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Abstract
We investigate the stability of the three-phase contact line of a thin liquid ridge
on a hydrophobic substrate for flow driven by surface tension and van der Waals
forces. We study the role of slippage in the emerging instability at the three-
phase contact line by comparing the lubrication models for no-slip and slip
conditions at the liquid/substrate interface.

For both cases we derive a sharp-interface model via matched asymptotic
expansions and derive the eigenvalues from a linear stability analysis of the
respective reduced models. We compare our asymptotic results with the
eigenvalues obtained numerically for the full lubrication models.

Mathematics Subject Classification: 76M45, 34B15, 65M06

PACS numbers: 68.15.+e

1. Introduction

In this paper we investigate a contact-line instability, which occurs when a thin liquid film
dewets a substrate and the liquid/substrate interface condition allows for large slippage.

In the past decades, contact-line instabilities have been considered for thin liquid films that
wet a solid substrate, both theoretically and experimentally. These instabilities are typically
driven by forces such as gravity [1–5], Marangoni stresses or both [6–10]. The modelling
dimension-reduced lubrication models, which are derived from the underlying Navier–Stokes
equations, typically employ a slip boundary condition or a precursor model to regularize the
stress singularity at the three-phase contact line, whereby the height of the precursor or the
slip length are usually much smaller than the height of the actual wetting film. The choice of
the boundary condition at the three-phase contact line typically enters only weakly and does
not significantly influence the eventual appearance of fingers, see for example [3, 9, 11, 12].
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In contrast to these previous investigations, the dewetting scenarios we consider here
concern film heights that are typically orders of magnitude smaller. The physical background
is described by a thin viscous polymer film that is uniformly spread on a substrate, such
as a silicon wafer with a hydrophobic coating, which typically consists of a monolayer of
grafted brushes. For such a multi-layered system one can reconstruct the disjoining pressure
from a corresponding intermolecular potential, which is composed of attractive long-range van
der Waals contributions and a short-range term which accounts for Born-type repulsion, see,
e.g. [13, 14]. The latter term provides a cut-off by penalizing a thinning of the film below a
positive thickness threshold given by the minimum of the potential. In such a situation the thin
film dewets in a process that is initiated either spontaneously through spinodal decomposition
or is induced, for example, through nucleation. The dry spots, or holes, that form as a result
subsequently grow as the newly formed contact line recedes, thereby accumulating liquid in
a characteristic capillary ridge at the edge of the hole, which increases in width and height
as the dewetting proceeds. In a variety of experimental situations it is observed that, while
in some cases the growth of the hole continues until it collides with neighbouring holes, in
others the ridge of the hole destabilizes into finger-like structures, eventually pinching off to
form droplets. Such a finger-like contact-line instability has also been observed for straight
(as opposed to radially-symmetric) dewetting ridges, see [15–21]. Since this instability will
influence the evolution of the dewetting process and the emerging dewetting patterns, it is
important to understand the underlying mechanism, whereby in particular these fingers, which
would otherwise result in stationary ridges of fluid being left behind in the near-dry region
behind the dewetting front, destabilize and break up into droplets.

Some of the first theoretical studies were done in [22–25], where the dewetting rate and
shape of the ridge were treated using approximate formulae derived from scaling arguments
and energy balances. In [22] it was found that in the case of large slippage the dewetting
proceeds according to a t2/3 law for the evolution of the dewetting rim in contrast to the nearly
linear law for the no-slip situation. It was argued in [26] that due to this dewetting rate, thicker
portions (introduced via small perturbations) of the dewetting rim move more slowly than
thinner ones, leading to the appearance and growth of fingers. This idea for a mechanism
for the contact-line instability in the nanofluidic regime was taken up by [27, 28], where the
evolution of the film surface z = h(x, y, t) was modelled via a lubrication approximation that
includes the influence of surface tension, the intermolecular potential φ(h) and a condition for
large slip at the solid/liquid interface, where we note that, within the described physical context,
slippage is understood as effective (sometimes also called apparent) slippage. Moreover, let us
note that the same mechanism that leads to the appearance of fingers should take effect during
the process of their eventual pinch-off from the receding front, since the thicker portions of
the fingers will stay behind.

In order to introduce the lubrication models we will investigate here, we choose coordinates
so that x, y denote directions parallel to the (planar) substrate and z the direction normal to it.
The pressure at z = h(x, y, t) is given to leading order in the lubrication approximation by

p = −�h + φ′(h), (1.1)

where φ′(h) is the first derivative of the intermolecular potential with respect to the liquid film
thickness h. A typical choice for φ(h), and the one we will adopt in this paper, is (see [13])

φ′(h) = ε−1�′(h/ε), where �(v) = 1

8v8
− 1

2v2
. (1.2)

Note that �′(1) = 0 and �′′(1) > 0, so that φ has a minimum at h = ε � 1; the reason for
incorporating the dependences upon ε embodied by (1.2) will become clear in sections 3 and 4.
It implies that very thin films with a thickness scale of ε are energetically preferred to thicker



