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We model a thin liquid film moving down a slope using the lubrication approximation with

a slip condition. The travelling-wave solution is derived for small inclination angle α, using

singular perturbation methods, and compared to the numerical solution. For the linear

stability analysis we combine numerical methods with the long-wave approximation and

find a small but finite critical α∗ below which the flow remains linearly stable to spanwise

perturbations. This is contrasted with the vanishing of the hump of the travelling-wave

solution. Finally, the prevailing linear stability of the travelling-wave at small inclination

angles is compared with recent related results using a precursor model. Here, though, a

strong dependence on the magnitude of the contact angle is found, which we think has not

been observed before.

1 Introduction

The control of the behaviour of the three-phase contact line of a thin spreading fluid

sheet is most important in many industrial coating processes. Yet the modelling of the

three-phase contact line still remains physically unclear, as do the mechanisms underlying

the eventual development of instabilities, such as finger or sawtooth patterns.

One of the first people to observe these phenomena experimentally was Huppert [1], and

many researchers have investigated them since. As can be seen from further experimental

work by Silvi & Dussan [2], Jerrett & de Bruyn [3], de Bruyn [4], Schwartz & Tejada

[5] and Johnson et al. [6], accurate measurements of fluid properties such as fluid depth,

dynamic contact angle or contact line velocity of a moving fluid sheet present difficulties,

in particular during the onset of the instability, as well as for small inclination angles.

Qualitatively, just before the onset of the instability a hump close to the contact line

is observed and, depending whether the size of the contact angle is small or large, either

sawtooth patterns or finger patterns evolve. The main difference between these patterns

are that sawtooth patterns eventually lead to a complete coating, while finger patterns

leave dry or uncoated regions, the prediction and simulation of which may be important

for industrial applications.

One of the first people to model the spreading of a thin fluid driven by gravity was

Greenspan [7], who used the thinness of the film to derive the simpler yet still nonlinear

lubrication approximation as the leading order problem for small capillary numbers; he
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also introduced a slip function such that no singularity in the governing equation for the

height of the film occurs at the contact line. He also used a contact angle model that for

small front velocities yields a linear relationship between the slip velocity and the contact

angle. Further studies, by slightly varying the contact angle model and slip function were

done by Hocking [8], Cazabat et al. [9], Goodwin & Homsey [10], Hocking & Miksis

[11] and Miksis et al. [12]. On the other hand, precursor models, where the narrow region

connecting a very thin film in front of the relatively thicker fluid sheet replaces the contact

line, have been investigated by Troian et al. [13] and Bertozzi & Brenner [14]. Both

models predict a preferred wavelength of the linear stability to spanwise perturbations of

the leading front and find good qualitative agreement in comparison to experiments.

In our analysis we use a slip model and compare to recent predictions of Bertozzi

& Brenner [14]. There, a critical inclination angle α∗ was found below which the

flow remained linearly stable. However, α∗ was above the inclination angles for which

instabilities still occur in experiments [14].

In the linear stability analysis of our model a critical inclination angle α∗ is also found; it

depends strongly on the value of the contact angle and becomes smaller for larger contact

angles. Similarly, there is a critical α, also dependent on the contact angle, at which the

hump of the fluid sheet vanishes. Both functions are compared and discussed. For these

(typically) small inclination angles, numerical simulation becomes increasingly difficult.

On the other hand, the fastest growing mode becomes very small in that range, so that

it becomes useful to perform a long-wave analysis of the resulting eigenvalue problem.

By improving our numerical code to a degree of accuracy where the growth rates overlap

with those predicted by the long-wave analysis, we obtain also in this extended range of

small α the growth rate as a function of the wave number for the complete range of wave

numbers.

Furthermore, the value of the growth rate in our long-wave analysis depends only on

the behaviour of the nonlinear base state of the problem, i.e. the travelling-wave solution.

This however can be derived analytically via matched asymptotics for small inclination

angles, and good agreement with the numerical solution is found.

In this study, we first use singular perturbation methods to derive the travelling-wave

solution and compare it to our numerical solution. Next we study the spanwise linear

stability of this solution both numerically and then using long-wave analysis. Finally,

these results are used to discuss linear stability for small but finite α.

2 Formulation

Let a thin liquid film initially move uniformly on a plane inclined at an angle α to the

horizontal as depicted in Figure 1. In coordinates (x, y, z) the liquid-gas interface is located

at z = h(x, y, t), z being perpendicular to the plane, and x and y in the plane, with x

pointing in the downstream direction. The velocity is u = (u, v, w).

The bulk of the liquid is governed by the continuity and Navier–Stokes equations:

∇ · u = 0, (2.1)

ρ {ut + (u · ∇)u} = ρg− ∇p+ µ∆u, (2.2)
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Figure 1. A sheet of fluid spreading over a slope.

where ρ, p and µ are the density, the pressure and the viscosity of the fluid, respectively,

g = (g sin α, 0,−g cos α) and g is the gravitational constant.

