VOLUME 81, NUMBER 23 PHYSICAL REVIEW LETTERS 7 BCEMBER 1998

Contact Line Stability and “Undercompressive Shocks” in Driven Thin Film Flow
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We present new experimental results for films driven by a thermal gradient with an opposing
gravitational force. When the gravitational effect becomes non-negligible, the advancing front produces
a very large capillary ridge which shows a remarkable tendency to remain stable. This phenomenon can
be explained by new mathematical results for a lubrication model of the experiment. The advancing
front evolves into an “undercompressive” capillary shock structure which is stable to contact line
perturbations, unlike typical capillary ridges in driven film flows. [S0031-9007(98)07868-5]

PACS numbers: 68.15.+e, 03.40.Gc, 47.20.Ma, 68.45.Gd

We consider a film driven by a thermal gradient with length scale for the precursor layer in the model of the next
a counteracting gravitational force. For very thin capil-section.
lary driven films, previous experiments [1,2] show that the To increase the film thickness to the scalel6fum,
Marangoni stress causes a capillary ridge to form and theve tilt the plate at an angle from the vertical. Capillar-
film to finger (see Fig. 1), via a very similar process to thatity (and therefore the curvature of the meniscus between
observed in gravitationally driven films [3]. Earlier experi- the reservoir and the film) still plays a role in the value of
ments [4] for thicker Marangoni films balanced by grav-the film thickness in this range, allowing us to control the
ity, showed that no bump or capillary ridge was presentilm by a geometrical parameter [6], as opposed to increas-
near the contact line and the front was relatively stable. ing the thermal gradient, which would ultimately lead to
We find that there is a rather unusual transition from thenonlinear behavior of the fluid. See Fig. 2 in Ref. [6(a)]
case of thinner films. A very large capillary ridge forms; for a diagram of the apparatus.
however, the ridge continues to broaden as it advances up Our experimental results are quite unexpected: with
the plate. Atthe same time, the speed of the front is sloweincreasingh.. (the thickness of the flat part of the film)
than that predicted in [2]. Despite the large capillary ridgewe observe that the bump becomes more pronounced, but
the contact line remains stable. that the contact line becomes stable. Figure 2 shows the
Using a lubrication model, we show that this observedshape of the entire contact line at the end of the experiment
transition is due to a fundamental change in structure ofor thicker films. The second picture, corresponding to a
the front, from a classical capillary shock (for negligible film height of11 wm, showed no contact line corrugation.
gravity), which is linearly unstable to perturbations, to aHowever, the profile of the film, shown in Fig. 3 via],
double shock structure (for non-negligible gravity) with shows that the film has a rather large pronounced bump.
an “undercompressive (UC) shock” [5], which is linearly Moreover, no stationary state is reached, and the bump
stable to perturbations, as the leading front. The undereontinues to widen with time. In addition, Fig. 4 shows the
compressive structure also manifests itself in larger bumpdiscrepancy between the experimentally measured speed
that continue to broaden, a feature also observed in the exf the front (shown as circles) and the theoretical front
periment. This is the first case where we are aware of a
physical system exhibiting an undercompressive shock as-
sociated with a scalar hyperbolic conservation law.
Experimental results—A liquid film is driven from a
macroscopic reservoir onto a tilted plate by a surface ten-
sion gradient, induced by a constant temperature gradi-
ent externally imposed along the plate. The liquid is a
nonvolatile polydimethylsiloxane (PDMS) from Petrarch,
dynamic viscosityn = 0.0965 Pas, surface tension =
0.0209 Nm~!, densityp = 965 kg/m? (at 25 °C), which
completely wets the substrate. The substrate plate is an
oxidized silicon wafer, first put into contact with PDMS, ,
then cleaned WIFh hexane and n_nsed with methanql beforEIG_ 1. Film thickness oD.6 um (h. — 0.02), surface ten-
use. Thg cl_eanmg_ procedure gives very reproducible SUlion gradientr = 0.18 Pa, a = 90°. Equal-thickness inter-
faces, quite insensitive to contamination due to the remainterence fringes are used to reconstruct thickness profiles, as
ing 7-A-thick monolayer of PDMS. Note that this sets ain Fig. 3.
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FIG. 2. Top: Film thickness o#f um, 7 = 0.19 Pa, a =
35°; the contact line is almost stablé.{ = 0.075). Bottom:
Film thickness ofl1 um, 7 = 0.11 Pa, @« = 20°; the contact

line is stable k. = 0.21). In both cases, the distance betweeneffects balancel’ =

the two vertical bars i85 mm.