Linear stability of a ridge 2815

films, and the latter therefore tend to dewet. Making use of the length-scale separation in the
x, y versus z directions, one can then derive the lubrication model from the Navier–Stokes
equations in conjunction with conservation of mass, (1.1) and appropriate boundary conditions
at the free surface and at the solid/liquid interface, namely,

ht + ∇ · [hn∇(�h − φ′(h))] = 0, (1.3)

stated here (as are all equations in this paper) in non-dimensional form. For a detailed derivation
and scaling analysis of a family of lubrication approximations that include large slippage, we
refer to [29]. The exponent n depends on the boundary condition at the solid/liquid interface.
A widely used condition relates the slippage velocity u of the liquid at the wall to the local
shear rate uz via Navier-slip condition

u = b uz at z = 0, (1.4)

where the slip length parameter b corresponds to the distance below the substrate at which
the liquid velocity extrapolates to zero. For the above slip boundary condition, the no-slip
condition is obtained if b = 0, corresponding to the mobility h3. For large b one can show
(see, e.g. [29]) that the mobility is h2, which we will call here the slip case. In [30] it could
be shown numerically that the contact-line evolves according to a t2/3 law in contrast to the
no-slip case, where a linear law was found with a weak logarithmic correction, confirming
the results by [22]; see also [31] who investigated the no-slip case. In [27] a linear stability
analysis showed that small perturbations of the receding rim are amplified and by orders of
magnitude larger in the slip case than in the no-slip one. Moreover, while the perturbations
of the contour lines become very symmetrical with respect to the maximum of the ridge
in the no-slip case, they are asymmetrical in the slip regime. Moreover, in [28] it was
shown via numerical simulations that these properties carry over into the nonlinear dynamics
of the perturbations. We remark at this point that for the physical applications described
above, the contact angles of the dewetting rims may become as large as 60◦, which may
render a lubrication approximation questionable there. For this reason the fully nonlinear
curvature was included in the treatment (see, e.g. [27, 30]), showing qualitatively the same
results.

The purpose of this paper is to present a careful asymptotic treatment with respect to this
instability by comparing linear stability results for the lubrication models with mobilities h3

(corresponding to the no-slip case) and h2 (corresponding to the slip case). A first asymptotic
study of the stability of a moving ridge for mobility h3 was performed in [32], where asymptotic
solutions for the shape of the dewetting ridges, their dewetting rates and their contact-line
instability were derived. In [33] a variational formulation was used to obtain a free boundary
problem for the contact line for the no-slip situation, and a stability analysis of the contact-line
motion was performed in [34].

We pursue our comparisons of the stability properties of the no-slip and slip cases by
considering the simplest situation of the evolution of a perturbed stationary ridge. The study of
this case has the advantage that the sharp-interface models, that we derive from the lubrication
models via matched asymptotic expansions, turn out to be simple enough to enable in some
cases the derivation of the dispersion relation in analytic form and allow direct comparison
with our numerical results. We remark that while we shall take the ridge to be straight, the
analysis can be generalized to curved ones.

We begin our analysis by first studying the stability of the ridge numerically in section 2.
In sections 3 and 4 we derive the sharp-interface models and the corresponding dispersion
relations and compare them with our numerical findings.
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Figure 1. Sketch of the initial state of the ridge.

2. Stationary ridges and their stability

In this section we study numerically the contact-line instability of a stationary ridge that initially
extends to ±∞ in the y-direction and is symmetrical about zero in the x-direction and assumes
the (small) equilibrium height εh∞ for x → ±∞, see figure 1.

We thus begin with the lubrication model (1.3), (1.2), together with the boundary
conditions

lim
x→±∞ h(x, y, t) = εh∞. (2.1)

From (1.3), (2.1), the ridge profiles can readily be found by dropping all terms with
derivatives in t and y and integrating the resulting ODE. The constants of integration are
determined by the far-field conditions, and we obtain, after two integrations,

hx = ±21/2[φ(h) − φ(εh∞) − φ′(εh∞)(h − εh∞)]1/2. (2.2)

The plus sign applies for the left side of the ridge and the minus sign for the right. We assume
in our scalings that the cross-sectional area of the fluid in the ridge is such that its maximum
is one (without losing generality, since this can always be achieved by rescaling the equation
with hmax and redefining ε). This assumption implies that the right-hand side of (2.2) must be
zero for h = 1, i.e. we must observe the constraint

φ(1) − φ(εh∞) − φ′(εh∞)(1 − εh∞) = 0. (2.3)

This fixes h∞ for a given ε (on which φ depends). One easily finds for (1.2) that h∞ ∼ 1+ε/16
as ε → 0. Note that h∞ = 1 + O(ε) holds more generally as long as φ′(ε) = 0. Profiles
for the ridges for different values of ε are shown in figure 2; note that the base states do not
depend on the mobility hn and hence are the same for the no-slip and slip cases.

