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Contact-line instability of dewetting thin films
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Abstract

We investigate the linear stability of dewetting thin polymer films on hydrophobised substrates driven by Van-der-Waals forces,
using a lubrication model. We focus on the role of slippage in the emerging instability at the three-phase contact-line and compare
our results to the corresponding no-slip case. Our analysis shows that generically, small perturbations of the receding front are
amplified, but in the slippage case by orders of magnitude larger than in the no-slip case. Moreover, while the perturbations
become symmetrical in the no-slip case, they are asymmetrical in the slippage case. We furthermore extend our lubrication model
to include effects of nonlinear curvature.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

A thin liquid film that wets a solid substrate is typically subject to contact-line instabilities such as forma
ngers. Such phenomena have been studied for decades, both theoretically and experimentally, for films
orces such as gravity[1,14,36,38], or Marangoni stresses or both[2,6,8,10,16]. The derivation of the mathematic
odels exploits the separation of length scales to obtain a simplified lubrication model from the underlying
tokes equations in conjunction with conservation of mass. The stress singularity at the three phase co
hich is inherited by the resulting fourth order PDE, is regularized for example, via a slip boundary cond
recursor model, where the height of the precursor or the slip length is usually much smaller than the heig
ctual wetting film. Interestingly, for the wetting phenomena just mentioned, the choice of the boundary c
t the three phase contact-line enters only weakly in that it does not influence the eventual appearance
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see for example[1,16,18,22]. In contrast to these wetting phenomena, contact-line instabilities for dewetting thin
films have received only limited attention particularly theoretically.

For such a process to occur, a thin, viscous film is uniformly spread onto a hydrophobic surface. It then dewets
in a process that is initiated either spontaneously through spinodal decomposition or induced for example through
nucleation. The dry spots, or holes, that form as a result subsequently grow as the newly formed contact-line recedes,
thereby accumulating liquid in a characteristic capillary ridge at the edge of the hole, which increases in width and
height as the dewetting proceeds. In a variety of experimental situations it is observed that, while in some cases, the
growth of the hole continues until it collides with neighboring holes, in other cases the ridge of the hole destabilizes
into finger-like structures eventually pinching off and forming droplets. A similar scenario has also been observed
for straight dewetting fronts as opposed to radially symmetric fronts, see[17,21,24,27,30,33,34,40]. Because of the
impact this has on the emerging macroscopic pattern, it is important to understand the dynamics leading to such an
instability.

Let us note here that in contrast to the previously mentioned wetting scenarios, the film thickness in dewetting
experiments is typically orders of magnitude smaller. For such situations, the relevance of slippage at the liquid/solid
interface for the instability has been discussed by several authors,[19,29,35], but detailed theoretical investigations
using a fluid mechanical model to understand the effect of slippage have not yet been carried out. In[4,15,25]the
dewetting rate and shape of the ridge have been treated using approximate formulas derived from scaling arguments
and energy balances. This has been compared to dewetting rates and shapes by numerically solving the corresponding
lubrication model, both for the no-slip and slippage case, see[11,20]. In [20] also the case for very hydrophobic
substrates is investigated. For such situations contact angles are typically quite large and violate the small slope
assumption of lubrication theory, suggesting to include the full nonlinear expression for the curvature of the liquid
surface.

In this paper, we study the linear stability of the dewetting ridges, by perturbing about the solutions found in
[20]. In Section2, we describe the relevant physical situation and derive the lubrication model. In Section3, we
discuss the two asymptotic cases: the no-slip case and the slip case for the lubrication model as well as for the
extended model that includes nonlinear curvature. Subsequently, we detail the numerical methods used and present
our results. In Section4, we summarize our results.
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. Formulation

.1. Effective interface potential

The physical situation that underlies our mathematical model consists of a thin viscous polymer film
olystyrene (PS) of low molecular weight (∼5 kg/mol) and about 100–200 nm thick, that is uniformly sprea
substrate, consisting essentially of a silicon wafer (Si) covered with a silicon oxide (SiO) layer, which is

overed with a monolayer of octadecyl-trichlorosilane (OTS). For such a multi-layer system, it could be s
31,32], how to reconstruct a corresponding effective interface potential. This can then be used to charac
tability properties of the thin film with respect to spinodal decomposition and nucleation with the aim to
nformation for the resulting dewetting pattern.

