τ) − d

(0)
2,τ (τ)

λ(0)(τ)
,(4.18b)

d
(1)
1 (0, 0) = c

(1)
1i , d

(1)
2 (0, 0) = c

(1)
2i .(4.18c)

The last terms in (4.18a) and (4.18b) are capable of introducing secular terms to the

corrections and therefore need to be eliminated. This implies that d
(0)
1 and d

(0)
2 are

also constant in τ , and thus

(4.19) d
(0)
1 = c

(0)
1i , d

(0)
2 = c

(0)
2i .

We wish to carry the approximation one order further and integrate (4.18), which
introduces two new τ -dependent constants that are determined by eliminating secular
terms from the second-order correction problem. The details of this calculation are
given in the appendix. The result yields the following approximation for c1 and c2:

c1(t) = c
(0)
1i exp(S1(t)) − δ

γ
(0)
12 (τ)

λ(0)(τ)
exp(S2(t))c

(0)
2i

+ δ

[
c
(1)
1i + c

(0)
1i

∫ τ

0

γ
(0)
12 (ρ)γ

(0)
21 (ρ)

λ(0)(ρ)
dρ+

γ
(0)
12 (0)

λ(0)(0)
c
(0)
2i

]
exp(S1(t)),(4.20a)

c2(t) = c
(0)
2i exp(S2(t)) + δ

γ
(0)
21 (τ)

λ(0)(τ)
exp(S1(t))c

(0)
1i

+ δ

[
c
(1)
2i + c

(0)
2i

∫ τ

0

γ
(0)
12 (ρ)γ

(0)
21 (ρ)

−λ(0)(ρ)
dρ+

γ
(0)
21 (0)

−λ(0)(0)
c
(0)
1i

]
exp(S2(t)).(4.20b)
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A first comment refers to the elimination of secular terms. The rational basis
for this is that these terms break the ordering of the asymptotic expansion in the
limit δ → 0 for fixed τ . It turns out that the secular terms induced by the unknown

functions in τ that arise when solving for d
(0)
1 and d

(1)
1 yield contributions that are

asymptotically comparable to the lower-order terms for δ → 0, τ fixed, and therefore

need to be eliminated. This does not work for d
(0)
2 (τ), for example, since the first term

in (A.4b) still yields an O(δ) contribution in the expansion for d2 that dominates the
leading-order (i.e., O(1)) term as δ → 0, with τ fixed.

This highlights an underlying problem with the expansions that can also be seen
in the final result (4.20) for c1 and c2. Even though we have eliminated all secular
terms, the resulting expansion for the second component becomes inconsistent for
large t. Specifically, the second term in the first line of (4.20b) dominates the leading-
order term in the first line as t → ∞. The inconsistency can be avoided by comparing
magnitudes of both components together, for example, by comparing their 2-norm
(c21 + c22)

1/2, rather than for the individual components. Then the expansion for

(c1, c2) appears to be consistent as long as the initial value c
(0)
1i is not zero (or if all

contributions from exp(S1(t)) vanish for a special choice of initial conditions), which
is the most important case.

Returning to the secular terms in the expansion for (d1, d2) with the corresponding

weighted norm (d21 + (d2 exp(−T ))2)1/2 shows that the secular terms arising in d
(0)
1

and d
(1)
1 make the expansion inconsistent and need to be eliminated. For d

(0)
2 and

d
(1)
2 , a similar argument can be made only if the initial conditions are specially chosen

so that the terms exp(T ) are not present.
Notice that the O(δ) corrections in the coefficients of the exponentials in (4.20)

are divided by the difference of the first and second eigenvalues. This emphasizes the
importance of maintaining an O(1) gap between these two eigenvalues in particular as
δ → 0; double or nearly double eigenvalues require a separate discussion. On the other
hand, no restriction seems to be required for the individual eigenvalues, so that the
expansion remains valid even near stability transitions, i.e., where |λ1| becomes small.

We can now insert (4.20) into the two-mode truncation of (4.4) to obtain an
approximation for ĉ. For t → ∞, only the terms proportional to exp(S1(t)) survive,
and thus

ĉ(z, t) ≈
{
c
(0)
1i v1(z; δt) + δ

[
c
(1)
1i + c

(0)
1i

∫ δt

0

γ
(0)
12 (ρ)γ

(0)
21 (ρ)

λ(0)(ρ)
dρ+

γ
(0)
12 (0)

λ(0)(0)
c
(0)
2i

]
v1(z; δt)

(4.21)

+ δc
(0)
1i

γ
(0)
21 (δt)

λ(0)(δt)
v2(z; δt) +O(δ2)

}
exp

[∫ δt

0

δ−1λ1(ρ) + γ11(ρ)dρ

]
.

