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Contact Line Stability and “Undercompressive Shocks” in Driven Thin Film Flow
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We present new experimental results for films driven by a thermal gradient with an opposing
gravitational force. When the gravitational effect becomes non-negligible, the advancing front produces
a very large capillary ridge which shows a remarkable tendency to remain stable. This phenomenon can
be explained by new mathematical results for a lubrication model of the experiment. The advancing
front evolves into an “undercompressive” capillary shock structure which is stable to contact line
perturbations, unlike typical capillary ridges in driven film flows. [S0031-9007(98)07868-5]

PACS numbers: 68.15.+e, 03.40.Gc, 47.20.Ma, 68.45.Gd
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We consider a film driven by a thermal gradient wit
a counteracting gravitational force. For very thin capi
lary driven films, previous experiments [1,2] show that th
Marangoni stress causes a capillary ridge to form and
film to finger (see Fig. 1), via a very similar process to th
observed in gravitationally driven films [3]. Earlier experi
ments [4] for thicker Marangoni films balanced by grav
ity, showed that no bump or capillary ridge was prese
near the contact line and the front was relatively stable.

We find that there is a rather unusual transition from th
case of thinner films. A very large capillary ridge forms
however, the ridge continues to broaden as it advances
the plate. At the same time, the speed of the front is slow
than that predicted in [2]. Despite the large capillary ridg
the contact line remains stable.

Using a lubrication model, we show that this observe
transition is due to a fundamental change in structure
the front, from a classical capillary shock (for negligibl
gravity), which is linearly unstable to perturbations, to
double shock structure (for non-negligible gravity) wit
an “undercompressive (UC) shock” [5], which is linearl
stable to perturbations, as the leading front. The und
compressive structure also manifests itself in larger bum
that continue to broaden, a feature also observed in the
periment. This is the first case where we are aware o
physical system exhibiting an undercompressive shock
sociated with a scalar hyperbolic conservation law.

Experimental results.—A liquid film is driven from a
macroscopic reservoir onto a tilted plate by a surface te
sion gradient, induced by a constant temperature gra
ent externally imposed along the plate. The liquid is
nonvolatile polydimethylsiloxane (PDMS) from Petrarch
dynamic viscosityh ­ 0.0965 Pa s, surface tensiong ­
0.0209 N m21, densityr ­ 965 kgym3 (at 25 ±C), which
completely wets the substrate. The substrate plate is
oxidized silicon wafer, first put into contact with PDMS
then cleaned with hexane and rinsed with methanol befo
use. The cleaning procedure gives very reproducible s
faces, quite insensitive to contamination due to the rema
ing 7-Å-thick monolayer of PDMS. Note that this sets
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length scale for the precursor layer in the model of the n
section.

To increase the film thickness to the scale of10 mm,
we tilt the plate at an angle from the vertical. Capilla
ity (and therefore the curvature of the meniscus betwe
the reservoir and the film) still plays a role in the value
the film thickness in this range, allowing us to control th
film by a geometrical parameter [6], as opposed to incre
ing the thermal gradient, which would ultimately lead
nonlinear behavior of the fluid. See Fig. 2 in Ref. [6(a
for a diagram of the apparatus.

Our experimental results are quite unexpected: w
increasingh` (the thickness of the flat part of the film
we observe that the bump becomes more pronounced,
that the contact line becomes stable. Figure 2 shows
shape of the entire contact line at the end of the experim
for thicker films. The second picture, corresponding to
film height of11 mm, showed no contact line corrugation
However, the profile of the film, shown in Fig. 3 via (1),
shows that the film has a rather large pronounced bum
Moreover, no stationary state is reached, and the bu
continues to widen with time. In addition, Fig. 4 shows th
discrepancy between the experimentally measured sp
of the front (shown as circles) and the theoretical fro