The effective interface potential is composed of repulsive and attractive long-range Van-der-Waals c
ions, with a separate contribution for each of the layers of the substrate, and a short-range term w
ounts for Born-type repulsion. The latter term provides a cut-off by penalizing a thinning of the film b
ositive thickness threshold given by the minimumh∗ of the potential. This is illustrated inFig. 1, depicting
(h), which also shows a sketch of a portion of a ridge as it dewets in thex-direction from a straight front or

nted iny-direction. We letdSiO be the thickness of the SiO layer anddOTS the thickness of the monolayer
TS.
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Fig. 1. Left: The non-dimensional effective interface potentialW(h), as given by(7), with a minimum ath∗ and a maximum as shown in the
inset. The inset corresponds to the area above the thin dotted line in the main figure. Right: Sketch of a portion of a dewetting polymer film
of initial thicknessh∞. The dewetting front and the ridge propagate in the direction of the positivex-axis, as indicated by the bold-face arrow,
leaving behind a residual film of thicknessh∗.

The effective potential for this situation is (see[32]):

W(h) = cs

h8 − Aots

12πh2 + Aots − Asio

12π(h + dOTS)2
+ Asio − Asi

12π(h + dOTS + dSiO)2
. (1)

wherecs denotes the strength of the short-range part of the potential, andAsio, ASi andAOTS are the Hamaker
constants of PS on SiO, Si and OTS, respectively. We note that the actual values of the constantsAOTS andASiO
turn out to nearly cancel out, so we can neglect the third term in what follows. For this system, it has been observed
experimentally, that after formation of holes and formation of a ridge at the dewetting fronts of the holes, the ridges
destabilize into finger-type structures.

2.2. Lubrication model

While the instability is seen for radially symmetric as well as for straight dewetting fronts we focus here only
on modeling the evolution of a straight dewetting front. In order to describe the evolution of the film surface
z = h(x, y, t), we use a lubrication model that includes the influence of surface tension and the effective interface
potential W of the air/PS/OTS/SiO/Si layer. In this case the pressure atz = h(x, y, t) is given by

p = σ�h − W ′′(h). (2)

Making use of the small length scale ofh one can then derive the lubrication model from the Navier–Stokes equation
in conjunction with conservation of mass. In dimensional form, the lubrication model is

3η
∂h

∂t
+ ∇ · [m(h)(σ∇�h − W ′′(h)∇h)] = 0, (3)

whereη andσ are the liquid viscosity and the liquid surface tension, respectively, andW ′′(h) is the second derivative
of the effective interface potential with respect to the PS film thicknessh. As a first approximation for the short
chained (2–5 kg/mol) variants of PS, which has an entanglement length of∼18 kg/mol, our lubrication model(3)
treats the polymer film in its melt state as a Newtonian liquid, so that in particular viscoelastic effects are not assumed
to be present in the model.

Also, m(h) is a non-negative mobility coefficient, the form of which depends on the boundary conditions at the
liquid/solid interface. A widely used condition relates the slippage velocityv of the liquid at the wall to the local
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shear rate∂v/∂z via

v = β
∂v

∂z
, (4)

where the slip lengthβ is defined as the distance below the interface at which the liquid velocity extrapolates to
zero. Usually, the slip length is very small, on the order of ten to a few hundred nanometers for Newtonian liquids
and it only becomes relevant in the immediate vicinity of the contact-line.

For the problem we consider here the situation is different. Liquid polymer films of the type considered here
and of such small thickness may have slip lengths on the order of the thickness of the dewetting film itself or even
larger, depending also on the roughness of the substrate. Thus, slippage becomes an essential factor in the physical
model that has an important influence on the flow in the liquid bulk.

For the above slip boundary condition at the substrate, the mobility has the formm(h) = h3 + βh2 with a non-
zero slip length. There are two limiting situations for our model. The no-slip boundary condition, which is obtained
if β = 0, so that the mobility has the formm(h) = h3. On the other hand, the limitβ → ∞ yields the mobility
m(h) = h2, after rescaling time withβ. We will call it the slip-dominated case, or just slip case for short.