This result suggests a straightforward generalization to the case with a general
number of N modes (for a detailed derivation, see [18]):

ĉ(z, t) ≈
{
c
(0)
1i v1(z; δt) + δc

(1)
1i v1(z; δt)

+ δ

N∑
l=2

[
c
(0)
1i

∫ δt

0

γ
(0)
1l (ρ)γ

(0)
l1 (ρ)

λ
(0)
1 (ρ)− λ

(0)
l (ρ)

dρ+
γ
(0)
1l (0)

λ
(0)
1 (0)− λ

(0)
l (0)

c
(0)
li

]
v1(z; δt)

+ δc
(0)
1i

N∑
l=2

γ
(0)
l1 (δt)

λ
(0)
1 (δt)− λ

(0)
l (δt)

vl(z; δt) +O(δ2)

}
exp

[∫ δt

0

δ−1λ1(ρ) + γ11(ρ)dρ

]
.

(4.22)D
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If we take N → ∞, we see that the corrections remain small, provided the two
infinite series that arise in (4.22) converge (for fixed time). The terms in the first
series have denominators that are the distance of the first eigenvalue from the lth
eigenvalue. Motivated by the theory for Sturm–Liouville problems, we would expect
that |λl| = O(l2) for l → ∞. Our numerical trials confirm that this is indeed the
case for the eigenvalues of (4.5). Moreover, these trials suggest that the γl1 remain
bounded as l increases, and therefore we can expect the first series to converge for

appropriately normalized initial data c
(0)
li . A similar argument can be made for the

second sum in (4.22), i.e., in the bottom line.

4.4. Comparison with numerical solutions. We now compare the asymp-
totic approximations obtained in the previous section with numerical solutions of
(4.3). For this we introduce two ways to truncate (4.21) which approximate ĉ with
a different degree of accuracy. The first, or basic, approximation retains only the
leading-order-in-δ behavior in all its constituents (exponents and prefactors),

ĉbas(z, t) = c
(0)
1i v

(0)
1 (z; δt) exp

[∫ δt

0

δ−1λ
(0)
1 (ρ)dρ

]
,(4.23a)

c
(0)
1i =

∫ 1

0

v∗1
(0)(z; 0) ĉi(z) dz,(4.23b)

where v1
(0) and v∗1

(0) is the leading-order part of the δ-expansion for the first eigen-
function and for the first adjoint eigenfunction, respectively. The second, improved
one uses the full eigenvalues and (adjoint) eigenfunctions of the operator L instead of
the leading-order approximations,

ĉimp(z, t) = c1iv1(z; δt) exp

[∫ δt

0

δ−1λ1(ρ) + γ11(ρ)dρ

]
,(4.24a)

c1i =

∫ 1

0

v∗1(z; 0) ĉi(z) dz.(4.24b)

All these approximations and the numerical solution depend on the base state either
through the coefficients of the system of differential equations or through quantities
such as the function λ1(τ), γ11(τ), etc. Since the multiple-scale expansion relies on
the slow evolution of this base state, we skip the transient initial phase. Therefore, in
all cases except one (highlighted explicitly later in this section), we use the two-term
approximation C(z, τ) = δ−1C0(τ) + C1(z, τ) from the expansion for the long-time
evolution for C (section 3.2) as the base state.

The approximation ĉbas has the advantage that the τ -dependence of the coeffi-
cients can be easily scaled out of the leading-order eigenproblem. To see this, we
return to the formulation (4.2) of the eigenproblem, take the leading-order problem,
and rescale according to

z = h0 ž, λ(0) = h−2
0 λ̌, k = h−1

0 ǩ, ĉ(0) = č,

p̂(0) =
βh−1

0 p̌

h0 − 1 + β
, ŵ(0) =

βw̌

h0 − 1 + β
, M =

h0 − 1 + β

β
Ma.(4.25)

As a result, we obtain the equations in the bulk,

p̌žž − ǩ2p̌ = 0, w̌žž − ǩ2w̌ = p̌ž, λ̌č− žw̌ = čžž − ǩ2č,(4.26a)
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and the boundary conditions

w̌ = 0, w̌z = 0, čz = 0 at ž = 0,(4.26b)

w̌ = 0, čz = 0, p̌z = −ǩ2M č at ž = 1.(4.26c)

As τ changes, ǩ and M change if k and Ma are kept fixed, so we need to solve
(4.26) for all values of ǩ and M. If we use the notation λ̌1 = λ̌1(ǩ,M) and v̌1 =
v̌1(ž; ǩ,M) to make the dependence of the eigensolution (here for the top eigenvalue

and eigenfunction) on ǩ and M explicit, we can express λ
(0)
1 and v

(0)
1 (z; τ) as

λ
(0)
1 (τ) = h0(τ)

−2λ̌1

(
h0(τ)k,

h0 − 1 + β

β
Ma

)
,(4.27a)

v
(0)
1 (z; τ) = v̌1

(
z

h0(τ)
;h0(τ)k,

h0 − 1 + β

β
Ma

)
,(4.27b)

and then use these in (4.23). After that we can eliminate the dependence on h0(τ)
from the integrand in the exponential by choosing η = h0 as the new integration
variable, so that

(4.28) cbas(z, t) = c
(0)
1i v

(0)
1 (z; τ) exp (I/δ) , I =

∫ 1

h0(τ)

λ̌1

(
ηk, η−1+β

β Ma
)

η(η − 1 + β)
dη.