Next we probe the stability of these equilibrium solutions with respect to disturbances in
the y-direction via the normal modes ansatz

h(x, y, t) = h0(x) + βh1(x; k)eiky+σ t , where 0 < β � 1

and h0(x) is the previously found ridge profile. Introducing this into (1.3) and (2.1) we obtain
the O(β) problem

σh1 + ∂x[hn
0∂x(h1xx − k2h1 − φ′′(h0)h1)] − k2hn

0(h1xx − k2h1 − φ′′(h0)h1) = 0 (2.4)

and

lim
x→±∞ h1(x; k) = 0. (2.5)

The eigenvalue problem (2.4), (2.5) was solved on a sufficiently large, finite domain using a
standard finite-difference discretization scheme and inverse vector iteration to calculate the
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Figure 2. The ridge profiles for different values of ε. On the right side, the axis for h0 has been
scaled logarithmically to enlarge the thin profiles beyond the ‘contact lines’.
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Figure 3. The growth rates for the (unstable for 0 < k < kc) peristaltic mode for different values
of ε, for the no-slip case n = 3 (left) and for the slip case n = 2 (right).

two eigenvalues with the largest real part, for a range of wavenumbers k. It turns out that both
eigenvalues are real. One is negative for all k > 0 while the other is positive for all non-zero
wave-numbers below a certain cut-off value kc and negative k > kc. This unstable one is a
peristaltic mode, whereby the sinusoidal perturbations of the contact lines on each side of the
ridge are out of phase by half a wavelength. The other, i.e. stable, eigenvalue corresponds
to perturbations that are in phase, i.e. are zig–zag modes. Both families are needed in order
to generate a complete set of eigenmodes; we shall limit ourselves to investigating the first
member of each, conjecturing that these are the ones most likely to exhibit instabilities. It is
worth noting that in the absence of a Sturm–Liouville theory for such fourth-order problems,
the stability of the first mode of one of either of the two families would not a priori guarantee
the stability of the first member of the other, so it is essential that both be investigated.
Details of the results can be found in figure 3 for the peristaltic and in figure 4 for the
zig–zag mode.

Note that the eigenvalues do (of course) depend on the mobility, i.e. on the value of n. In
figure 3 the wavelength of the unstable mode and its growth rate are slightly larger for the slip
than for the no-slip case, while the cut-off (neutrally-stable) wavenumbers kc are quite close.
The difference is even more dramatic for the zig–zag mode, where the eigenvalue for the slip
case is about twice that for no-slip.
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Figure 4. The (negative) growth rates for the (stable) zig–zag mode for different values of ε, for
the no-slip case (left) and for the slip case (right).

3. Sharp-interface model for the slip-dominated case

3.1. Derivation of the model

Outer problem. We start from equation (1.3) for n = 2, i.e.

ht + ∇ · [h2∇(�h − ε−1�′(h/ε))] = 0, (3.1)

and the far-field conditions

lim
x→±∞ h(x, y, t) = εh∞; (3.2)

recall that h∞ satisfies (2.3) and is of O(1).

Transformation to inner coordinates near the contact line. Let x = (x, y) be a point in the
neighbourhood of the contact line, which we parametrize by r(t, s) = (r1(t, s), r2(t, s)), where
s denotes arclength. Then

x = r(t, s) + εχν(t, s) (3.3)

defines the boundary layer with χ = O(1), which henceforth denotes the ‘inner’ variable.
Note that for an infinite ridge we have two disjoint boundary layers, located around the contact
lines 	− and 	+ on each side of the ridge; hence, we have two parameter functions r(t, s)
and two pairs of normal and tangent vectors. Where necessary, these will be distinguished by
adding a superscript + or −.

The normal vectors are defined to point into the domain 
 occupied by the ridge, and the
unit tangent vectors are chosen so that they form a right-hand system with the normal vector,
i.e. det(t, ν) > 0. Therefore, t− points downwards and t+ upwards, as depicted in figure 5. The
parametrizations of the boundary curves are assumed to be consistent with this orientation, so
that the derivative with respect to the parameter points in the direction of the tangent vector,
that is, t(t, s) = (r1s(t, s), r2s(t, s)), and by implication, ν(t, s) = (−r2s(t, s), r1s(t, s)). Also
by implication of the above, we obtain r2s(t, s) < 0 or > 0 on 	− or 	+, respectively. The
curvature κ is defined in the usual way, see (A.3) in appendix A.

In the inner region the height is much less than one, the appropriate scaling being

h = εv. (3.4)

Making use of appendix A we obtain the expression

∇ · (h2∇p) ∼ v2pχχ , (3.5)
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Figure 5. Sketch of a top view of a (perturbed) ridge in the setting of the sharp-interface model,
showing the domain 
 occupied by the ‘outer’ ridge and the tangent and normal vectors to the
contact lines that form the boundary of 
.

where

p ∼ −ε−1vχχ + ε−1�′(v). (3.6)

Hence, to leading order in ε the second term of (3.1) is

ε−1[v2(vχχ − �′(v))χ ]χ . (3.7)

Since the first term of (3.1) is transformed to

ht ∼ −V νvχ , (3.8)

where we denote the tangential velocity and normal velocities by

V t = xt · t, V ν = xt · ν, (3.9)

the leading-order inner problem becomes

[v2(vχχ − �′(v))χ ]χ = 0 (3.10)

together with the boundary conditions

lim
χ→−∞ v = 1, lim

χ→−∞ vχ = 0, lim
χ→−∞ vχχ = 0. (3.11)

Integrating (3.11) twice, using the fact that the potential �′(1) = 0, since � has a minimum
there, we get vχχ = �′(v), hence

vχ = 21/2(�(v) − �(1))1/2. (3.12)

For matching we need the behaviour for large χ , which is

vχ → 21/2(−�(1))1/2 ≡ λ as χ → ∞, (3.13)

where the constant λ corresponds to the macroscopic contact angle. For future reference, we
remark that for the specific potential (1.2), the numerical value for λ is 0.8660. Transformation
of v ∼ χλ back into outer variables via χ = ((x − r) · ν)/ε yields

h ∼ (x − r) · νλ. (3.14)

The following sharp-interface model then results as the leading-order outer problem, together
with the boundary condition found by matching to (3.14),

ht = −∇ · (h2∇ � h) in 
, (3.15)
∂h

∂ν
= λ, h = 0, h2 ∂

∂ν
� h = 0 on 	−, (3.16)

∂h

∂ν
= λ, h = 0, h2 ∂

∂ν
� h = 0 on 	+, (3.17)



2820 J R King et al

where the third boundary condition in (3.16) and (3.17) arises by letting χ → ∞, v → ∞
in (3.10).