Finally, we non-dimensionalize our problem with the intent of minimizing the number of parameters that appear
in the equation. We require the time derivative ofh, the contribution from surface tension and the first terms in
W ′′(h)∇h to balance. This is achieved with the following choices

H =
(

144πcs

ASiO

)(1/6)

, L = 4π

(
81σ3c2

s

2πA5
SiO

)(1/6)

, T = 288π3ησ

A3
SiO

(
324c5

sASiO

π

)(1/6)

(5)

for the normal and parallel length scales and for the time scale. Introducing these scalings forh, x, y and fort we
obtain

∂h

∂t
+ ∇ ·

[
m(h)

(
∇�h −

{
1

h10 − 1

h4 + a

(h + d)4

}
∇h

)]
= 0. (6)

Note that in(6) the slip lengthβ, which is contained in the mobilitym(h), has also been scaled withH. The expression
in curly brackets is the second derivative of the following non-dimensional form of the effective interface potential,

w

2

a contact
a ression
i is not
s , see for
e

W(h) = 1

72h8 − 1

6h2 + a

6(h + d)2
, (7)

hich contains two parameters, namely

a = ASiO − ASi

ASiO
and d = dOTS + dSiO

H
. (8)

.3. Nonlinear curvature

The OTS layer used in the experiments is very hydrophobic towards PS so that this system produces
ngle of almost 60◦, see[32]. Therefore, we also consider nonlinear curvature, replacing the linearized exp

n (6), but otherwise retaining the usual terms contributing to the lubrication model in the liquid bulk. This
trictly asymptotically correct, but has lead to reasonable results in other geometrically related situations
xample[3]. This means, for comparison, we also investigate the model

∂h

∂t
+ ∇ · [m(h)(∇κ − W ′′(h)∇h)] = 0, (9)
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where

κ(x, y, t) = (1 + ρ2h2
y)hxx − 2ρ2hxhyhxy + (1 + ρ2h2

x)hyy

(1 + ρ2(h2
x + h2

y))3/2 , (10)

with

ρ = H

L
= 1

2

(
A4

SiO

18π4σ3cs

)1/2

, (11)

reducing to the linearized curvature forρ → 0. For easy reference, we will refer to(9) and (10)as the ‘nonlinear
curvature model’, while we continue to use the term ‘lubrication model’ for(6).

3. Linear stability of the dewetting thin film

3.1. Non-constant base states

The base state about which will we perturb is in several ways non-constant in time. This is illustrated byFig.
2(a), which shows a numerical solution of

∂h

∂t
+ ∂

∂x

[
m(h)

(
∂

∂x

(
hxx(

1 + ρ2h2
x

)3/2

)
− W ′′(h)

∂h

∂x

)]
= 0. (12)

at different times for the no-slip mobilitym(h) = h3, lettingρ = 0 to recover the lubrication model, i.e., the one-
dimensional version of(6). Note that by using this one-dimensional model we consider here the evolution of trenches
rather than of axisymmetric holes. The simulation starts with a slightly smoothed step function as initial profile that
is also shown in the figure. One clearly sees that the dewetting ridge accumulates liquid as it moves to the right. As a
consequence, the height as well as the width of the ridge increase. The simulations might suggest an approximately
self-similar evolution of the ridge profile, but note that it connects to left and right far-field states that are constant

s at
s have
d

in time and hence do not follow the scaling of the growing ridge.

Fig. 2. (a) Evolution of the ridge profile for the no-slip lubrication model. The figures shows the initial profile (dashed line) and profile
t = 0.800e6, 0.160e7, 0.240e7 and 0.320e7, as solid lines in order from left to right. (b) The shape of the ridges after the contact-line
travelled the same distancexc = 2.99e4 for each of the four models. The abbreviations ‘nc’ and ‘lub’ are short for ‘nonlinear curvature’ an
‘lubrication’, respectively. We remark that the profile for the no-slip lubrication model coincides with the last profile in (a).
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Fig. 3. Evolution of the contact-line position with time for the no-slip (a) and the slip case (b). A linear axis scaling is used for (a), while (b) is
a log–log plot, where we have included a dotted line for the graph ofx ∼ t2/3 to guide the eye.

The numerical results yield slightly different ridge shapes for the different models, i.e., with linear or nonlinear
curvature (lettingρ = 0 orρ = H/L �= 0, respectively), and the no-slip or slip mobility. This is shown inFig. 2(b),
where we compare the ridge profiles after they have travelled the same distance, hence have accumulated the same
amount of liquid. The profiles for the no-slip models have taller and thinner ridges than their slip counterparts. The
same holds true for the nonlinear curvature models, i.e., the ridges are taller and thinner than those for the lubrication
models (ρ = 0).