We now collect some properties of (4.26). The problem corresponds to the in-
sulating case in Pearson’s work [35] on thermal Bénard–Marangoni convection. An
argument by Lin [28] can be used to show that the spectrum of this problem consists
exclusively of discrete eigenvalues λ̌. Vrentas and Vrentas [48] proved that when an
eigenvalue crosses a stability boundary its real part changes sign and the imaginary
part vanishes. Furthermore, we numerically inspected the top ten eigenvalues λ̌n

(ordered according to their real part) for a range of wavenumbers ǩ and Marangoni
numbers M. These eigenvalues were always real, i.e., the imaginary part was numeri-

cally zero, and the behavior for large n was found to be λ
(0)
n = O(n2). The eigenvalues

appeared to remain separated for all values of M and ǩ we inspected. For the full
eigenproblem (i.e., for (L,B)) these properties can either be inferred by perturbation
arguments or probed for plausibility by numerical computations.

Returning to the leading-order eigenproblem, Figure 4.1(a) describes the situation
for the top eigenvalue λ̌1 in the (ǩ,M) plane. The plane is split into two regions where
λ̌1 is either positive or negative; the line separating the two regions represents the cut-
off wavenumber ǩcut(M) for each value of M and is characterized by the condition
that λ̌1 is zero there. Above the line, the eigenvalue is positive, and below, it is
negative; it ends at ǩ = 0 at the critical Marangoni number Mc. The value for Mc

can be found from a small k expansion to beMc = 80. The implication is that for each
M > Mc, the top eigenvalue is positive for a range of wavenumbers 0 < ǩ < ǩcut and
negative for larger ǩ. We remark in passing that for fixed M, the eigenvalue achieves
its largest positive value for a wavenumber ǩm that by numerical inspection is found
to be typically order one or larger except if M is (very) close to Mc. For Marangoni
numbers below Mc, all eigenvalues are negative.

Our goal is to compare the approximations (4.23) and (4.24) with numerical solu-
tions for (4.3) by choosing an initial perturbation and then comparing the amplifica-
tion that is achieved. For the numerical solution and for each of the approximations,
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Fig. 4.1. (a) Regions where the top eigenvalue of the leading-order part of the operator L are
positive or negative (above and below the solid line). The dashed line shows the values of ǩ and
M that are traversed for the fixed values of k and Ma used by the numerical computations (4.32).
The star emphasizes the initial value for ǩ and M, and the bullet denotes the intersection with the
boundary between the two regions. Further explanations are given in the text. (b) Comparison of
the amplification obtained for the numerical solution of the exact linearized problem with those for
the asymptotic approximations. The initial perturbation was the eigenfunction associated with the
top eigenvalue for L at τ = 0. Further explanations including the definition of the amplifications
are given in the text.

the amplification is defined by
(4.29)

A(t) =
maxz |ĉ(z, t)|
maxz |ĉ(z, 0)| , Abas(t) =

maxz |ĉbas(z, t)|
maxz |ĉ(z, 0)| , Aimp(t) =

maxz |ĉimp(z, t)|
maxz |ĉ(z, 0)| ,

respectively. Note that the denominator is the same in all three expressions; as a
result, the initial amplification does not need to be one for Abas and Aimp. From
(4.23a) and (4.24) we obtain

Abas(t) = |c(0)1i |
maxz |v(0)1 (z; τ)|
maxz |ĉ(z, 0)| exp

[∫ δt

0

δ−1λ
(0)
1 (ρ)dρ

]
,(4.30a)

Aimp(t) = |c1i|maxz |v1(z; τ)|
maxz |ĉ(z, 0)| exp

[∫ δt

0

δ−1λ1(ρ) + γ11(ρ)dρ

]
.(4.30b)

For our first set of comparisons, we pick the eigenfunction of the top eigenvalue
for the full operator L with τ = 0 as initial condition,

(4.31) ĉi(z) =
v1(z; 0)

maxz |v1(z; 0)| ,

which we have normalized here with respect to the maximum norm for definiteness.

For (4.31), c1i and c
(0)
1i are equal to one and c2i and c

(0)
2i are zero.

For the numerical solution of the linearized system (4.3) and also for the asymp-
totic results, we use the long-time approximation (3.6) of the base state retaining the
first two terms for C and the leading-order term for h, and set C1(0, τ) = 1/6 in (3.12).
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Fig. 4.2. (a) Comparison of the growth rate of the log of the three types of amplifications defined
in (4.29) for δ = 0.1. (b) The absolute value of the difference between the growth rate of the log of
A and the basic asymptotic approximation Abas for two different values of δ.

The resulting operator (L,B) is only correct to leading order, but for comparing the
results of the three solutions/approximations it is sufficient to be consistent and use
the same base state for all of them.