FIG. 1. Film thickness of0.6 mm (h` ­ 0.02), surface ten-
sion gradientt ­ 0.18 Pa, a ­ 90±. Equal-thickness inter-
ference fringes are used to reconstruct thickness profiles
in Fig. 3.
© 1998 The American Physical Society 5169
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FIG. 2. Top: Film thickness of4 mm, t ­ 0.19 Pa, a ­
35±; the contact line is almost stable (h` ­ 0.075). Bottom:
Film thickness of11 mm, t ­ 0.11 Pa, a ­ 20±; the contact
line is stable (h` ­ 0.21). In both cases, the distance betwe
the two vertical bars is25 mm.

speed [2,6] (solid line) as a function of upstream fil
height.

The model.—We use a lubrication model with a “dept
averaged” velocity [2,6]

$V ­

µ
th
2h

2
rgh2 sina

3h

∂
$ex 1

gh2=3h
3h

, (1)

wheret denote the surface tension gradient,a the angle
of inclination (from the horizontal) of the plane,g the
gravitational constant,r, h, and g are as in the section
“Experimental results,” andx is along the direction of the
flow, parallel to the plate. The coefficient of$ex in the
expression for $V represents convection of the film du
to surface tension gradient and due to the componen
gravity tangent to the surface. For the range of parame
considered in these experiments, the component of gra
normal to the surface had a negligible effect on t
dynamics, so we ignore it here.

We now couple this equation with conservation of ma
ht 1 = ? sh $V d ­ 0. To first understand the dynamics o
the front, we ignore until the section “Stability of the fron
the effects of perturbations in the directiony transverse
to the direction of flow and consider solutionsh depending
only onx andt:

ht 1 sss fshddddx ­ 2

µ
gh3hxxx

3h

∂
x

, (2)

where the flux satisfiesfshd ­ sth2y2 2 sinargh3y3dyh.
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FIG. 3. Experimental profile (1) in the dimensionless units
at t ­ 215 with h` ­ 0.21. The thicknesses are determine
by following the fringes from the relatively smooth profile a
the edge of the wafer, where they are easier to count.
dashed line shows the numerical profile of a simulation of
with b ­ 0.005, h` ­ 0.3, taken att ­ 210.
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To rescale (2), consider length scalesH, l, and a
corresponding time scaleT : h ­ Hĥ, x ­ x̂l, andt ­ Tt̂.
Balancing the competing convective effects of gravity an
Marangoni forces infshd givesH ­

3t

2 sinarg . Settingl to
be the capillary length on which surface tension balance
the driving forces on the left-hand side of (2) givesl ­
s 3gt

2r2g2 sin2 a d1y3. The time scale is such that all three of these

effects balance,T ­ 2 h

t2 s 4
9 tgrg sinad1y3. Dropping the

ˆnotation gives the dimensionless equation

ht 1 sh2 2 h3dx ­ 2sh3hxxxdx . (3)

In the experiment, there is a front of fluid that connects
to a flat film upstream (to the left in Fig. 3), with thickness
determined by the dynamics of the meniscus. In th
model, we take that film thickness as a given constan
heighth` upstream (asx ! 2`). We choose the simplest
boundary condition consistent with complete wetting, tha
of a precursor model in whichh ! b . 0 asx ! ` [7,8].
Moving fronts of nonvanishing velocity have a precurso
film of molecular dimensions [9]. Thus we takeb to be
a positive, albeit extremely small, value to avoid the well-
known paradox associated with a moving contact line.