speed [2,6] (solid line) as a function of upstream film

height.
The modek—We use a lubrication model with a “depth

averaged” velocity [2,6]
2 qj 2y3
<ﬂ _ pgh Slna>2x N vh=V h’ (1)
27 3n 3n

wherer denote the surface tension gradiemtthe angle
of inclination (from the horizontal) of the plang, the
gravitational constantp, n, andy are as in the section
“Experimental results,” and is along the direction of the
flow, parallel to the plate. The coefficient éf in the
expression forV represents convection of the film due
to surface tension gradient and due to the component

>

To rescale (2), consider length scalés I, and a
corresponding time scale h = Hh,x = %I, andr = T1.
Balancing the competing convective effects of gravity and
Marangoni forces irf (i) givesH = Zsi,f;pg. Setting! to
be the capillary length on which surface tension balances
the driving forces on the left-hand side of (2) gives:
(2‘72;2%)1/3. The time scale is such that all three of these

22 (37ypgsina)'/?. Dropping the
“notation gives the dimensionless equation

hy + (h2 - h3)x _(h3hxxx)x- (3)

In the experiment, there is a front of fluid that connects
to a flat film upstream (to the left in Fig. 3), with thickness
determined by the dynamics of the meniscus. In the
model, we take that film thickness as a given constant
heighth. upstream (as — —). We choose the simplest
boundary condition consistent with complete wetting, that
of a precursor model in which — b > 0 asx — «[7,8].
Moving fronts of nonvanishing velocity have a precursor
film of molecular dimensions [9]. Thus we taketo be
a positive, albeit extremely small, value to avoid the well-
known paradox associated with a moving contact line.

Lax and undercompressive shocksNeglecting, for
the moment, the effects of curvature, (3) reduces to the

Yealar hyperbolic conservation law, + (f(h)), = 0

gravity tangent to the surface. For the range of paramete@heref is the nonconvex flux functioh? — /3. Smooth
considered in these experiments, the component of gravityo) tions are easily computed via the method of character-

normal to the surface had a negligible effect on thegiics: h(x,1) = ho(x — f'(h(x,))1).

dynamics, so we ignore it here.

In addition, there
are solutions with propagating discontinuities (shocks)

We now couple this equation with conservation of mass,

h, + V- (hf/) = 0. To first understand the dynamics of

the front, we ignore until the section “Stability of the front”

the effects of perturbations in the directigntransverse

to the direction of flow and consider solutiohslepending
’thhXXX

only onx andt:
(M) @

where the flux satisfieg(h) = (7h?/2 — sinapgh®/3)/7.
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FIG. 3. Experimental profileX) in the dimensionless units,

at + = 215 with h, = 0.21. The thicknesses are determined
by following the fringes from the relatively smooth profile at
the edge of the wafer, where they are easier to count.

The

h-, x <x9g— st,
h(x’t)={h+, xzxg—st,
(h) — f(hs) @
sty = TEL I,

which correspond to advancing fronts when the effects of
curvature are included. The shock is calmmpressive

theory—Lax shock speed

® cxperiment

theory: UC shock, b=0.005
——— UC shock, b=0.001

——— UC shock, b=0.0001
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dashed line shows the numerical profile of a simulation of (3)

with » = 0.005, h.. = 0.3, taken atr = 210.
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FIG. 4. The speed of the front vs upstream film thicknéss,
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or aLax shockf it satisfies the entropy condition [10] initial condition typically evolves into the capillary Lax
, / shock with the smallest bump. Faég. > he > hy, the

Sihi) <5 < f(h-). () solution always evolves into a double shock structure with
Such shocks are the only admissible ones in ¢he>  a leading undercompressive capillary shock connecting
0 limit of h; + (f(h)), = €h,, [11]. Shocks violating h- = hy to hy+ = b and a trailing capillary Lax shock
condition (5) are calledindercompressivand are known connectingh— = h. to h+ = hy [13]. The speed of
to arise in equations with nonconvex fluxes and combine@ach shock, given by the formulain (4), can be seen graphi-
diffusive and dispersive effects [12]. For nonconvexcally as the slope of the chord connecting the left and
fluxes, compressive shocks connect states on the graph fht states on the graph of the flux functigr(see [5] for
the flux function via a chord that does not cross the graplkexamples). The trailing shock moves with a slower speed
of the flux. Undercompressive shocks, on the other handhan the leading shock. This is necessary in order for the
connect states via a chord that crosses the flux functiortwo to separate. Note also that the advancing undercom-
In the case of a compressive shock, characteristics entpressive shock travels with a slower speed than would a
the shock from both sides, while for an undercompressivsingle Lax shock (if it existed) connecting the statesto
shock, the characteristics enter only on one side. b (see Fig. 5).