Further investigation of the receding ridge reveals that its velocity is non-constant and changes as the ridge
evolves. The dewetting law depends on the boundary condition at the liquid/solid interface, which means it is
different for the two mobilities considered in this paper.

In a similar setting like ours,[25] used energy balances to predict dewetting rates that are independent of
the size of the receding ridge if no-slip boundary conditions are used at the contact-line, thus the ridge would
move at a constant velocity. This result was corrected to a somewhat lower than linear dewetting law in[11,20]
by numerical integration of the corresponding lubrication model. Also, it was found that an ansatz with a log-
arithmic correction could be excellently fit to the numerical solution found by integrating the lubrication and
the nonlinear curvature model in one space dimension(12) for m(h) = h3. The fit was in any case much better
than with an ansatz assuming a linear time dependence forxc(t). Herexc(t) denotes the position of the front,
and is taken to be the inflection point on the ‘dry’ side of the ridge, i.e., the side facing the region from which
the liquid film has receded. A plot of the numerical solution is shown inFig. 3(a), showing two curves for
the nonlinear curvature and the lubrication model that are both close, but still visibly different, from a straight
line.

For the slip case, whenm(h) = h2, [26,28] predict at2/3-law for the evolution of the dewetting front, which
reads in scaled form using(5)

xc(t) = 32/3C1/3

42/3

θ
5/3
s

h
1/3
∞

t2/3, C ≈ 0.1, (13)

whereθs is the static contact angle. By fitting a power-law ansatz, it was found in[20] that (13) indeed compares
well with the numerical solution of(12) with mobility m(h) = h2. This is also indicated byFig. 3(b), where the
contact-line evolution for numerical solutions of the nonlinear curvature and of the lubrication model is shown in a
log–log plot. Clearly,xc(t) asymptotes to a straight line representing the graph of∼ t2/3.
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For the computations inFig. 3 and all other computations presented below, we used the physical parameters
given to us by Neto[23]:

cs = 4 × 10−81 Jm6, AOTS = 2.2 × 10−20 J, ASi = −1.4 × 10−19 J,

dOTS + dSio = 4.4 × 10−9 m, σ = 30.8 × 10−3 Nm−1. (14)

The form of the potential is also found in[32], as well as the values forcs and the Hamaker constants. In a further
paper[31], Seemann et al. explain their method for determining these values in more detail.

The parameters in(14) lead to the length scalesH = 2.085× 10−10 m andL = 1.290× 10−10 m, and for the
non-dimensional parameters in the potential we geta = 7.36, d = 21.1. The viscosity and hence the time scale
varies greatly for different chain lengths, moreover, it depends strongly on the temperature. Below we present our
results for the stability analysis as a function of the dewetting front position, which does not require the knowledge
of the time scale.

Note that the length scales are very small (in the sub-nanometric range) which is to be expected since the
balance we used to fix them includes the Born repulsion term in the potential which acts only over very small
scales. As a result, the minimum of the potentialh∗ = 0.833 (or 0.174 nm dimensionally) and hence the resid-
ual film thickness is an order one value in the scaled variables, while the size of the ridge or the distance it
travels will be orders of magnitude larger. Recall that we chose this sort of inner scaling only with the in-
tent to minimize the number of parameters in the PDE in order to facilitate numerical parameter studies. In
particular, the length scale ratioρ = H/L > 1 characterizes the contact-line region in the first place, while in
the remaining regions (i.e., wet side of the ridge) the characteristic slopes are much smaller. This motivates
our choice to retain the simplified bulk flow in conjunction with a nonlinear curvature term, as explained in
Section2.3.

The initial profile and in particular the initial thickness of the wetting film are the same as in Section3.3.

3.2. The linearized problem

The stability analysis of a dewetting ridge we consider now is to some degree non-standard in that the base state
about which we perturb is non-constant, nor does there seem to be an exact travelling wave or similarity solution.
I ng frame
o blem that
c ficient for
u ns that
a gravity
d even
w problems
t ate
t panwise
w

rbation
f

i

n the latter case, it would be possible to obtain a constant base state by the introduction of a co-movi
f reference or similarity variables. Therefore, linearization about the base state does not lead to a pro
an be treated with the usual normal mode/eigenvalue ansatz. Normal modes can turn out to be insuf
nderstanding stability/instability also if the linearized system is strongly non-normal, with eigenfunctio
re not orthogonal[7,37]. Such problems have found considerable attention in particular in the context of
riven thin film flow, see e.g.[1,9,12,13], which show considerable transient amplification of perturbations
here the eigenvalue analysis predicts stability, i.e., long-time decay of perturbations. However, in these