Furthermore, we use the following parameters:

(4.32) δ = 0.01, β = 0.3, Ma = 105, k = 1.

The path described by ǩ and M in the (ǩ,M) plane for these values of k and Ma
as the base state slowly changes is indicated in Figure 4.1(a) by a dashed line, with
the initial value (k,Ma) indicated by a star. The point where the line intersects the
line λ̌ = 0 is emphasized by a bullet; let τc denote the value of the slow time variable
at which this happens. For τ < τc, the exponential factor in (4.23a) grows, and it
decays for τ > τc, as shown in Figure 4.1(b). This is in good agreement with the
time at which Aimp and A achieve their maximum. Also, the value of the maximum
amplification Aimp and A agree very well, while for Abas, we note a discrepancy of
about 20%.

For closer verification of our asymptotic results, and to better understand the
origin of the deviation for Abas, we compare the time derivative of the log of A, Abas,
and Aimp. In Figure 4.2(a), we chose a value of δ = 0.1 that is considerably larger
than previously, because otherwise the lines would be hard to distinguish on the scale
of the figure. At this value of δ, d log(A(t))/dt agrees very well with d log(Aimp(t))/dt
but somewhat less well with d log(Abas(t))/dt—the absolute value here is about 0.07,
which corresponds to a relative error of 33% compared to the value of d log(A(t))/dt
at t = 0.

However, the deviation is expected and is a result of the poorer approximation for
the eigenvalue and the omission of the γ11 in (4.30a). The difference between these
quantities is approximately

d log(Aimp)/dt− d log(Abas)/dt ≈ λ1 − λ
(0)
1 + δγ11.

This suggests an O(δ) error in d log(Abas(t))/dt. Indeed, as Figure 4.2(b) shows, the
absolute error d log(Abas(t))/dt − d log(A(t))/dt goes down by a factor of ten as we
decrease δ from 0.1 to 0.01.
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To recover an estimate for the relative error in Abas at the time of maximum
amplification tc = τc/δ, we need to integrate and exponentiate the previous expression,
so that ∣∣∣∣Abas −Aimp

Aimp

∣∣∣∣ ≈
∣∣∣∣∣exp

[
−
∫ τc/δ

0

λ1(ρ)− λ
(0)
1 (ρ) + δγ11(ρ) dρ

]
− 1

∣∣∣∣∣ ,
where we have used Aimp as a reference value instead of the numerical solution A.
The value in the integrand is, as we have argued, O(δ), so that the integral is an O(1)
value times τc. In fact, the value of the integral is −0.19; thus the right-hand side
evaluates to | exp(0.19)− 1| = 0.21, i.e., an error of 21%, which agrees well with what
we observed for the graphs in Figure 4.1(b). This result implies that the deviation
of the maximum of Abas from the maximum of A cannot be decreased by a smaller
δ, but only by using better approximations for the eigenvalue and including the γ11
term. On the other hand, for some practical applications, even an error of 20% or
more may be acceptable, so that the maximum of Abas would be a sufficiently good
approximation, provided τc is not too large.

Next we consider the projection onto the eigensolutions and compare

cj(t) =

∫ h(τ)

0

v∗j (z; τ) ĉ(z, τ) dz

with

c1(t) =

{
1 + δ

∫ δt

0

γ12(ρ)γ21(ρ)

λ(ρ)
dρ

}
exp

[∫ δt

0

δ−1λ1(ρ) + γ11(ρ)dρ

]
,(4.33a)

c2(t) = δ
γ21(τ)

λ(τ)
exp

[∫ δt

0

δ−1λ1(ρ) + γ11(ρ)dρ

]

− δ
γ21(0)

λ(0)
exp

[∫ δt

0

δ−1λ2(ρ) + γ22(ρ)dρ

]
.(4.33b)

The graphs coincide perfectly in Figure 4.3, thus verifying in particular the O(δ)
contribution to c2.

We now turn to more generic initial data for the perturbation

(4.34) ci(z) = 16z2(1− z)2

when we compute the numerical solution for ĉ from (4.3). We show the results for two
different base states: the asymptotic approximation for the long-time base state used
previously in this section, and a numerical solution of (3.1) with well-mixed initial
conditions C(z, 0) = 0. The latter base state differs from the former mainly at early
times, where it has a rapidly evolving boundary layer which the former does not. The
wave and Marangoni numbers k and Ma are the same as before.

Figure 4.4(a) shows a comparison of the asymptotic amplifications. The results
obtained from solutions of (3.1) are labeled “(num)” or “(asy),” respectively, if the nu-
merical solution or the asymptotic approximation for the base state is used. The best
agreement is achieved between the improved asymptotic amplification Aimp and the
numerical solution with the asymptotic base state “A(t) (asy).” The amplifications for
the basic approximation is visibly different since it uses only the leading-order approx-

imation for the eigenvalue λ
(0)
1 . There is also a discrepancy between the “A(t) (asy)”
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Fig. 4.3. Comparison of the projections c1 (left) and c2 (right) of the numerical solution (4.3)
with the asymptotic expressions presented in (4.33).
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Fig. 4.4. (a) A comparison of the asymptotic amplifications with the ones obtained from nu-
merical solutions of (4.3). The difference between “A(t) (asy)” and “A(t) (num)” is explained in
the text. (b) Comparison of the growth rates, i.e., the derivative of the log of the amplifications.
Shown are the lines for the growth rates obtained from “A(t) (asy)” and “A(t) (num)” from the
basic asymptotic approximation and from the approximations AN (cf. (4.35)) using two and four
modes.

and “A(t) (num)” which reflects the influence of the rapidly evolving boundary layer
in the base state.