Lax and undercompressive shocks.—Neglecting, for
the moment, the effects of curvature, (3) reduces to th
scalar hyperbolic conservation lawht 1 sss fshddddx ­ 0
wheref is the nonconvex flux functionh2 2 h3. Smooth
solutions are easily computed via the method of characte
istics: hsx, td ­ h0sx 2 f 0ssshsx, tddddtd. In addition, there
are solutions with propagating discontinuities (shocks)

hsx, td ­

Ω
h2, x , x0 2 st ,
h1, x $ x0 2 st ,

ssh2, h1d ­
fsh2d 2 fsh1d

h2 2 h1

,

(4)

which correspond to advancing fronts when the effects o
curvature are included. The shock is calledcompressive

FIG. 4. The speed of the front vs upstream film thickness,h`.
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or aLax shockif it satisfies the entropy condition [10]

f 0sh1d , s , f 0sh2d . (5)

Such shocks are the only admissible ones in thee !
0 limit of ht 1 sss fshddddx ­ ehxx [11]. Shocks violating
condition (5) are calledundercompressiveand are known
to arise in equations with nonconvex fluxes and combin
diffusive and dispersive effects [12]. For nonconve
fluxes, compressive shocks connect states on the grap
the flux function via a chord that does not cross the gra
of the flux. Undercompressive shocks, on the other ha
connect states via a chord that crosses the flux functi
In the case of a compressive shock, characteristics e
the shock from both sides, while for an undercompress
shock, the characteristics enter only on one side.

The admissibility of a particular shock with left and righ
statesh2 andh1 is determined by the existence of a trav
eling wave solutionhtrsx 2 std of the full system, in our
case Eq. (3), connecting the stateh2 ­ limj!2` htrsjd to
the stateh1 ­ limj!` htr sjd. We call such a wave ei-
ther a “capillary Lax shock” or “undercompressive capi
lary shock” depending on the structure of the discontinu
in the underlying hyperbolic problem.

We now briefly summarize recent results in [5] on th
existence of capillary shocks for (3). If we leth1 ­ b ø
1 then we find that (i) forh2 small, nearb, there exists a
unique capillary Lax shock connectingh2 to b. (ii) For
larger values ofh2 there are two thresholdsh1sbd and
h2sbd so that forh1 , h2 , h2 there exist more than one
capillary Lax shock connectingh2 to b. Within this range,
there is a special valuehp [ sh1, h2d for which there exists
an infinite number of capillary Lax shocks connectinghp

to b. (iii) For h2 . h2, there are no capillary Lax shocks
connectingh2 to b. (iv) However, there is a specia
value, which we denote byhucsbd, which is typically
significantly larger thanh2, for which there exists a single
undercompressive capillary shock. The undercompress
shock heighthuc is related tohp by the formulahuc ­
1 2 hp 2 b. On the graph of the flux functionf, the
chord connectingb to hp extends upwards to intersect th
flux function again athuc. This undercompressive shoc
travels with the same speedspsbd :­ sshuc, bd ­ sshp, bd
as the infinite family of Lax shocks connectinghp to b.
Moreover, it is the limiting shape of the infinite family
of Lax shocks connectinghp to b. It is interesting to
note that the capillary Lax shocks always have a capilla
ridge or bump at the leading edge of the shock while t
undercompressive shock has no bump.

The undercompressive capillary shock plays an imp
tant role in the dynamics of solutions of Eq. (3). If w
take the initial condition to be a slightly smoothed shoc
of the form (4) att ­ 0, with h1 ­ b andh2 ­ h`, the
evolution of the solution of (3) depends dramatically o
how h` compares to the special valuesh1, h2, and huc.
For h` , h1 we always observe rapid convergence to t
unique capillary Lax shock. Forh1 , h` , h2 the jump
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initial condition typically evolves into the capillary Lax
shock with the smallest bump. Forhuc . h` . h2, the
solution always evolves into a double shock structure w
a leading undercompressive capillary shock connecti
h2 ­ huc to h1 ­ b and a trailing capillary Lax shock
connectingh2 ­ h` to h1 ­ huc [13]. The speeds of
each shock, given by the formula in (4), can be seen grap
cally as the slope of the chord connecting the left an
right states on the graph of the flux functionf (see [5] for
examples). The trailing shock moves with a slower spe
than the leading shock. This is necessary in order for t
two to separate. Note also that the advancing underco
pressive shock travels with a slower speed than would
single Lax shock (if it existed) connecting the statesh` to
b (see Fig. 5).