he base state is constant in time, while the situation here is rather as in e.g.[39], where we have a base st
hat is non-constant in time and turns out to strongly amplifying small perturbations depending on their s
avelength.
In what follows we describe the occurrence of fingers in the ridge, in terms of the evolution of a pertu

unctionh1(x, t). We introduce the perturbation

h(x, y, t) = hb(x, t) + δh1(x, t) exp(iqy)

nto the lubrication model, withδ � 1 and retain only linear terms inδ. The curvatureκ can then be written as

κ(x, y, t) = κb(x, t) + δ κ1(x, y, t)
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where

κb(x, t) = hbxx

(1 + ρ2h2
bx)

3/2 (15)

and

κ1(x, y, t) = h1xx + (1 + ρ2h2
bx)h1yy

(1 + ρ2h2
bx)3/2

− 3ρ2hbxhbxx

(1 + ρ2h2
bx)5/2

h1x. (16)

We obtain for the linearized equation

∂h1

∂t
+ Lh1 + ∂

∂x

[
m(hb)

∂

∂x

(
h1yy

(1 + ρ2h2
bx)1/2

)]

+ m(hb)

(1 + ρ2h2
bx)1/2

∂4h1

∂y4 + m(hb)
∂2

∂y2

(
h1xx

(1 + ρ2h2
bx)3/2

− 3ρ2hbxhbxx(
1 + ρ2h2

bx

)5/2 h1x − W ′′(hb) h1

)
= 0, (17)

where

Lh1 = ∂

∂x

[
m′(hb)

(
κbx − W ′′(hb) hbx

)
h1 − m(hb)W ′′′(hb)hbxh1 + m(hb)

×
(

∂

∂x

[
h1xx(

1 + ρ2h2
bx

)3/2 − 3ρ2hbxhbxx(
1 + ρ2h2

bx

)5/2 h1x

]
− W ′′(hb)h1x

)]
(18)

We remark that by lettingρ = 0 in (17) and (18)and in the equation for the base state(9), we recover the system
describing the linearization for the lubrication model.

Next, we Fourier-transform(17) and (18)with respect toy, which results in a system of spatially one-dimensional
PDEs that depends on the span-wise wavenumberq. Note that since the coefficients of the linearized PDE are now
non-constant, the solutions for the linearized problem cannot be obtained via a classical eigenvalue approach. Instead,
w bers, in
t uation for
t nce
s r
a

3

n, where
t
T here,
w
fi ed
c to the
r

e solve the initial value problems obtained from the linearisation numerically for a fixed set of wavenum
andem with the equation for the base state, and observe how the perturbations evolve in time. Both the eq
he base state(12)and the equation for the perturbation(17)coupled to it were discretized using a finite-differe
cheme with implicit time discretisation, in some cases using the scheme proposed by[41]; this was also ou
pproach for the linear curvature model.

.3. Results of the linear stability analysis

The profile employed as initial condition for the base state is a steep front connecting the dewetted regio
he film thickness ish∗, and the unperturbed film of thicknessh∞, so that limx→−∞ h = h∗ and limx→∞ h = h∞.
he initial front, specifically, its inflection point, is located at the origin. For the numerical experiments
e usually seth∞ to a reference value,href = 20.8 (noting in passing that this is 25h∗). Recall thath∗ is the
lm thickness that corresponds to the minimum of the potential(7) and is energetically strongly preferr
ompared to the initial thickness, so that in the computations the film dewets i.e., the front moves
ight.

An initial perturbation is introduced at a certain timet0, defined below, using the following expression:

h1(x, t0) = ∂hb

∂x
(x, t0), (19)
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which corresponds to a ‘zig–zag’ perturbation, i.e., for a non-zero wave-number, we perturb both sides of the ridge
in the same direction[5]. For zero wave-number,(19) simply represents an infinitesimal initial shift of the whole
profile. Below, we also make some remarks on other choices of the initial data forh1.

To describe the growth of bumps and eventually fingers in the ridges, we employ the amplificationA(t) of the
perturbation with respect to the initial state,

A(t) = maxx |h1(x, t)|
maxx |h1(x, t0)| for t0 ≤ t ≤ t1.