The initial perturbation (4.34) is not a pure eigenfunction, and thus several cl(0)
(cf. (4.7b)) are nonzero. These are the coefficients of the subdominant modes, which
quickly decay relative to the top mode. Therefore, A(t) (asy) and Aimp agree well
except at early times, where the former includes contributions from the subdominant
modes, while the latter does not. The effect of the higher modes is perhaps best seen
if we compare asymptotic and numerical growth rates, rather than amplifications,
as shown in Figure 4.4(b). At later times, λ1 = d(log(Abas))/dt agrees very well
with both of the numerical growth rates—the difference of O(δ) is barely visible. At
early times, however, the asymptotic growth rate differs from the numerical ones.
This difference can be accounted for by including contributions from subdominant
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eigenvalues via

(4.35) AN (t) =
maxz |ĉbas,N (z, t)|
maxz |ĉ(z, 0)| ,

where

ĉbas,N (z, t) =
N∑

k=1

c
(0)
ki v

(0)
k (z, τ) exp

[
δ−1

∫ δt

0

λ
(0)
k (ρ) dρ

]
,

c
(0)
ki =

∫ 1

0

v
∗(0)
k (z; 0) ĉi(z) dz.

For N ≥ 4, the growth rates derived from AN agree very well with the numerical
growth rate “d(log(A))/dt (asy)” even at early times, where the label “(asy)” has the
same meaning as in Figure 4.4(a).

5. Comparison with experiments. We now compare our results to some re-
cent experiments by Bassou and Rharbi [1] using solutions of polystyrene (PS) with
a molecular weight of 150 kg/mol in toluene. The mixture was deposited on a glass
substrate and then dried in a chamber which was kept at a uniform temperature. The
film was observed during the drying process by a variety of visualization techniques
to allow for the detection and measurement of convection cells.

The chamber was fitted with lids having holes of different sizes so that the evapora-
tion rate could be controlled. The authors determined the drying rate J by measuring
the mass loss of the experiment, and then dividing the measured value by time and the
total surface area of the film. Thus, their drying rate corresponds to the right-hand
side of (2.5). Specifically, we can set the value J they measure in the first 30 seconds
of their experiment approximately equal to the initial value of the right-hand side of
(2.5), i.e., J = kmcm. Expressing δ in terms of J , we get

(5.1) δ =
Jhi

Dcm
, cm = βρ.

For the majority of their reported results, the initial drying rate is 3× 10−4 kg/m2 s.
Bassou and Rharbi reported that the evaporation rate they measured during “the
first 75% of the drying process” remained almost constant for the experiments with
evaporation rate < 3 × 10−4 kg/m2 s, and decreased steadily above this value, with
a decrease of 15% specifically for the highest evaporation rate (3.5 × 10−4 kg/m2 s).
Although they do not state how long the drying process lasts, it seems that for a
sizable time, the evaporation rate changes less than linearly with the concentration
of the solvent.

The volume fraction is β = 0.85, and hi is between 1.4 and 0.15 mm. We follow
Bassou and Rharbi and obtain the diffusion constant frommeasurements by NaNagara
et al. [33], although those were carried out for PS with a larger molecular weight. The
diffusivity depends on the volume fraction, and by interpolating the data curves we
obtain D = 1.38× 10−9 m2/s for β = 0.85. PS and toluene both have a density close
to 1000 kg/m3, so our assumption of a constant density for the liquid mixture seems
justified, and we will use the aforementioned value for ρ. We thus have for the thickest
film δ = 0.36 and for the thinnest δ = 3.8× 10−2, so that we can assume δ � 1.

To assess the stability of the liquid film, we also need the Marangoni number Ma
introduced in the previous section. Replacing the factor of δ by (5.1) yields

(5.2) Ma =
(1− β)γcJhi

2

μD2
.
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The dependence of the surface tension coefficient on the composition of the liquid
mixture was measured by Bassou and Rharbi, and the resulting γc was found to be
8.5× 10−7 (N/m)/(mol/m3). The molar mass of toluene is 92.1× 10−3 kg/mol, and
thus γc = 9.2×10−6 (N/m)/(kg/m3). The viscosity was given for a number of PS con-
centrations, and for β = 0.85 it was μ = 0.15 Pa·s. For the largest initial film thickness
hi = 1.4 mm, the Marangoni number is then M = 2.9×103, and for the thinnest films
hi = 0.15 mm, we obtain M = 33. Thus, the top eigenvalue of the leading-order part
of L suggests that the solutions of (4.3) will, at least initially, have a positive growth
rate for a range of wavenumbers if the initial film is sufficiently thick. However, thin-
ner films will have solutions which always decay. The critical initial thickness where
M = Mc is found to be 0.23 mm. While the prediction agrees with the experimental
observations for the thicker films, the thinner films in the experiments were unstable
down to 0.15 mm; indications of stabilization were only seen for hi ≤ 0.1 mm.