The equations at the liquid-gas interface are the kinematic condition, continuity of

tangential stress and the pressure jump:

ht + hxu+ hyv = w, (2.3)

tj ·Π · n = 0, (2.4)

p(x, y, h(x, y, t))− pA = n ·Π · n− σ∇ ·
(

∇h√
1 + h2

x + h2
y

)
, (2.5)

with the surface normal

n =
(−hx,−hy, 1)√

1 + h2
x + h2

y

,

and tangents

tj =
(δ1j , δ2j , hxj )√

1 + h2
xj

j = 1, 2,

where Π is the Newton stress tensor, σ is the surface tension coefficient, pA the outside

pressure (e.g. of air) and δkj are the Kronecker delta symbols.

At the surface of the plate, we require impermeability and allow for a slip in order to

avoid the stress singularity at the moving contact line:

w|z=0 = 0, (2.6)

(u, v)|z=0 =
λ

h
(uz, vz)|z=0 , λ = const. (2.7)

The slip-law we use here assumes that the slip coefficient is directly proportional to the

local thickness of the film. Since λ is of microscopic size, λ/h is negligible except near the

contact line. It goes back to the well-known model by Greenspan [7] for the spreading

of thin liquid drops. Miksis et al. [12] used this law for the spreading of thin liquid films

and compared it to recent experiments by Johnson et al. [6]. Very similar slip conditions

are also used by Dussan [15]. A derivation of an effective slip of this form from a

microscopic model can be found in Neogi & Miller [16]. Their model assumes a rough

solid surface and uses results based on experimental investigations by Beavers & Joseph
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[17] and Taylor & Richardson [18, 19]. For comparisons of (2.7) with other slip-laws and

their effect on spreading rates, see also Haley & Miksis [20].

At the contact line itself, the height of the film is zero:

h|Γ = 0. (2.8)

For the dynamic contact angle, there are a variety of models in the literature [5, 7, 11,

12, 22]. We restrict ourselves to sufficiently small static and dynamic contact angles and

capillary numbers, so that the lubrication assumption remains valid (see Goodwin &

Homsy [10]). Hence, for our situation we will choose, on the basis of the model of Blake

& Haynes [23], a linear relationship between the contact angle θ, which is the angle

between the tangent to the free surface and the plane in a plane normal to Γ (y, t), and

the velocity at the contact line as a first approximation:

(u, v)|Γ · nΓ = κ(θ − θS ),

where θS is the static contact angle and κ is a constant.

We can relate the slip velocity on the left-hand side and the contact angle through

Γt + Γy v|Γ = u|Γ ,
nΓ =

(1,−Γy)√
1+Γ 2

y

,

and

∂h

∂nΓ

∣∣∣∣
Γ

= − tan θ(y, t),

so that we are left with

Γt√
1 + Γ 2

y

= κ(θ − θS ), (2.9)

and

hx − hyΓy√
1 + Γ 2

y

∣∣∣∣
Γ

= − tan θ(y, t). (2.10)

Far upstream we let the height of the film h(x, y, t) be uniform, i.e.:

lim
x→−∞ h(x, y, t) = h∞, (2.11)

lim
x→−∞

∂νh

∂xν
(x, y, t) = 0, ν ∈ N. (2.12)

The fluid is driven at a constant flow-rate Q∞ at x = −∞

Q∞ =
ρgh3∞

3µ

(
1 + 3

λ

h2∞

)
sin α,

so that

V =
Q∞
h∞

=
ρgh2∞

3µ

(
1 + 3

λ

h2∞

)
sin α , (2.13)

for a given inclination angle α.
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By introducing the scales

x = lx̂, y = lŷ, Γ = lΓ̂ ,

z = h∞ẑ, h = h∞ĥ, θ =
h∞
l
θ̂,

u = V û, v = V v̂, w =
h∞
l
V ŵ,

t =
l

V
t̂, p− pA =

σh∞
l2

p̂, θS =
h∞
l
θ̂S .


(2.14)

a lubrication approximation for (2.1)–(2.12) is frequently derived by requiring

h∞
l

= Ca 1/3 � 1, (2.15)

where Ca = 3µV/σ is the capillary number [7, 13, 12]. If only the leading order terms in

Ca 1/3 are retained, the resulting equations can then be integrated across the height of the

film h, and by applying the kinematic condition, a nonlinear evolution equation for the

shape of the fluid film is obtained,

ht = −∇ ·
[(
h3 + d2 h

)(∇∆h− G∇h+
1

1 + d2
(1, 0)T

)]
, (2.16)(

∇ =

(
∂

∂x
,
∂

∂y

)
, ∆ =

∂2

∂x2
+

∂2

∂y2

)
together with the boundary conditions

h|Γ = 0, (2.17)