For subsequent discussion on the sharp interface model, it is convenient to introduce an
alternative parametrization of the boundary curves 	−, 	+ as graphs of functions of s−(y, t) and
s+(y, t), respectively. Specifically, the properly oriented parametrizations are (s−(−y, t), −y)

for 	− and (s+(y, t), y) for 	+. The resulting expressions for the tangent and outward-normal
vector are

t− = (−s−
y , −1)

((s−
y )

2
+ 1)1/2

and ν− = (1, −s−
y )

((s−
y )

2
+ 1)1/2

, (3.18)

on 	−, and

t+ = (s+
y , 1)

((s+
y )2 + 1)1/2

and ν+ = (−1, s+
y )

((s+
y )2 + 1)1/2

. (3.19)

on 	+.

3.2. Stationary-ridge solution

We now assume that the base state is not dependent on t and y, so that it is determined by the
boundary value problem

(h2px)x = 0 with p = −hxx, (3.20)
∂h

∂ν
= hx = λ, h = 0 h2hxxx = 0 on s−, (3.21)

∂h

∂ν
= −hx = λ h = 0 h2hxxx = 0 on s+. (3.22)

Integrating (3.20) twice and using the third (mass-conservation) boundary conditions in
(3.21) and (3.22) we find that hxx = −c. Integrating this twice and using the first two boundary
conditions in (3.21) and (3.22) we get

h = 1
2c(x − s−)(s+ − x) and c(s− − s+) = −2λ. (3.23)

Transforming the coordinate system again by setting s+ = s0 and s− = −s0, we obtain
the base state in the simplified form

h0 = 1
2c(s2

0 − x2) and cs0 = λ. (3.24)

If we again normalize by choosing max h0 = 1 then we obtain

s0 = 2

λ
and c = λ2

2
. (3.25)

3.3. Linear stability

We now investigate the linear stability of the base solution of the previous subsection. Let

s± = ±s0 + βs±
1 (y, t), p = c + βp1(x, y, t), h = h0 + βh1(x, y, t). (3.26)

At O(β) we get

h1t = (h2
0p1x)x + h2

0p1yy with p1 = −h1xx − h1yy (3.27)

and the boundary conditions

h1x = λ2

2
s±

1 at x = ±s0, (3.28)

h1 = ±λ s±
1 at x = ±s0, (3.29)

h2
0h1xxx = 0 at x = ±s0 . (3.30)
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We make the usual ansatz

[s±
1 (y, t), p1(x, y, t), h1(x, y, t)] = [ŝ±, p̂(x), ĥ(x)]eσ t+iky (3.31)

and obtain from (3.27)–(3.30) and variable transformation

ξ = λ

2
x, k̃ = 2

λ
k, σ̃ = 16

λ4
σ, s̃0 = λ

2
s0 (3.32)

the eigenvalue problem

σ̃ ĥ = −(h2
0(ĥξξ − k̃2ĥ)ξ )ξ + k̃2h2

0(ĥξξ − k̃2ĥ), (3.33)

ĥξ = ±ĥ at ξ = ±1, (3.34)

0 = h2
0ĥξξξ at ξ = ±1, (3.35)

where

h0 = 1 − ξ 2. (3.36)

The ODE (3.33) has regular singular points at the boundary, i.e. at ξ = ±1. The
formulation is symmetric in ξ , so the discussion on the behaviour of the general solution
at ξ = ±1 can be done jointly for both points by setting ζ = ξ + 1 and ζ = 1 − ξ for the
left and right point, respectively. This maps the boundary points to zero and yields the ODE
(dropping the ˆ ’ s and ∼ ’s)

hζζζζ +
4(1 − ζ )

ζ(2 − ζ )
hζζζ − 2k2hζζ − k2 4(1 − ζ )

ζ(2 − ζ )
hζ +

(
σ

ζ 2(2 − ζ )2
+ k4

)
h = 0. (3.37)

The general solution is given by h(ζ ) = ∑4
i=1 Cihi(ζ ), where the expansions of the first two

basis functions hi are given at ζ = 0 by the Taylor expansions

h1(ζ ) = ζ 2 + O(ζ 4), h2(ζ ) = ζ + O(ζ 3). (3.38)

The expansions for the remaining two basis functions are

h3(ζ ) = 1 + O(ζ 4), h4(ζ ) = ζ ln(ζ ) + O(ζ 2 ln(ζ )) (3.39)

if σ = 0. Otherwise, the expansion for h3 becomes

h3(ζ ) = 1 + O(ζ 2 ln(ζ )), (3.40)

i.e. additional logarithmic terms appear in the higher order corrections. Note that here only
h3 in (3.39) is a Taylor expansion, while logarithms otherwise appear in the expansions for h3

and h4. In fact, h4 is too singular to satisfy the boundary conditions (3.35), which in terms of
ζ require ζ 2hζζζ → 0 at ζ → 0. Thus we must set C4 = 0. The other boundary condition
(3.34) requires hζ + h → 0, from which we get the condition C2 + C3 = 0. In any case, this
amounts to two conditions that are imposed on the general solution at each end of the interval,
as required for a fourth-order boundary value problem.