The evolution of the ridge profile happens on quite different time scales for the no-slip and the slip case, as can be
expected, since the mobilities for the no-slip and the slip case differ by a factor ofh3/h2 = h, which is typically
on the order of, or larger thanh∞, in the ridge and the ‘wetted’ area. Therefore, we present the results of our
stability analysis in terms of the positionxc(t) of the dewetting front, rather than in terms of the dimensionless
time t itself. In particular, we introduce the perturbation(19) in each of the four cases studied here (no-slip/slip,
lubrication/nonlinear curvature model) whenxc(t) has reached a fixed position equal to 26.7. This leads to four
different values fort0, one for each case. Then, the evolution of the base state and the perturbation coupled to it are
followed untilxc(t1) = 4.5 × 105, which again specifies a different value fort1 in each of the cases.

In the literature, the different dewetting rates for the no-slip and the slip case are typically derived from estimates of
the energy dissipation rates that are independent from the size of the ridge for the no-slip but not for the slip situation.
This results in a constant contact-line velocity in the former case, and a velocity that is inversely proportional to
the width of the ridge in the latter, see for example[29], and references therein. The numerical results for the
lubrication/nonlinear curvature model have confirmed these laws for the slip mobility, and also to some degree for
the no-slip mobility, for which the less than linear law forxc(t) suggests some dependence of the dewetting rate on the
size of the ridge. Nevertheless, it is reasonable to conclude that the dependence is much weaker than for the slip case.

This observation is potentially important, because it has been invoked as a possible explanation for how slip can
promote the formation of protrusions in dewetting experiments[29]. In their article, Reiter and Sharma argue that if
the dewetting velocity depends on the width of the rim, thicker regions in a perturbed ridge will tend to dewet more
slowly than thinner regions, thus reinforcing the differences in the contact-line position. This could eventually lead
to a pattern of protruding bumps or fingers separated by straight portions or by troughs like those observed in the
p

f linear
c dewetting
p plification
f

a ase state
h
c plified
w
p

a
u ting front
i slip and
hysical experiment.
We now present the results for the linear stability analysis.Fig. 4 displaysA(t) versus the front positionxc(t)

or several wavelengthsl = 2π/q, for the no-slip and the slip case, and for both the lubrication and the non
urvature model. In all these cases and for each of the depicted wavelengths, the perturbation grows as the
roceeds, then it reaches a maximum, after which it decays. Longer wavelengths achieve the maximal am

actor

Amax := max
t≥t0

A(t)

t later stages of the dewetting, when the front has advanced further into the film and the ridge of the b
as grown in size, suggesting that the most amplified wavelength correlates with the width of the ridge[19]. This
oincides interestingly with results on fingering in gravity and Marangoni-driven flows, where the most am
avelength in the modal analysis is proportional to the length scale imposed by the bump width[38], and with
redictions for the breaking up of static ridges[5] into droplets.

Comparing now the no-slip and the slip situation, we find that for a given wavelength, the maximumAmax is
chieved earlier in the no-slip case, i.e., at a smaller value ofxc. More importantly, the value ofAmax is lower, by
p to several orders of magnitude, than for the slip scenario. This suggests that with slippage, the dewet

s orders of magnitude more susceptible to span-wise perturbations of the front. We also compare, with
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Fig. 4. AmplificationA(t) of the perturbation versus front positionxc(t) (a) for the no-slip (m = h3) and (b) for the slip case (m = h2). Line
styles correspond to different span-wise wavelengths as indicated in the legend, and represent the results for the model using nonlinear curvature.
For the model with linear curvature, we include the curves for two wavelengths, using open and solid circles.

with no-slip, the amplification factors for the lubrication and the nonlinear curvature model, shown inFig. 4. The
amplification factor for the latter seem to be slightly larger, but this difference is small and becomes apparent only
when the growth is about to saturate.