Γt√
1 + Γ 2

y

∣∣∣∣
Γ

=
1

D
(θ − θS ), (2.18)

hx − hyΓy√
1 + Γ 2

y

∣∣∣∣
Γ

= −θ, (2.19)

lim
x→−∞ h(x, y, t) = 1, (2.20)

lim
x→−∞

∂n

∂xn
h(x, y, t) = 0, n ∈ N , (2.21)

where the ‘ ˆ ’s have been dropped, and where D = V l/κh∞ and G = Ca 1/3 cot α/(1 + d2)

are O(1) or smaller. In our subsequent calculations, typical choices for the scaled slip-

coefficient d2 = 3λ/h2∞ will be in the range of 0.0001 . . . 0.03.

In this study, we are interested in the case α � 1. However, this scaling forces the

parallel component of gravity to enter as an O(1)-term, which is not what one would

expect for a just slightly inclined plane. For such a situation, a more suitable scaling,

which allows this component to enter as a small correction, is given as follows:

x = x0x
+, y = x0y

+, z = h∞z+,

u = Vu+, v = Vv+, w =
h∞V
x0

w+,

h = h∞h+, t =
x0

V
t+, p− pA = ρgh∞ p+,

Γ = x0Γ
+, θ =

h∞
x0
θ+, θS =

h∞
x0
θ+
S .
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Upon substitution into (2.1)–(2.12) a lubrication approximation is obtained if ε =

h∞/x0 � 1, and if for α � 1 (i.e. sin α ∼ α + O(α3) and cos α ∼ 1 + O(α2)) the

parameter ν = α/ε is at most O(1). To include surface tension effects, the Bond number

B = ρgx2
0/σ = O(1).

After dropping the ‘+’s, we proceed as usual and integrate the resulting equations

across the height h. In conjunction with the kinematic condition, we obtain the problem

ν(1 + d2) ht = −∇ ·
[
(h3 + d2 h)

(
1

B
∇∆h− ∇h+ (ν, 0)T

)]
, (2.22)

with boundary conditions

h|Γ = 0, (2.23)

νΓt√
1 + Γ 2

y

=
1

D1
(θ − θS ) with D1 =

ρgh2∞
3µκ

(1 + d2) = O(1), (2.24)

hx − hyΓy√
1 + Γ 2

y

= −θ, (2.25)

lim
x→−∞ h(x, y, t) = 1, (2.26)

lim
x→−∞

∂n

∂xn
h(x, y, t) = 0, n ∈ N . (2.27)

3 The travelling-wave solution

For the problem (2.22)–(2.27) we will derive a travelling-wave solution via matched

asymptotics, for the regime ν � 1. As is well-known, the travelling-wave exhibited by

the thin film spreading down the inclined plane, typically shows a hump near the contact

line. Here, surface tension and gravitational forces dominate, while further away from the

contact line region surface tension can be neglected and viscous and gravitational forces

balance. This suggests the use of singular perturbation methods [21], where solutions

close to the leading edge are to be matched with solutions far upstream.

Since we are looking for a travelling-wave solution, we introduce the coordinate

ξ = x − Γtw(t), where the contact line is the straight line Γtw(t) = utwt, utw = constant

travelling-wave velocity, and approximate h(x, y, t) by htw(ξ). Thus

ν(1 + d2)utw h
′
tw(ξ) =

d

dξ

[(
1

B
h
′′′
tw(ξ)− h′tw(ξ) + ν

)
(h3
tw(ξ) + htw(ξ) d2)

]
(3.1)

with boundary conditions

htw(0) = 0, (3.2)

h
′
tw(0) = −θS − D1 ν, (3.3)

lim
ξ→−∞ htw(ξ) = 1, (3.4)

lim
ξ→−∞ h

(n)
tw (ξ) = 0, n ∈ N. (3.5)

Note that we can integrate (3.1) once, and that the integral is zero as long as we require

h
′′′
tw(ξ) and h

′
tw(ξ) to remain bounded when ξ → 0. This in turn is a result of the particular
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choice of the slip condition λ/h (see also Greenspan [7] and Haley & Miksis [20]). On

the other hand, we see from the conditions at −∞ that utw = 1.

In the following perturbation analysis we keep d2 as an independent parameter. Note

that, even though d2 enters the problem as a singular parameter, our subsequent results

show that the dependence is only logarithmic, and one can then infer, after a little algebra,

that our asymptotic solution remains valid as long as

|ν ln(d)| � 1

is obeyed.