We solved the eigenvalue problem (3.33)–(3.36), using a finite difference/vector iteration
scheme, and compared the first two eigenvalues with those obtained for the full model in
section 2, both being real for both models. The comparison is shown in figure 6, in terms of
the wavenumber k and eigenvalue σ used in (3.31). It can be clearly seen that the eigenvalues
for the full problem rapidly converge to the sharp-interface results as ε → 0.
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Figure 6. The top first eigenvalue (left) having even eigenfunction and the second eigenvalue
(right) having odd eigenfunction, for the slip-dominated case. The results for the asymptotic model
obtained from (3.32) to (3.36) are shown by a solid line, the results for the full model shown by
dashed lines with symbols.

4. Sharp-interface model for the no-slip situation

4.1. Derivation of the model

Outer problem. We start from equation (1.3) for n = 3, i.e.

ht + ∇ · [h3∇(�h − ε−1�′(h/ε))] = 0, (4.1)

and far-field conditions

lim
x→±∞ h(x, y, t) = εh∞; (4.2)

recall that h∞ satisfies (2.3) and is of O(1). To capture the instability we transform to the
appropriate slow time scale via the logarithmic time dilatation

τ = δt, δ := 1

ln(1/ε)
, (4.3)

which is different from the time scaling for the slip case.
One may wonder where exactly the ansatz used for the slip case fails in the no-slip situation.

It turns out that, on following the same procedure, one finally obtains an eigenvalue problem for
which the two of the basis functions have to be excluded from the solution, because they are too
singular to satisfy conditions (3.34) and the analogue of (3.35). The former condition imposes
a further restriction on the combination of the remaining two basis functions, so that altogether
the eigenvalue problem has three conditions on each boundary and is hence overdetermined.

The reasons for the differences in the scalings of the slip and no-slip cases relate to the
status of the latter as a borderline case separating different regimes of front propagation for
the thin-film equation. Such properties are delineated in a more general (but more abstract)
context in [35]; see also [32]. Thus, the slip case lies in the moving-front regime of [35], while
the no-slip case lies just (this being reflected in the logarithmic scalings) in the fixed-front
regime, i.e. the contact-line position must be fixed on an O(1) time scale as ε → 0. Hence, we
must assume either small deviations from the contact-line position of the unperturbed ridge, of
order O(δ), or allow the contact-line ridge to evolve on a stretched time scale O(1/δ). It turns
out that for the former choice of scalings, the evolution of the ridge decouples to leading order
from the contact-line dynamics; that is, the perturbation of the contact-line appears only in
one of the boundary conditions of the resulting eigenvalue problem. In effect, the eigenvalue
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problem is the same as obtained for perturbations of a ridge on a fixed domain and can easily
be shown to yield stability—i.e. all modes decay. In contrast, the latter choice of scalings
preserves the coupling of the contact-line and ridge evolution. We will see below that the
resulting eigenvalue problem does, in fact, have unstable modes.

Making use now of (4.3), equation (4.1) becomes

δhτ + ∇ · [h3∇(�h − ε−1�′(h/ε))] = 0. (4.4)

Note, that this can also be written as

δhτ − ∇ · (h3∇p) = 0, where p = − � h + ε−1�′(h/ε). (4.5)

We therefore have in outer coordinates to leading order the quasi-steady equation

∇ · (
h3∇p

) = 0, where p = − � h. (4.6)

Transformation to inner coordinates near contact line. As in section 3, the boundary layer
is defined by (3.3) and v by (3.4). Making use again of appendix A we obtain the expression

∇ · (h3∇p) ∼ εv3pχχ (4.7)

and for p the same leading order terms (of order O(ε−1)) as in (3.6). The first term of (4.5) is
transformed to

δhτ ∼ −δV νvχ . (4.8)

Hence, to leading order, the inner problem reduces to

[v3(vχχ − �′(v))χ ]χ = 0 (4.9)

with

lim
χ→−∞ v = 1, lim

χ→−∞ vχ = 0, lim
χ→−∞ vχχ = 0 (4.10)

which is the same as in section 3 and hence (3.12) and (3.13) result for the solution here, too.

Transition layer. In order to be able to match, we here need an additional transition layer.
The layer that properly connects outer and inner layers is found by setting

ζ = δV ν ln χ, v = χϕ(ζ ), (4.11)

see [36] for details. Substitution of this into (4.7) and (4.8) we obtain the leading-order problem,
assuming 1 − ζ/V ν > 0,

ϕ + ϕ3ϕζ = 0 (4.12)

with solution

ϕ ∼ (K − 3ζ )1/3. (4.13)

Hence, ϕ = K1/3 + O(ζ) for ζ → 0. Matching this to the inner solution v using (3.13), we
find that K = λ3 and so