This slower front speed is the signature of the unde
compressive shock that we measure in the experiment (
Fig. 4). The solid dark line is the dimensionless Lax sho
speeds as a function ofh`. Here we assumeb is very
small so we approximates by h` 2 h2

`. The undercom-
pressive shock speedspsbd is shown via horizontal dashed
lines for several values ofb (0.005, 0.001, and 0.0001).
Note that these horizontal lines intersect the Lax sho
speed curve at the valuehpsbd. The thick grey bars de-
note, for each value ofb, the rangehp , h , h2. Above
h2, the only possible dynamics is that of a double sho
structure with the undercompressive shock as the lead
front. The experimental data show that for very thin film
the front speed is in extremely good agreement with t
Lax shock speed from the theory. For thicker films th
front speed is essentially independent of film thicknessh`,
and is much slower than the Lax shock speed. This is
expected behavior for an undercompressive shock. T
experimental front speeds are even slower than the U
shock withb ­ 0.0001, suggesting an experimentalb that
is very small. This is consistent with the idea that ad
vancing fronts see only a precursor thickness of molecu
dimensions.

Figure 3 shows the experimental thickness profile
the film corresponding to the experiment in series 2 wi
the largest film heighth` ­ 0.21. We cannot accurately
compute solutions of (3) withb , 1023, but our numerics
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FIG. 5. The numerical profiles (b ­ 0.005, h` ­ 0.3) at later
times 245, 280, 315, and 350. The reference frame moves w
the speeds ­ ssh`, bd . sp.
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FIG. 6. The two upper dashed lines correspond to the (sma
est) capillary Lax shock forh2 ­ hpsbd and b ­ 0.01 (short-
dashed line) andb ­ 0.1 (long-dashed line). The range of
positiveb in both plots indicates a long-wave instability. The
lower curves (dot-dashed line:b ­ 0.1; solid line: b ­ 0.01)
correspond to the undercompressive front of the double shoc
connectingh2 ­ hucsbd to h1 ­ b.

indicate that the shape of the separating fronts are rath
insensitive to the particular choice ofb. The time scale
of the separation of the shocks depends on the differenc
in the front speeds which is (to leading order) determine
by h` 2 hpsbd. In the experiment, Fig. 4 indicatesh` 2

hpsbd , 0.11; to obtain a similar time scale of separation
with a different choice ofb, for example,b ­ 0.005, we
increaseh` to the value0.3. The simulation of (3) starts
with the jump initial condition (4) att ­ 0. The numerical
profile att ­ 210 is shown in Fig. 3 as a dashed line; the
shape is almost identical to the profile in the experimen
at roughly the same dimensionless time. If we compu
past this time (see Fig. 5), the profile separates clearly in
a leading undercompressive shock, moving with speedsp,
and a trailing Lax shock, moving with speedsshuc, h`d.
We expect that future experiments could observe furth
separation of the fronts as shown in Fig. 5.

Stability of the front.—Linear stability of the front for
very thin films and very thick films was considered in [14]
For intermediate thickness films, we compare the stabili
of the Lax shock profiles forh` nearhpsbd and contrast
this to the stability of the leading front (UC shock) in the
double shock structure for slightly thicker films.

To study stability, we consider perturbations of the fron
as a solution of the two dimensional model

ht 1 sss fshddddx ­ 2= ? sh3=3hd . (6)
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For perturbation of the formdgsxdebt1iqy we linearize (6)
about the respective traveling wave solution and comp
the largest eigenvalueb as a function ofq. We use the
same method as in [7] and the results are shown in Fig
The curves clearly show that the capillary Lax shocks f
smallerh` are linearly unstable; however, the undercom
pressive capillary shock, describing the leading front
the double shock with largerh`, is linearly stable. This
explains the stability of the contact line observed in th
experiment (see Fig. 2).
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