For the inner expansion we write:

htw(ξ; ν) = g0(ξ) + νg1(ξ) + O(ν2) (3.6)

The solutions of the leading order and O(ν) problems (see Appendix A) are given by:

g0(ξ) =
C0

2

(
e−
√
Bξ − e

√
Bξ
)

+
θS −

√
BC0√
B

(
1− e

√
Bξ
)

(3.7)

and

g1(ξ) =
m0

θS

(1− y)

(
D1 + k3 +

k1

2
− 1 + d2

2m0d
arctan

(m0

d

)
+
k1k2m0

2d
arctan(v) +

k1m
2
0

2k0

(
ln(w)− ln(d2)

))
+
k1

4
(1− k2)

(
ln(w)− ln(d2)

)
+
k1m

2
0

k0
y ln(y)− 1 + d2

2m0d
arctan

(m0

d

)
+
k1k2m0

2d
arctan(v)− 1 + d2

2m0d

1

y
arctan

 v − m0

d

1 + v
m0

d

+ k3ξ

where

y = e
√
Bξ, k1 =

1 + d2

m2
0 + d2

, w = m2
0(1− y)2 + d2,

m0 =
θS√
B
, k2 =

m2
0 − d2

m2
0 + d2

, v =
m0

d
(1− y),

k0 = m2
0 + d2, k3 =

m2
0 − 1

m2
0 + d2

.

(3.8)

On the other hand, when ξ is large (i.e. ξ = ξ∗/ν), we write for the outer expansion

htw(ξ; ν) = u0(ξ∗) + νu1(ξ∗) + O(ν2) . (3.9)

The solutions for the corresponding leading and O(ν) problems (see Appendix A) are

given implicitly:

u0(ξ∗)− (1 + d2) arcoth(u0(ξ∗)) = C+
1 + ξ∗ for u0 > 1,

u0(ξ∗)− (1 + d2) artanh(u0(ξ∗)) = C−1 + ξ∗ for u0 < 1 , (3.10)
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and

u1(ξ∗) = m1
du0

dξ∗
. (3.11)

Matching to leading order requires C0 = 0, since u0 remains bounded as ξ∗ → 0. Hence,

since g0 → θS/
√
B as ξ → −∞, the integration constants C±1 will be matched to

C+
1 =

θS√
B
− (1 + d2) arcoth

(
θS√
B

)
, (3.12)

C−1 =
θS√
B
− (1 + d2) artanh

(
θS√
B

)
, (3.13)

as ξ∗ → 0. When we match to O(ν), we have to match g1(ξ) as ξ → −∞ with contributions

of O(ν) from the outer expansion as ξ∗ → 0. These are

νu1(ξ∗) + ξ∗
du0

dξ∗
(0). (3.14)

We see immediately from (A 7) in Appendix A that, since du0/dξ
∗ = k3 when ξ∗ → 0, the

second term matches with the last term of g1, and as the rest of g1 approaches a constant,

that m1 is determined to be

m1 =
m0

θS

[
D1 + 1

k3
+
k1

k3

(
1

2

(
ln(k0)− ln(d2)

)− d

m0
arctan

(m0

d

))]
(3.15)

Hence, we obtain for the travelling-wave solution to O(ν) :

htw(ξ) = g0(ξ) + u0(νξ)− m0 + ν (g1(ξ) + u1(νξ)− k3ξ − m1) + O(ν2). (3.16)

For the case m0 = θS/
√
B = 1 the solution can be given explicitly [25].

3.1 Numerical methods

We solved (3.1)–(3.5) numerically with a pseudo-spectral method based on expansions in

Chebyshev-polynomials and, independently, a multiple-shooting code using the package

MUMUS developed by Peter Hiltmann at the Technical University of Munich [26].

The semi-infinite domain of the boundary value problem was cut off at −L. The choice

of L is critical since too small a value (i.e. if htw(−L) is not yet in the asymptotic regime

so that |htw(−L)| � 1) may distort the result. On the other hand, large values of the

cut-off parameter demand a penalty in time and/or accuracy.

In the multiple-shooting method the third order ODE (3.1) was converted into a first

order system and (3.2)–(3.5) provided the necessary boundary conditions. The integration

of the initial value sub-problems was performed through an embedded 7/8th-order Runge–

Kutta–Fehlberg method. The step-size control of this initial-value solver produced, in

effect, a highly adapted grid.

For the pseudo-spectral method (see Canuto et al. [27] and Gottlieb & Orszag [28]),

we linearly mapped ]− L, 0[ to ]− 1, 1[ and discretized htw(ξ) on a fixed grid given by

ξi := cos

(
iπ

N

)
, i = 0, . . . , N = 2p, p ∈ N.

This choice of the grid and the restriction of the number of grid-points N to a power
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Figure 2. Travelling wave solution (outer scale) zeroth-order approximation (· · ·), first-order
approximation (—), numerical (•), for α = 0.04, ν = 0.24.

of two is mandated by the fast-Fourier transform which is used to perform the actual

computation for the Chebyshev-expansions. It exhibits a strong bunching of the grid-

points near ±1, but allocates enough resolution throughout the entire hump region to

yield satisfactory results for moderate values of N (N > 128).