ϕ = (λ3 − 3ζ )1/3. (4.14)
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Sharp-interface model. We can now derive a matching condition from (4.14) by transforming
it back into the outer variables. From (4.11) we have

v = χ(λ3 − 3 δV ν ln χ)1/3, where χ = (x − r) · ν

ε
(4.15)

so that

h = (x − r) · ν(λ3 − 3V ν)1/3 + O(δ). (4.16)

The following sharp-interface model then results as the leading-order outer problem, the
boundary conditions being found by matching

∇ · (h3∇ � h) = 0 in 
, (4.17)

∂h

∂ν
= (λ3 − 3V ν)1/3, h = 0, h3 ∂

∂ν
� h = 0 on 	−, (4.18)

∂h

∂ν
= (λ3 − 3V ν)1/3, h = 0, h3 ∂

∂ν
� h = 0 on 	+. (4.19)

4.2. Stationary-ridge solutions and their linear stability

The stationary-ridge solutions of the sharp-interface model are the same as for the sharp-
interface model for the slip case, i.e. parabolas with maximum normalized to one, and support
[−s0, s0], as stated in (3.24), (3.25). Now we again perturb these solutions, including the
boundaries of the support, with normal-modes perturbations,

s± = ±s0 + βs±
1 (k) eσ̂ τ+iky, h = h0 + βh1(x; k) eσ̂ τ+iky, (4.20)

with 0 < β � 1. Note that σ̂ corresponds to the time variable τ , i.e. the relation to the growth
rate in the scales of section 2 is σ = δσ̂ .

We then obtain for O(β) the following eigenvalue problem, where ′ = d/dx,

h′′
1 − k2h1 = 0, for − 2

λ
< x <

2

λ
, (4.21)

h1 ∓ λs±
1 = 0 at x = ±2

λ
, (4.22)

h′
1 − 1

2
λ2s±

1 = − σ̂

λ2
s±

1 at x = ±2

λ
. (4.23)

Note, that the eigenvalue appears only in the last boundary condition. The ODE (4.21) is
easily solved and upon inserting the general solution into the boundary conditions one finds
non-trivial solutions for h1 and s±

1 if σ̂ is equal to one of the two values,

σ̂+ = 1
2λ3(λ − 2ktanh(2k/λ)) (4.24)

and

σ̂− = 1
2λ3(λ − 2kcoth(2k/λ)), (4.25)

i.e. σ̂± are the two eigenvalues. Note that for shear-thickening liquids a similar asymptotic
result was found in [32].

In figure 7 we compare the leading eigenvalues in outer scales from the numerical results
for the full model by solving the eigenvalue problem (3.33)–(3.36) as before and comparing
with the asymptotic values σ̂+ and σ̂−. Note here that the eigenvalues σ from section 2 have
been rescaled appropriately with δ to match the scaling used for σ̂±. We find as ε → 0
in figure 7 (right) that the numerical results approach the asymptotic value near the cut-off
(neutrally stable) wavenumber kc. In particular, the cut-off wavenumbers for the numerical
results converge to the zero crossing of the asymptotic curve. In order to capture the linear
stability behaviour for small wave numbers, we have to investigate the long-wave limit.
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Figure 7. Here we show the dominant eigenvalue for the no-slip case (left) in outer scales (see (4.20)
and (4.3)). The dashed lines with symbols show the results for the full model for different values
of ε as indicated by the legend. The solid lines show the asymptotic results, using the eigenvalue
σ̂+. The second (non-positive) eigenvalue for the no-slip case, in outer scales, compared with the
asymptotic result σ̂−. The agreement of full and asymptotic model is quite good, in particular for
longer wavelengths.

The long-wave limit. The previous asymptotic treatment assumes that the contact-line
movement in the no-slip case is slow compared with the evolution of the solution in the bulk.
This is encapsulated by the scaling of the time (τ ) derivatives with δ, which is a (logarithmically)
small quantity in terms of ε. Deviations of the ridge shape from the solution to Laplace’s
equation that vary on an order one spatial scale evolve on an order one scale of the original
time variable t and rapidly decay before the contact-line movement sets in. As a result, the
ridge achieves a quasistationary form and remains there even as the the contact line evolves.
This is not true, however, for sufficiently long wave variations in the ridge (which accompany
long-wave perturbations of the contact line). These can change on the same slow time scale τ

as the contact-line motion, so the dynamics of the two no longer decouple. Consider therefore
long wavelength perturbations of the ridge that vary on an order one scale of a new variable
ŷ, given by y = ŷ/δ1/2. Introducing this scaling but keeping τ and x as before, we obtain, in
place of (4.5), the equation

δhτ − (h3px)x − δ(h3pŷ)ŷ = 0, where p = −hxx − δhyy + ε−1�′(h/ε), (4.26)

so that in this case to leading order

h3px = c(ŷ, τ ). (4.27)

The boundary conditions h3px = 0 on 	1 and 	2 imply that c(ŷ, τ ) = 0 and p = p(ŷ, τ ).
Since, to leading order, p = −hxx , integrating twice from s− to s+ yields the parabolic solution

h = − 1
2p(ŷ, τ )(x − s−)(x − s+). (4.28)

Mass conservation leads to

∂

∂τ

[
p

∫ s+

s−
(x2 − (s− + s+)x + s−s+) dx

]
= 1

4

∫ s+

s−

∂

∂ŷ

(
(x − s−)3(x − s+)3p3 ∂p

∂ŷ

)
dx

(4.29)
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and hence
∂

∂τ
[(s+ − s−)3p] = 3

1120

∂

∂ŷ

[
(s+ − s−)7 ∂p4

∂ŷ

]
. (4.30)

As the boundary conditions on (4.30) we find by matching to the inner solution that

s±
τ = ± 1

3 (∓h3
x − λ3).