Fig. 5shows profiles of the perturbationh1 at different stages of amplification for both the no-slip (a) and the slip
case (b) and highlights a characteristic property. In the no-slip case, the initial perturbation (given by(19)), which
has one pronounced maximum and a minimum, rapidly evolves into a new profile where the minimum is replaced
by a ‘bump’ which becomes a second maximum whenA(t) reaches its maximum valueAmax. To indicate how the

Fig. 5. Perturbation profilesh1 for wave lengthl = 8.01× 103, for the no-slip case (a) and the slip case (b) at different positionsxc of the front
in the base profile. The profiles forh1 have been normalized so that their maximum is one, and shifted along thex-axis, for easier comparison
(i.e., they are not in their true positions). For each subfigure, the perturbation profiles are labelled 0, 1 and 2, where label 0 denotes the initial
perturbation introduced att0. Label 1 and 2 correspond to the front position/amplification factor given by the left and right cross (or circle) in
the inset, respectively. Solid lines and crosses are used for the results for the nonlinear curvature model, while dashed lines and circles represent
the results for the lubrication model. Further explanations are given in the text.
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h1 is aligned withhb, we include the base state for the nonlinear curvature model as a dotted line in the figure.
The height of the base profile has been rescaled by maxhb(x, t) so that it fits into the figure. The maxima ofh1 are
located at the two sides of the ridge near the inflection points of the base state, which are marked by stars. This
means that when the perturbationδh1(x, t) cos(qy), i.e., the real part ofδh1(x, t) exp(iqy), is added tohb(x, t), both
the front and the back side of the ridge are perturbed, in such a way that where cos(qy) > 1, the ‘dry’ side of the
ridge is shifted to lowerx, while the ‘wet’ side is shifted to largerx, and vice-versa for cos(qy) < 1. Thus, a ridge
that is perturbed in this way will consist of a sequence of thicker and thinner portions reminiscent of a varicose or
‘peristaltic’ mode leading to the breakup of static ridges[5].

Conversely, for the slip case, the minimum fades out much more slowly and even for the perturbation profile
at maximum amplificationA(t) = Amax, we only have a small ‘bump’ in the position where the no-slip case has
a second maximum. Thus, with slippage, the perturbation hardly affects the ‘wet’ side of the ridge, meaning that
the ridge stays relatively flat there; undulations would appear asymmetrically, i.e., mainly on the ‘dry’ side of the
ridge. As for the no-slip case, the rescaled base state for the nonlinear curvature model has been included as a
dotted line. Also, the inflection points on each side of the ridge are emphasized by stars. We confirmed in separate
computations for the lubrication model that the typical shape of the perturbation profile, hence the asymmetric
manner in which it affects the ‘dry’ and ‘wet’ side of the ridge, are obtained in the slip case also for different
initial data. For each of our choices forh1(x, t0), the perturbation profile quickly relaxed into the shapes shown in
Fig. 5(b).

4. Conclusions

We investigated the lubrication model and an extended model that includes the full nonlinear curvature, describing
the dewetting process of a thin polymer film on a hydrophobized substrate. The model assumed the dewetting process
is driven by Van-der-Waals forces and either a no-slip or a slip-dominated condition for the mobility. We showed that
the receding, slowly increasing ridge at the border of each trench strongly amplifies small span-wise perturbations.
Interestingly, our analysis of the equations linearized about the non-constant base state shows that the amplification
rate is by several orders of magnitude larger for the slip-dominated case than for the no-slip case for both the
lubrication model and the extended model. Moreover, by comparing the perturbation profilesh1(x, t), we found that
in the no-slip case the profiles develop two maxima, one on the front side towards the trench and the other one on
t e means
t case the
p

mplified
p avelength
f en the
t s given
i

ed some
p
r rical
v e
t for the
w n model
a hen
t we
o arger,
u aken into
he back side towards the thin film, while for the slip case only one maximum on the front side develops. Th
hat the slip case would show asymmetric protrusions extending towards the trench, while for the no-slip
rotrusions are symmetrical.

Finally we want to make some remarks on preliminary results regarding the wavelength of the most a
erturbations. First, we adapted our code for the dynamic base state to determine the fastest growing w

or a static ridge of heighthref. The wavelength was about four times the width of the ridge measured betwe
wo inflection points, with a slightly larger ratio for the nonlinear curvature model. This agrees with value
n [5].