3.2 Comparison with the asymptotic solution

For all the comparisons below we used values of parameters obtained from experimentally

measured and estimated data. For example, it was found that the fluid depth profile of

the spreading thin film showed favourable agreement between the numerical solution and

recent experiments [6]. There, the dynamic contact angle model 〈u, v〉|Γ · nΓ = κ(θ− θS )m,

for the case m = 3 was studied as well, but no relevant difference was found when

m = 1 for the experiments considered. When we chose similar parameter values (for

the case m = 1) but let α be small, we found excellent agreement of our asymptotic

and numerical travelling-wave solutions. Figures 2–3 show typical examples from various
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Figure 3. Travelling wave solution (outer scale) zeroth-order approximation (· · ·), first-order
approximation (—), numerical (•), for α = 0.02, ν = 0.15.

series of comparisons we performed. Here we let the unscaled static contact angle θS = 0.5,

D1 = 1,
√
ρgh2∞/σ = 0.35, d2 = 0.003, and ν = 0.24, 0.15 with α = 0.04, 0.02, respectively.

Further, we think it is interesting to observe, that the asymptotic solution of the

travelling-wave explicitly shows a logarithmically singular behaviour at the contact line

as the slip parameter d2 vanishes. For the same parameter values, except α = 0.04 and

ν = 0.24, Figure 4 illustrates this behaviour for both, our asymptotic as well as numerical

solution, by depicting the dependence of the maximum height on d2 in a semi-log diagram.

We would like to stress at this point that this is in accordance with numerical results

for the precursor model, when the thickness of the precursor b vanishes – see Troian et

al. [13] and Bertozzi & Brenner [14].

4 Linear stability analysis and long-wave approximation

In this section we will investigate the stability of the travelling-wave solution, by allowing

a small deviation of its straight contact line. We are particularly interested in the range
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Figure 4. maxξ htw(ξ) vs. slip length d2 in a semi-log diagram, for α = 0.04, ν = 0.24. Values for
the numerically computed TW solution (—), and for the asymptotic approximation (· · ·).

of values of the parameters, such as α, θS , D1 and configurations thereof, under which the

flow remains linearly stable.

According to Bertozzi & Brenner [14], who use a precursor model, there is a critical

inclination angle α∗ > 0 (α∗ was estimated to to be between 5 to 10 degrees) below which

the flow remains linearly stable, yet experiments due to de Bruyn [4] show that fingers still

emerge for angles below α∗. This apparent paradox was studied using a transient growth

approach. It is therefore interesting to investigate this problem for the slip model, where

slip and contact angles can be prescribed and compared to experimental measurements

(e.g. see Johnson et al. [6]).

We begin our stability analysis by expressing the perturbations of the contact line,

height and contact angle in terms of normal modes as follows:

Γ (y, t) = Γtw(t) + δest+iky, (4.1)

h(x, y, t) = htw(ξ) + δh1(ξ)est+iky, (4.2)

θ(y, t) = θtw + δθ1e
st+iky, (4.3)

where θtw = θS + D1ν, s is the growth rate and k the wavenumber.
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If we now substitute (4.1)–(4.3) into (2.22)–(2.27) we obtain for the leading order

problem (3.1)–(3.5) and to O(δ) the following eigenvalue problem for s, parametrized by

the wavenumber k:

d

dξ

(
c3(htw) h

′′′
1 (ξ)

)
+ c2(htw) h

′′
1(ξ) + c1(htw) h

′
1(ξ) + c0(htw) h1(ξ) = 0, (4.4)

with boundary conditions

h1(0) = −h′tw(0) = θS + D1 ν, (4.5)

h
′
1(0) = −h′′tw(0)− sD1ν, (4.6)

limξ→−∞ h1(ξ) = 0, (4.7)

limξ→−∞ h(n)
1 (ξ) = 0 n ∈ N, (4.8)

where

c3(htw) =
1

B

(
h3
tw(ξ) + d2 htw(ξ)

)
, (4.9)

c2(htw) = −(2k2 + B) c3(htw), (4.10)

c1(htw) = −(k2 + B)
dc3

dξ
+ (1 + d2)ν

2h2
tw(ξ)

h2
tw(ξ) + d2

, (4.11)

c0(htw) = k2(k2 + B) c3(htw) + (1 + d2)

[
νs+ ν

d

dξ

(
2h2

tw(ξ)

h2
tw(ξ) + d2

)]
. (4.12)

When looking for the eigenvalues with the largest real parts we find, similar to López et

al. [12], Troian et al. [13] and Bertozzi & Brenner [14], that s(k) increases from zero to a

maximum value smax and decreases again to zero at a certain k = kz as k increases from

zero to kz .