The admissibility of a particular shock with leftand right  This slower front speed is the signature of the under-
statesh— andh. is determined by the existence of a trav- compressive shock that we measure in the experiment (see
eling wave solutior,(x — sr) of the full system, in our Fig. 4). The solid dark line is the dimensionless Lax shock
case Eq. (3), connecting the state = lim;_, .. h,(£)to  speeds as a function ofi... Here we assumé is very
the stateh, = lims_. h,(£). We call such a wave ei- small so we approximate by h.. — h%. The undercom-
ther a “capillary Lax shock” or “undercompressive capil- pressive shock speed(b) is shown via horizontal dashed
lary shock” depending on the structure of the discontinuitylines for several values af (0.005, 0.001, and 0.0001).
in the underlying hyperbolic problem. Note that these horizontal lines intersect the Lax shock

We now briefly summarize recent results in [5] on thespeed curve at the value.(b). The thick grey bars de-
existence of capillary shocks for (3). Ifwelet = b <  note, for each value df, the rangéi. < h < h,. Above
1 then we find that (i) fors— small, neaw, there exists a h,, the only possible dynamics is that of a double shock
unigue capillary Lax shock connectirig- to 5. (ii) For  structure with the undercompressive shock as the leading
larger values ofi_ there are two thresholds (b)) and front. The experimental data show that for very thin films
hy(b) so that forh; < h— < h; there exist more than one the front speed is in extremely good agreement with the
capillary Lax shock connecting- tob. Withinthisrange, Lax shock speed from the theory. For thicker films the
there is a special value. € (hy, h,) for which there exists front speed is essentially independent of film thickniess
an infinite number of capillary Lax shocks connecting and is much slower than the Lax shock speed. This is the
to b. (iii) For h— > hy, there are no capillary Lax shocks expected behavior for an undercompressive shock. The
connectingh- to b. (iv) However, there is a special experimental front speeds are even slower than the UC
value, which we denote by, (b), which is typically shock withb = 0.0001, suggesting an experimentathat
significantly larger thar,, for which there exists a single is very small. This is consistent with the idea that ad-
undercompressive capillary shock. The undercompressivweancing fronts see only a precursor thickness of molecular
shock heighth,. is related tok. by the formulah,. = dimensions.

1 — h. — b. On the graph of the flux functioif, the Figure 3 shows the experimental thickness profile of
chord connecting to h. extends upwards to intersect the the film corresponding to the experiment in series 2 with
flux function again at,.. This undercompressive shock the largest film height.. = 0.21. We cannot accurately
travels with the same speed(b) := s(hy, b) = s(h«,b)  compute solutions of (3) with < 1073, but our numerics
as the infinite family of Lax shocks connectitig to b.

Moreover, it is the limiting shape of the infinite family

of Lax shocks connecting. to b. It is interesting to 1.0 ‘ ,
note that the capillary Lax shocks always have a capillary 0.8+ 350 245
ridge or bump at the leading edge of the shock while the _ gl
undercompressive shock has no bump. X Lax shock
The undercompressive capillary shock plays an impor- = 0471
tant role in the dynamics of solutions of Eq. (3). If we 0.2 UC shock
take the initial condition to be a slightly smoothed shock 0.0 : ‘
of the form (4) atr = 0, with h, = b andh_ = h.., the -10 0 10 20
evolution of the solution of (3) depends dramatically on x=st

how h.. compares to the special valus, hy, andiuc.  FiG 5. The numerical profiles(= 0.005, h. = 0.3) at later

FO!’ he < hll we always observe rapid convergence to thajmes 245, 280, 315, and 350. The reference frame moves with
unique capillary Lax shock. Fdr; < h. < hy the jump  the speed = s(hx, b) > s..
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0.02 For perturbation of the form g(x)e?!*/4 we linearize (6)
about the respective traveling wave solution and compute
the largest eigenvalug as a function ofy. We use the
same method as in [7] and the results are shown in Fig. 6.
The curves clearly show that the capillary Lax shocks for
1 smallerh.. are linearly unstable; however, the undercom-
pressive capillary shock, describing the leading front of
. 1.5 the double shock with largér.., is linearly stable. This

q explains the stability of the contact line observed in the
. experiment (see Fig. 2).

FIG. 6. The two upper dashed lines correspond to the (small-

est) capillary Lax sﬁgck foh = hy(b) and b p= 001 (shoﬁt- We thank M. Bren_ner, P.G. de Gennes, and M. Shearer
dashed line) and = 0.1 (long-dashed line). The range of for useful conversations. A.B. and A.M. are supported
positive 8 in both plots indicates a long-wave instability. The by a PECASE award administered by the U.S. Office of

lower curves (dot-dashed liné: = 0.1; solid line: 5 = 0.01) ~ Naval Research. X.F. is supported by CNRS BDI Grant
correspond to the undercompressive front of the double shockyg 1000881.

connectingh— = hy.(b) to hy = b.
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