To find out whether such a relation between width of ridge and preferred wavelength holds, we perform
reliminary computations for the dewetting ridge, where we divided the wavelengthl = 2π/q by the width of the
idge at which either the amplification factor or the growth rateȦ(t) becomes maximal, and found that the nume
alues obtained for each of these ratios hardly changed for different choices of the wavenumberq. We note that w
ook twice the distance of the front (i.e., the inflection point) from the maximum of the ridge as a measure
idth of the ridge, and also that we restricted this part of our investigation to the slip case. For the lubricatio
nd wavelengthsl = 13.5 × 103, 8.01× 103 and 5.00× 103, the maximum amplification factor was achieved w

he ratio of wavelength and width was equal to 2.5; at the time of maximal growth rate—which occurred earlier—
btained values in the range 2.75± 0.1. For the nonlinear curvature model, these values were only slightly l
p to about 10%. For both models the corresponding values do not differ much if larger wavelengths are t
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consideration. This suggests that there could be limiting values for these ratios as the wavelengths increase. We are
currently investigating these trends further.
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18] P.G. Ĺopez, S.G. Bankoff, M.J. Miksis, Non-isothermal spreading of a thin liquid film on an inclined plane, J. Fluid Mech. 11 (199
19] J.-L. Masson, O. Olufokunbi, P.F. Green, Flow instabilities in entangled polymer films, Macromolecules 35 (2002) 6992–6996.
20] A. Münch, Dewetting rates of thin liquid films, J. Phys.: Condensed Matter (2004).
21] A. Münch, C. Neto, R. Seemann, K. Jacobs, Fingering instability in dewetting films induced by slippage, in preparation.
22] A. Münch, B.A. Wagner, Numerical and asymptotic results on the linear stability of a thin film spreading down a slope of small inc

Eur. J. Appl. Math. 10 (1999) 297–318.
23] C. Neto, Private Communications.
24] C. Neto, K. Jacobs, Physica A, submitted for publication.
25] C. Redon, F. Brochard-Wyart, F. Rondelez, Dynamics of dewetting, Phys. Rev. Lett. 66 (6) (1991) 715–718.
26] C. Redon, J.B. Brzoska, F. Brochard-Wyart, Dewetting and slippage of microscopic polymer films, Macromolecules 27 (1994)
27] G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett. 68 (1) (1992) 75–78.
28] G. Reiter, R. Khanna, Kinetics of autophobic dewetting of polymer films, Langmuir 16 (2000) 6351–6357.
29] G. Reiter, A. Sharma, Auto-optimization of dewetting rates by rim instabilities in slipping polymer films, Phys. Rev. Lett.

(2001).
30] G. Reiter, A. Sharma, A. Casoli, M.-O. David, R. Khanna, P. Auroy, Thin film instability induced by long-range forces, Langmuir 1

2551–2558.



190 A. Münch, B. Wagner / Physica D 209 (2005) 178–190

[31] R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation, Phys. Rev. Lett. 86 (24) (2001)
5534–5537.

[32] R. Seemann, S. Herminghaus, K. Jacobs, Gaining control of pattern formation of dewetting films, J. Phys.: Condensed Matter 13 (2001)
4925–4938.

[33] A. Sharma, R. Khanna, Pattern formation in unstabile thin liquid films, Phys. Rev. Lett. 81 (16) (1998) 3463–3466.
[34] A. Sharma, R. Khanna, Pattern formation in unstable thin liquid films under influence of antagonistic short- and long-range forces, J. Chem.

Phys. 110 (10) (1999) 4929–4936.
[35] A. Sharma, G. Reiter, Instability of thin polymer films on coated substrates: rupture, dewetting and drop formation, J. Colloid Interface

Sci. 178 (1996) 383–389.
[36] N. Silvi, E.D.V. On the rewetting of an inclined solid surface by a liquid. Phys. Fluids, 28 (1985) 5–7.
[37] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll, Hydrodynamics stability without eigenvalues, Science 261 (1993) 578.
[38] S.M. Troian, E. Herbolzheimer, S.A. Safran, J. Joanny, Fingering instabilities of driven spreading films, Europhys. Lett. 10 (1) (1989)

25–30.
[39] M.R.E. Warner, R.V. Craster, O.K. Matar, Fingering phenomena associated with insoluble surfactant spreading on thin liquid films, JFM

4510 (2004) 169–200.
[40] R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Spinodal dewetting of thin polymer films, Phys. Rev. Lett. 81 (6) (1998) 1251–1254.
[41] L. Zhornitskaya, A.L. Bertozzi, Positivity preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal. 37 (2)

(2000) 523–555.


	Contact-line instability of dewetting thin films
	Introduction
	Formulation
	Effective interface potential
	Lubrication model
	Nonlinear curvature

	Linear stability of the dewetting thin film
	Non-constant base states
	The linearized problem
	Results of the linear stability analysis

	Conclusions
	Acknowledgements
	References