As a check of our calculations, we compare our results for the most unstable mode with

recent experimental measurements [6]. We find good agreement, as was found earlier by

López et al. [24]. For example, for the choice of α = 0.253, ε = 0.328,
√
ρgh2∞/σ = 0.375,

θS = 0.171 (unscaled), D1 = 1 and d2 = 0.003, which were determined from the physical

data given in Johnson et al. [6], we found for the preferred dimensionless wavelength the

value of kmax = 0.38 ± 0.01, while Johnson et al. [6] measure 0.377 . . . 0.491. Note at this

point, that similarly good agreement between experimentally observed and theoretically

predicted values of the preferred wavelength was found by using the precursor model –

see Troian et al. [13] and Bertozzi & Brenner [14].

We now wish to study the behaviour of the function s(k) when we change the physical

parameters, in particular when we decrease α. We find that smax also decreases as well as

the location of the maximum kmax. We are interested in the value of α∗ for which smax

reaches zero. This, however, eventually presents a problem in numerical accuracy as α∗
and smax become exceedingly small. We therefore seek the asymptotic behaviour of s(k)

for small k, and match this to the numerical solution for larger k.

The assumption that k is small, i.e. the wavelength of the disturbance becomes large,

simplifies above eigenvalue problem (4.4)–(4.12) considerably. First, note that k appears

in the problem only as k2, and we thus make the following ansatz:

h1(ξ; k2) = f0(ξ) + k2f1(ξ) + O(k4),
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and

s(k) = k2s1 (4.13)

where s1 is a constant an k2 � 1.

If we now substitute this ansatz into (4.4)–(4.12), we obtain to leading order the problem

1

B
f
′′′
0 (ξ)− f ′0(ξ) = −ν 2htw(ξ)(1 + d2)

(h2
tw(ξ) + d2)2

f0(ξ),

with boundary conditions

f0(0) = −h′tw(0) ,

f
′
0(0) = −h′′tw(0) ,

lim
ξ→−∞ f0(ξ) = 0 ,

lim
ξ→−∞ f

(n)
0 (ξ) = 0 . (4.14)

Note that, since

d

dξ

(
h2
tw(ξ)− 1

h2
tw(ξ) + d2

)
=

2htw(ξ)(1 + d2)

(h2
tw(ξ) + d2)2

h
′
tw(ξ) (4.15)

one can easily see the solution of the problem to be f0(ξ) = −h′tw(ξ). By making use of

this solution, we find to the next order the problem

d

dξ

[
c3(htw)

(
1

B
f
′′′
1 (ξ)− f ′1(ξ)

)
+ ν

2h2
tw(ξ)(1 + d2)

h2
tw(ξ) + d2

f1(ξ)

]
=

d

dξ
(c3(htw) f

′
0(ξ)) + c3(htw) f

′′
0(ξ)− (1 + d2)νs1 f0(ξ)− Bc3(htw) f0(ξ)

= − d

dξ
(c3(htw) h

′′
tw(ξ))− c3(htw) h

′′′
tw(ξ) + (1 + d2)νs1 h

′
tw(ξ) + Bc3(htw) h

′
tw(ξ) (4.16)

with boundary conditions

f1(0) = 0 ,

f
′
1(0) = −D1s1ν ,

lim
ξ→−∞ f1(ξ) = 0 ,

lim
ξ→−∞ f

(n)
1 (ξ) = 0 . (4.17)

If we now integrate over the range of ξ from −∞ to zero and use the boundary

conditions for htw(ξ) and f1(ξ), we find that the right-hand side of equation (4.16)

vanishes, and only the last three terms of the left-hand side remain. This then yields the

following formula for s1:

s1 =
1

1 + d2

∫ 0

−∞
htw(ξ)

(
h2
tw(ξ)− 1

)
dξ . (4.18)

This we can calculate asymptotically for small ν.
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4.1 Numerical methods

For the numerical solution of (4.4)–(4.12), we represented the boundary conditions (4.5)

and (4.6) by an equivalent pair composed of (4.5) and

h′1(0)(θs + D1ν) + h1(0)(h′′tw(0) + D1sν) = 0. (4.19)

Since (4.5) is only a normalization condition for the eigenfunction, we can drop it for the

essential numerical calculations, so that the remaining set of equations determines h1 only

up to a constant factor.

We solved the resulting eigenvalue problem as follows. The semi-infinite interval was

cut off at ] − L, 0[, mapped linearly to ] − 1, 1[ and discretized pseudo-spectrally in

the same manner as for the travelling-wave solution. Then, standard software (from

EISPACK [29]) was used to compute the eigenvalue with the largest real part, which

is the dominant growth rate s(k) for the wave number k – see also Canuto et al. [27],

Gottlieb & Orszag [28] and López et al. [12].