Inserting (4.28) for h yields

s±
τ = ± 1

3

(
1
8 (s+ − s−)3p3 − λ3

)
. (4.31)

For the base state we note that s± and p are independent of y and t , and using (4.31), we
get

h0 = − 1
2p0(x − s−

0 )(x − s+
0 ), p0(s

+
0 − s−

0 ) = 2λ. (4.32)

If we put the origin in x-direction in the middle of the parabolic ridge, then s+
0 = s0 and

s−
0 = −s0 and

h0 = − 1
2p0(x

2 − s2
0 ), p0s0 = λ. (4.33)

Taking maxh0 = s2
0p0/2 = 1 yields the base state

s0 = 2

λ
, p0 = λ2

2
. (4.34)

Perturbation about this base state via

s+ = s0 + βs+
1 (ŷ, τ ) + O(β2), s− = −s0 + βs−

1 (ŷ, τ ) + O(β2), (4.35)

p = p0 + βp1(ŷ, t) + O(β2), (4.36)

yields at O(β) the equations

s2
0p0(s

+
1 − s−

1 )τ + s3
0p1τ = 4

35 s7
0p

3
0p1ŷŷ , (4.37)

s±
1τ = ± (

p2
0 s3

0 p1 + 1
2p3

0s
2
0 (s+

1 − s−
1 )

)
. (4.38)

A change in variable

s1 := 1
2 (s+

1 − s−
1 ), m1 := 1

2 (s+
1 + s−

1 ) (4.39)

simplifies the system to

3s2
0p0s1τ + s3

0p1τ = 6
35 s7

0p
3
0p1ŷŷ , (4.40)

s1τ = p2
0s

3
0p1 + p3

0s
2
0s1, (4.41)

m1τ = 0. (4.42)

Hence using (4.34)

s1τ +
4

3λ3
p1τ = 16

35λ
p1yy, s1τ = λ2

(
2

λ
p1 +

λ2

2
s1

)
. (4.43)

The normal modes ansatz

s1(ŷ, τ ) = aeσ̂ τ+ik̂ŷ and p1(ŷ, τ ) = beσ̂ τ+ik̂ŷ (4.44)

yields then the following quadratic equation for the growth rate σ̂

σ̂ 2 +
(
λ4 + 12

35λ2k̂2
)

σ̂ − 6
35λ6k̂2 = 0. (4.45)

A comparison of the larger of the two solutions of (4.45) with the results for the full model
in section 2 is shown in figure 8, in terms of k̂ and σ̂ . Indeed, the agreement is good for small
wave numbers and improves as ε is decreased. The other solution of (4.45) tends to a non-zero
O(1) for k → 0, hence does not correspond to any of the two eigenvalues of the full problem
we investigate here, which are both neutrally stable for k = 0.
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Figure 8. Here we show the dominant eigenvalue for the no-slip case and the larger solution of
(4.45). Note that we show σ̂ , i.e. the eigenvalues are scaled as in figure 7, but the wavenumber is
now in the scalings for the long-wave approximation, k̂ = k/δ1/2. The inset is a double logarithmic
plot of part of the larger figure.

Composite solution. Finally, we can also compare the asymptotic composite solution with
the solution to the eigenvalue problem for the full problem (3.33)–(3.36). For this we focus on
the first eigenvalue. Equation (4.24) yields an approximation of σ = δσ̂ for k = O(1), while
(4.45) is valid if k̂ = O(1). Expanding the former at k = 0 yields

σ = δσ̂ ∼ δ
(

1
2 λ4 − 2 λ2k2 + 8

3k4
)
. (4.46)

Expanding the solution of (4.45) at k̂ = ∞ we find after replacing k̂ by k/δ1/2

σ = δσ̂ ∼ 1
2 δ λ4 − 35

16δ
λ6

k2
. (4.47)

Hence δλ4/2 is the common part of both expansions. We therefore construct the composite
solution by multiplying the solution of (4.45) (times δ) with the expression (4.24) (times δ)
and then dividing by the common part. A comparison of this composite solution with our
numerical results for the full model can be seen in figure 9.

5. Conclusion

In this paper we have derived sharp-interface models for a stationary ridge from the lubrication
models with mobilities h3 and h2, corresponding to the no-slip boundary condition at the
liquid/solid interface and a condition for large slippage, respectively. For this simple situation
we were able to derive, in the no-slip case, analytical expressions for the dispersion relations
that characterize the linear stability of the three-phase contact line. The instability mechanism
is closely related to Rayleigh–Plateau instability of a free cylinder of fluid—as the peristaltic
pertubations grow, the ridge can be expected to break up and eventually form droplets with
circular contact lines in order to reduce its surface area. Our approach can be generalized to the
situation of a dewetting ridge, the major differences being that the base state is not stationary
and non-symmetrical due to the non-symmetrical form of the boundary conditions.
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Figure 9. Here we compare the asymptotic composite solution (- - - -) with the eigenvalue problem
for the full problem i.e. (2.4)–(2.5) with n = 3 (——) for ε = 0.0397 (left) and ε = 1.000 × 10−3