Next we consider the amplification of the perturbation, starting with the exper-
iments with the largest initial film thicknesses. For M = 2.9 × 103, the maximum
initial growth rate assuming a fully developed base state is given by the top eigenvalue
of L0 for km = 7.2 and is λm = 2.3× 102. To gain three orders of magnitude at this
growth rate the perturbation requires a dimensionless time of t = 3.0 × 10−2 � 1.
This contradicts the assumption of a fully developed base state but suggests that the
instability will grow very quickly, even before the concentration boundary layer has
fully penetrated the film.

We now look at a situation where the perturbation grows more slowly. In the ex-
periment, this is achieved, for example, by reducing the initial film thickness. In fact,
as noted before, the smaller film thicknesses used by Bassou and Rharbi correspond
to Marangoni numbers close to or even below Mc.

To measure how far we are above criticality, we define

(5.3) ε(τ) ≡ M(τ)−Mc

Mc
, ε0 ≡ ε(0) =

Ma −Mc

Mc
,

where M is given by (4.25) for a fixed choice of Ma; recall that M(0) = Ma. Here
we have emphasized the dependence of both the Marangoni number and of ε on the
slow time τ .

Next we expand the eigenvalue λ̌1 in a Taylor series in terms of ǩ,

(5.4) λ̌1 = εǩ2 +

(
− 8

315
+

29

630
ε+

1

14
ε2
)
ǩ4 +O(ǩ6).

By experimentation, we found that for the range of ε we use here, the series converges
reasonably fast for ǩ smaller than about 1.5. From this expansion, we find the follow-
ing initial leading-order behavior for the cut-off and dominant wavenumber as well as
the maximum growth rate, valid for ε0 � 1,

(5.5) ǩc =
3
√
70

4
ε
1/2
0 , ǩm =

3
√
35

4
ε
1/2
0 , λ̌1m =

315

32
ε20,

respectively. An obvious choice for the initial ε0 and thus the Marangoni number
would be to let ε0 = δ1/2, so that λ̌1m = O(δ) in the beginning. However, the
eigenvalue will change its sign as the line λ̌1 = 0 is approached, and this happens so
quickly that the amplification achieved at this time is very small. Moreover, if λ̌1 =
O(δ), then λ̌1/δ is of the same order as the terms neglected in the integral I for cbas (cf.
(4.28)), making estimates of the maximum amplification inaccurate. (Note, however,
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that our arguments here rely on orders of magnitude of the amplification, which will
be small in this situation with our without higher corrections to I.) Therefore, we
will consider ε0 � δ1/2.

We determine the amplification by evaluating, for fixed k and Ma, the integral I
in (4.28). Letting ε = (1 + (η − 1)/β)(1 + ε0) − 1 and ǩ = ηk in (5.4) (with enough
terms to ensure accuracy), we obtain an expression that can be plugged into I. In
principle, this yields an explicit result, but the algebra and resulting expressions are
tedious and were handled by using Maple. We therefore only report the numerical
results for a couple of specific choices of parameters. As before, we use β = 0.85.

We start with a small value for ε0 = 0.1 and k = 1.0. As expected, I first increases
as the thickness h0 < 1 decreases until it reaches a maximum of I = 2.2× 10−3, after
which it decays and eventually becomes negative. Other choices of k produced values
for I that were equal to or less than this value. The amplification that results from
this is exp(I/δ). If we assume that we need at least three orders of magnitude to
amplify a perturbation so that it becomes visible in an experiment, we find that
δ < 2.2× 10−3/7 ≈ 3× 10−4. Even if we relax our assumption and consider a factor
of ten to be enough to create a visible pattern, this increases the threshold for δ only
by a factor of three which is still less than even the smallest δ reported by Bassou
and Rharbi. Thus it seems unlikely that visible convection cells will show up.

These values have also been verified by solving the eigenvalue problem and the full
linear problem numerically. More specifically, the top eigenvalue λ̌1 was computed for
various values of the film thickness, and the integral I was evaluated using Gaussian
quadrature. The maximum value was found to be I = 2.2× 10−3, in accordance with
the above result. Moreover, the corresponding amplification at this critical thickness
and when δ = 3× 10−4 was found to be Abas = 1.6× 103. This is of the same order of
magnitude as the predicted amplification, the difference being a result of neglecting
the prefactors in (4.28). Because of the time dependence of the top eigenfunction in
(4.28), the time at which the maximum amplification occurs does not coincide exactly
with the time when I attains its maximum. However, we find that the maximum
amplification actually matches Abas, that is, maxt A(t) = 1.6× 103.