The numerical experiments were initially performed on an SGI Indigo workstation in

64-bit double precision (DP) arithmetics. Since it is known from the above analysis that

s(0) must be zero, the numerical approximation s0 for this value can serve as an estimate

for the accuracy of our calculations. It turned out that |s0| decreased with N as long as

N 6 128, but increased for N > 256. This behaviour is surprising only at first glance,

since the accuracy of s is limited by the accuracy to which the fourth order derivatives

appearing in (4.4) can be calculated. As a ‘rule of thumb’, round-off errors tend to be the

dominant error contribution if the minimum distance of two adjacent grid points ∆min is

less than order eps(1/4), where the machine precision eps is about 10−16 for DP. Since

∆min =
∣∣∣cos

( π
N

)
− 1
∣∣∣ ≈ π2

2N2
,

we get

N >
π√

2 eps
1
4

≈ 222

as the threshold above which round-off errors must be expected to corrupt the numerical

data. This value fits in nicely with our observations.

Unfortunately, the accuracy obtained for the highest possible N = 128 was not sufficient

to generate reliable s(k) plots for all interesting values of α. Especially near the point

of stability transition, the quality of the plots was so poor that no agreement with the

long-wave predictions was achieved.

To enable the use of higher resolution, i.e. higher values of N, we opted for higher

precision arithmetics by using the Quadruple Precision (QP) floating point libraries of a

SUN workstation. Since these are implemented in software, the pseudo-spectral code had

to be redesigned to keep the computation time acceptable. The precision sensitive part

turned out to be problem independent and could be done once and for all for each value of

N, such that it could be retrieved for the problem-specific calculations, which were carried

out in hardware-supported, i.e. fast, DP arithmetics. Except for the one-time generation

of the problem independent QP data, and the fact that computing the eigenvalues of the
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Figure 5. Growth rate s vs. wavenumber k on log–log scales for α = 0.03, ν = 0.19. Long-wave
approximation: numerical (—), asymptotical (· · ·), numerical: (•).

matrices for larger N took considerably longer, no extra penalty in computation time was

paid. For further details, see Münch [30].

5 Numerical and asymptotic results

The growth rate s(k) is shown in Figure 5, for
√
ρgh2∞/σ = 0.35, d2 = 0.003, θS = 0.5

(unscaled), α = 0.03, ν = 0.19 and D1 = 1, and compared to results from long-wave

analysis, by using both the numerical and the asymptotic travelling-wave solution to

determine s1. To illustrate that the approximation is very good for small k, Figure 5

depicts the log-log comparison.

As the inclination angles get smaller, the maximum growth rate smax decreases, as well

as the maximum wavenumber kmax. However, a similar scenario can be seen when the

contact angle is varied. This behaviour can be seen in Figures 6–7, where we fix α in

each figure and plot the growth rate versus wavenumber for various θS/
√
B, leaving the

remaining parameters as in figure 5. We observe, that for fixed α the point (kmax, smax)
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Figure 6. Growth rate s vs. wavenumber k for θs/B
1/2 = 1.428 (—), 1 (− · −), 0.714 (− − − ),

α = 0.06, ν = 0.31.

moves further towards the origin as θS/
√
B get smaller, as was the case for fixed θS/

√
B

and decreasing α.

This leads us to the problem to determine, for a fixed θS the inclination angle α for

which the flow is linearly stable. Here, we take up the apparent paradox exposed by

Bertozzi & Brenner [14], who studied the problem of linear stability and found so large a

value of α∗, that it contradicted experimental observations. They used a precursor model,

which is the limiting case of completely wetting fluids. We find in our analysis, that to

each fixed θS there is a critical α∗. The value of α∗ decreases as θS increases. However, one

can also observe from Figures 2–3 that the hump height decreases as α decreases, as does

the maximum growth rate in the corresponding curves of Figures 6–7. We then tried to

relate vanishing of the hump with the linear stability of the flow. In Figure 8 we compare

the function for the critical α∗, for which the flow becomes stable, with the critical α

where the hump vanishes. We observe that, indeed, the flow stabilizes at a finite α∗, which

decreases though as θS increases. A similar behaviour is seen for the vanishing of the

hump. There is considerable discrepancy between the critical α, where the hump vanishes
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Figure 7. Growth rate s vs. wavenumber k for θs/B
1/2 = 1.428 (—), 1 (− · −), 0.714 (− − − ),

α = 0.03, ν = 0.19.

and where the flow is stable, which is expected from formula (4.18). Interestingly though,

as θS increases, these curves move closer together. This behaviour, to our knowledge has

not been observed before, and it would be interesting to obtain experimental comparisons.

We also note here, that the influence of varying D1 is very small for small θS , as can be

seen from Figure 9, but acts as a more destabilizing contribution as θS increases.

To predict the behaviour for large θS , we would eventually have to leave the lubrication

limit. However, we think the indication that the discrepancy between these two curves

decreases, while both curves approach ever smaller values of α∗, may hint towards

different underlying physical mechanisms as the dominant causes of the instability. It

should therefore be interesting to investigate these curves as θS increases, and determine

if and for which θS linear stability theory is sufficient to describe the instability.