(right). The wavenumbers and growth rates are scaled as in section 2.
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Appendix A. Transformation to inner variables

For completeness we include here the transformation formulae for the inner region.
Suppose w̃ is a quantity defined in the inner coordinates (s, χ, t). Then its derivatives are

related to the derivatives of the corresponding quantity w in outer coordinates via the invertible
transformation matrix

M =

 0

Q 0
xt yt 1


 , where Q =

(
xs ys

xχ yχ

)
, (A.1)

by 
w̃s

w̃χ

w̃t


 = M


wx

wy

wt


 . (A.2)

Since s is arclength, we have

r2
1s + r2

2s = 1, r1sr1ss + r2sr2ss = 0, κ(s, t) = r1sr2ss − r2sr1ss (A.3)

and the (two-dimensional) Frenet–Serret formulae

ts = κν, νs = −κt, (A.4)

so that

r1ss = −κr2s , r2ss = κr1s . (A.5)

Hence

xs = (1 − εχκ)t, xχ = εν, det Q = ε(1 − εχκ). (A.6)
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Now we can express the derivatives with respect to the outer variables of a quantity w in terms
of the inner variables by

wx

wy

wt


 =


 0

Q−1
0

−xt · Q−1 1





w̃s

w̃χ

w̃t




∼

 r1s(1 + εχκ) −ε−1r2s 0

r2s(1 + εχκ) ε−1r1s 0
−V t(1 + εχκ) −ε−1V ν 1





w̃s

w̃χ

w̃t


 (A.7)

as ε → 0, where we have used the approximation 1/(1 − εχκ) = 1 + εχκ + O(ε2).
The second derivatives then transform as follows:

wxx ∼ ε−2r2
2sw̃χχ − ε−1[κr2

1sw̃χ + 2r1sr2sw̃sχ ] + r2
1sw̃ss

− 2κr1sr2sw̃s − χκ[κr2
1sw̃χ + 2r1sr2sw̃sχ ] (A.8)

wyy ∼ ε−2r2
1sw̃χχ − ε−1[κr2

2sw̃χ − 2r1sr2sw̃sχ ] + r2
2sw̃ss

+ 2κr1sr2sw̃s − χκ[κr2
2sw̃χ − 2r1sr2sw̃sχ ] (A.9)

wxy ∼ −ε−2r1sr2sw̃χχ − ε−1[κr1sr2sw̃χ + (r2
2s − r2

1s)w̃sχ ]

+ r1sr2sw̃ss − κ(r2
2s − r2

1s)w̃s − χκ[κr1sr2sw̃χ + (r2
2s − r2

1s)w̃sχ ] (A.10)

�w ∼ ε−2w̃χχ − ε−1κw̃χ + w̃ss − χκ2w̃χ . (A.11)

Appendix B. Higher order approximation for the slope

Given that the leading order expressions in the no-slip case are nominally only logarithmically
accurate in ε, we record here, in part for future reference, the first correction term and then
note its implications for the current problem.

Higher order in δ approximations for λ (the slope used in the main part of the paper will
be denoted here by λ0) may be achieved by starting with equation (4.4)

δht + ∇ · (h3∇ · [�h − ε−1�′(h/ε)]) = 0. (B.1)

In inner scales, keeping O(δ) terms, we obtain with h = εg

δṡgχ ∼ (g3(gχχ − �′(g))χ )χ . (B.2)

Integrating yields

δṡ(g − h∞) ∼ g3(gχχ − �′(g))χ , where h∞ ∼ 1. (B.3)

Let g ∼ g0 + δg1, then to leading order in δ we find
1
2g2

0χ = �(g0) − �(1), so that λ0 =
√

2(−�(1)), (B.4)

or, if we set

g0χ = −�(g0), we find λ0 = �(∞). (B.5)

To next order we get

ṡ(g0 − 1) = g3
0(g1χχ − �′′(g0)g1)χ . (B.6)

Integrating this yields

g1χχ − �′′(g0)g1 = ṡ

∫ χ

−∞

g0 − 1

g3
0

dχ = ṡ

∫ ∞

g0

g − 1

g3�(g)
dg (B.7)
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If we denote


(g0) =
∫ ∞

g0

g − 1

g3�(g)
dg, (B.8)

then, making use of (B.4), we obtain the equation

g0χg1χχ − g1g0χχχ = ṡ
(g0)g0χ (B.9)

Integrating once we find

g0χg1χ − g1g0χχ = −ṡ

∫ ∞

χ


(g0)g0χ dχ = ṡ

∫ g0

1

(g) dg. (B.10)

Thus

− λ0g1χ ∼ ṡ
ln(λ0χ)

λ0
+ ṡ

∫ g0

1

 − 1

λ0g
dg as χ → −∞. (B.11)

If we now let λ ∼ λ0 + δλ1, then we find

λ1 = ṡ
ln(λ0) − 1

λ2
0

+
ṡ

λ0

∫ ∞

1

 − 1

λ0g
dg. (B.12)

The most important implication of this in the current context follows from the fact that λ1 is
proportional to ṡ. Because our base state has ṡ = 0, the contributions of such correction terms
to the stability analysis are in consequence significantly less important than they would be in
other contexts. We anticipate that this is reflected in the accuracy of asymptotics illustrated in
figure 9.
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