Repeating the investigation with ε0 = 0.5 (i.e., Ma = 120) and k = 1.5, we obtain
I = 0.15. This matches the numerical value of I that is computed using the proce-
dure described above. A sufficient amplification of three orders of magnitude would
require δ < 0.02. An initial Marangoni number of 120 is achieved with a film thickness
of 0.287 mm and for this thickness, δ = 0.073, well above the required value. The
amplification achieved for this δ would be only about exp(0.15/0.073) < 10, making
it again unlikely that any manifestation of the instability can be seen even though
the initial Ma is 50% above Mc. Numerical simulations support these claims. The
amplifications that are achieved when δ = 0.02 are Ac = maxt A(t) = 2.4×103, where
Ac denotes the amplification when I attains its maximum. When δ = 0.073, we find
Ac = maxt A(t) = 11. All of these values are of the same order of magnitude as the
predicted amplifications.

The expansion in (5.4) fails to converge for ε0 = 0.50 and k > 3/2. Therefore, we
use numerical solutions to study the amplification of perturbations with wavenumbers
that are larger than this value. We find that the maximum value of I over all of the
wavenumbers is maxk I(k) = 0.17, which is achieved when k = 1.80. Since these
optimal values are close to values of k and I from the last paragraph, we conclude
that the previous discussion is representative of dynamics when Ma = 120.

In summary, the theory predicts films which are more stable than those actually
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observed in the experiments. This is particularly true for thinner films, and we now
discuss possible reasons. One assumption that has been made is that the system
is isothermal. That is, temperature variations in the fluid have been neglected. It
is well known, however, that the evaporation of solvent will lead to a cooling of
the air-liquid interface, thus inducing a temperature gradient in the fluid. This, in
turn, can lead to the onset of convection rolls through thermal-buoyancy-driven and
thermocapillary-driven instabilities. Estimates of the relevant dimensionless numbers
suggest that thermal-buoyancy-driven convection can be ruled out as the dominant
driving mechanism of the instability, since the thermal Rayleigh numbers are always
very small (about 10 or less) compared to typical critical values (around 1000). The
thermal Marangoni numbers are also small for thinner films compared to the typical
range of critical values (less than 24 for hi < 0.5 mm) and only get close to them
for the thickest films (about 67 for hi = 1.4 mm). However, since convection brings
up both solvent-rich and hotter liquid, which both lower the surface tension, the two
Marangoni effects could add up and thus reinforce each other. Solutal buoyancy effects
may play a role for the thicker films but not for the thinner ones. For hi = 1.4 mm
the solutal Rayleigh number is around 1080, but for hi < 0.5 mm it is less than 18,
well below the typical range of critical values in buoyancy-driven convection.

Another aspect of the model that needs to be revisited is our use of a one-layer
model for the liquid with constant mass transfer coefficients at the interface and zero
solvent vapor concentration far away from the surface. A two-layer model has been
investigated, for example, by Machrafi et al. [30] for an evaporating water-ethanol
film. An approximate expression for the critical Marangoni number (from a “frozen-
time” analysis) is given in equations (75) and (113) of this reference. We tried several
choices of the parameters—for water-ethanol films with varying total thickness of
the liquid-gas layers, and also for toluene-polystyrene films—and found that where
the two critical Marangoni numbers differed visibly, the one for the two-layer case
was larger. This suggests that the coupling with the gas phase in the model we use
here will likely raise rather than lower the critical Marangoni threshold and make the
system for the thinner films even more stable.

6. Conclusions. In this paper, we have investigated the stability of a thin layer
of a mixture that is composed of a volatile solvent and a nonvolatile polymer. The
evaporation of the solvent induces a concentration gradient, which in turn leads to
Marangoni stresses that can drive a Bénard–Marangoni-type instability if the surface
tension at the liquid/gas interface increases with the polymer concentration. For a
simplified model, we determine the base state and then linearize about this base state
to determine its stability.

In contrast to classical Bénard–Marangoni convection, where the liquid layer is
heated from below and the Marangoni stresses arise from the temperature dependence
of surface tension, the base state is itself time dependent since the loss of solvent
leads to a slow change in the film thickness and composition. Thus, the linearized
system is not autonomous. We address this issue by first projecting the initial value
problem onto the leading eigenmodes and then deriving multiple-scale expansions
for the solution of the resulting ODE system. These make use of the fact that the
evaporation is slow on the diffusive time scale which governs the potential instability,
encapsulated by a small Biot number δ. We determine both the leading-order result
and the first correction. The latter reveals that a necessary condition for the validity
of the expansions is that the eigenvalues of the spatial operator remain well separated.
We expect that a sufficient distance of the top eigenvalue from the rest of the spectrum
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is particularly important. On the other hand, the absolute value of the eigenvalues is
not relevant for the validity of the expansions.