For small θS though there remains a problem. For example, Jerrett & de Bruyn [3] use

Heavy Mineraloil (HMO) on plexiglass. From the typical roughness of plexiglass, which

is about 0.1–1 µm, we can infer a value for d2 of about 10−3–10−5. We calculate, given
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Figure 8. Transition curves for linear stability and vanishing of the hump for various θs/B
1/2,

d2 = 0.003, D1 = 1, (ρgh2∞/σ)1/2 = 0.5.

their measured quantities, a critical α∗ of about 0.066, i.e. 3.8◦. However, Jerrett & de

Bruyn observe instabilities down to 2◦.

6 Conclusions

In this work we have studied various aspects of a thin fluid film spreading down an

inclined plane, in particular for small inclination angles, by using a slip model.

We derived a matched asymptotic solution for the travelling-wave, which shows excellent

agreement with numerical calculations. Furthermore, it explicitly showed a logarithmically

singular dependence on the slip parameter. We then studied the linear stability of the

travelling-wave. We found that for small wavenumbers a long wave approximation yields

an expression for the growth rates that depends only on the slip parameter and the solution

to the travelling-wave, and compares well with numerical solutions in this regime.

These results are in accordance with numerical studies for the precursor model, i.e.
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Figure 9. Comparison of transition curves for linear stability and vanishing of the hump for
various θs/B

1/2, d2 = 0.003, (ρgh2∞/σ)1/2 = 0.35, D1 = 0, 1.

logarithmically singular dependence of the height on the precursor thickness, long wave

approximation for small wavenumbers, as well as the favourable agreement of the pre-

dicted wavelength of the instability with experimental data, in spite of the different

approaches to model the contact line region, reflecting a quite different understanding of

the underlying physics there.

However, only when the ratio of θS/
√
B becomes small do we recover the result of

Bertozzi & Brenner [14], and find critical values for the inclination angle below which all

normal modes are stable, and which are in contradiction to some experimental observation.

Furthermore, by increasing θS/
√
B we find that these critical values decrease as well as

those critical α∗ for which the hump of the travelling-wave vanishes.

Additionally, we saw that these two transition curves seem to move closer together as

θS/
√
B increases, and we have indications from present numerical as well as asymptotical

calculations (to be published), that they eventually merge when θS/
√
B = 1. We also

investigate presently the possible connection of this observation with the negligible influ-
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ence of the inclination angle on the preferred wavelength when θS/
√
B > 1, as can be

seen in Figures 6–7 when θS/
√
B = 1.428.

Another important parameter which needs to be studied more closely is the slip

parameter d2. While we can see in our ongoing analysis that the most unstable mode has

negligible dependence on d2 for large inclination angles, as was also seen for the precursor

model, here we also see the same effect for the case when θS/
√
B > 1. We have indications

that only in the regime of small α and small θS/
√
B is the choice of d2 crucial, since for

smaller d2 the transition curves in Figures 8 and 9 will qualitatively remain the same but

with lower values for the respective critical α’s.

Bertozzi & Brenner [14] treated their problem by using the method of transient growth,

resulting from a disturbance in the precursor film. Interestingly, our present studies (to be

published) also show, similar to the problem treated in Bertozzi & Brenner [14], that large

amplification of variations in the slip parameter over a finite interval can be observed.

Further, we also have indications, by performing a weakly nonlinear stability analysis,

that this amplification of the slip variation is sufficient to induce destabilization below α∗.
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Appendix A

The leading order and O(ν) boundary value problems are:

g′′′0 (ξ)− Bg′0(ξ) = 0, (A 1)

g0(0) = 0, (A 2)

g′0(0) = −θS , (A 3)

and

g′′′1 (ξ)− Bg′1(ξ) = −B g2
0(ξ)− 1

g2
0(ξ) + d2

, (A 4)

g1(0) = 0, (A 5)

g′1(0) = −D1, (A 6)

u0
′(ξ∗) =

u0
2(ξ∗)− 1

u0
2(ξ∗) + d2

, (A 7)

u0(−∞) = 1, (A 8)

and

u′1(ξ∗) = 2 u1(ξ∗) u0(ξ∗)
1 + d2

(u0
2(ξ∗) + d2)2

, (A 9)

u1(−∞) = 0 (A 10)
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Note that by integrating (A 9) and using (A 7), we obtain (3.11). Note further that

alternatively we can also express u0 as a series expansion for ξ∗ → 0, i.e.

u0(ξ∗) =

∞∑
n=0

cn

n!

(
e

2ξ∗
1+d2 − 1

)n
, (A 11)

with

cn =
dnu0

dzn
(1) , where z = e

2ξ∗
1+d2 . (A 12)
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