From the multiple-scale expansions, we derive two approximations for the am-
plification of the top-mode contribution to an initial perturbation (noticing that the
subdominant modes will be irrelevant for all but very early times). The first, or
basic, approximation uses only the leading-order (in δ) part of all the contributions
in the expansions. Thus, the argument of the exponential factor contains only the
leading-order approximation to the eigenvalue. The second uses in particular the full
eigenvalue and also includes the “self-coupling” term γ11.

The improved approximation is substantially more accurate than the basic one,
but the latter is more readily obtained, so we rely on it to investigate the experiments
by Bassou and Rharbi. Specifically, we use it to predict the maximum amplification a
perturbation achieves before the system restabilizes. It turns out that only very mod-
est amplifications are achieved unless the initial Marangoni number is more than 50%
above the critical Marangoni number Mc = 80 obtained from the leading-order-in-δ
operator.

It is interesting to compare our results with those obtained for models where only
the effect of latent heat due to evaporation is included, such as, for example, in the
work by Doumenc et al. [15]. It turns out that for thick enough films, both thermal-
buoyancy and thermocapillary effects destabilize the film. For smaller thicknesses,
only thermocapillarity plays a role, while the thinnest films are stable with respect to
both effects. For solutal instabilities such as treated in our work, the basic ordering of
the buoyancy and soluto-capillary effects are similar. However, in the thermal case,
the attention is mainly focused on instabilities that arise during the initial transient of
the base state (before the temperature gradient has reached the bottom of the liquid
layer), and therefore the change of the film thickness can be neglected. We are not
aware that a similar study has been carried out for the solutal effect. In contrast, our
work focuses on the long-time regime where the base state evolves only on the slow
time scale of the mass loss due to evaporation. Both the change in the concentration
and the decrease of the film thickness need to be included in the stability analysis.

Appendix. In this appendix, we identify and solve the solvability condition

that is required to fully determine the first-order corrections d
(1)
1 and d

(1)
2 . We first

integrate (4.18),

d
(1)
1 (T, τ) = −γ

(0)
12 (τ)

λ(0)(τ)
exp(−T )c

(0)
2i + a1(τ),(A.1a)

d
(1)
2 (T, τ) =

γ
(0)
21 (τ)

λ(0)(τ)
exp(T )c

(0)
1i + a2(τ).(A.1b)

The ODE system for the second-order correction problem is

d
(2)
1,T (T, τ) =

γ
(0)
12 (τ)

λ(0)(τ)
exp(−T )d

(1)
2 (T, τ)

+

[
γ
(1)
12 (τ)

λ(0)(τ)
− γ

(0)
12 (τ)

(λ(0)(τ))2

(
λ(1)(τ) + γ(0)(τ)

)]
exp(−T )d

(0)
2 (τ)

− d
(1)
1,τ (τ)

λ(0)(τ)
,(A.2a)
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d
(2)
2,T (T, τ) =

γ
(0)
21 (τ)

λ(0)(τ)
exp(T )d

(1)
1 (T, τ)

+

[
γ
(1)
21 (τ)

λ(0)(τ)
− γ

(0)
21 (τ)

(λ(0)(τ))2

(
λ(1)(τ) + γ(0)(τ)

)]
exp(T )d

(0)
1 (τ)

− d
(1)
2,τ (τ)

λ(0)(τ)
.(A.2b)

Inserting (4.19) and (A.1) into (A.2) and identifying the terms on the right-hand sides
that may lead to secular terms (the ones that do not have a prefactor exp(T ) and
exp(−T )) yields the solvability conditions

a1,τ =
γ
(0)
12 (τ)γ

(0)
21 (τ)

λ(0)(τ)
c
(0)
1i , a2,τ = −γ

(0)
12 (τ)γ

(0)
21 (τ)

λ(0)(τ)
c
(0)
2i ,(A.3a)

with initial conditions arising from (4.18c),

a1(0) =
γ
(0)
12 (0)

λ(0)(0)
c
(0)
2i + c

(1)
1i , a2(0) = −γ

(0)
21 (0)

λ(0)(0)
c
(0)
1i + c

(1)
2i .(A.3b)

We solve these equations for a1 and a2 and insert the result into (A.1),

d
(1)
1 (T, τ) = −γ

(0)
12 (τ)

λ(0)(τ)
exp(−T )c

(0)
2i + c

(0)
1i

∫ τ

0

γ
(0)
12 (ρ)γ

(0)
21 (ρ)

λ(0)(ρ)
dρ+

γ
(0)
12 (0)

λ(0)(0)
c
(0)
2i + c

(1)
1i ,

(A.4a)

d
(1)
2 (T, τ) =

γ
(0)
21 (τ)

λ(0)(τ)
exp(T )c

(0)
1i − c

(0)
2i

∫ τ

0

γ
(0)
12 (ρ)γ

(0)
21 (ρ)

λ(0)(ρ)
dρ− γ

(0)
21 (0)

λ(0)(0)
c
(0)
1i + c

(1)
2i .

(A.4b)
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pp. 599–621.
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