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Phase field models frequently provide insight into phase transitions and are robust numerical tools to

solve free boundary problems corresponding to the motion of interfaces. A body of prior literature

suggests that interface motion via surface diffusion is the long-time, sharp interface limit of micro-

scopic phase field models such as the Cahn-Hilliard equation with a degenerate mobility function.

Contrary to this conventional wisdom, we show that the long-time behaviour of degenerate Cahn-

Hilliard equation with a polynomial free energy undergoes coarsening, reflecting the presence of bulk

diffusion, rather than pure surface diffusion. This reveals an important limitation of phase field mod-

els that are frequently used to model surface diffusion. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4929696]

A key problem in modelling phase transitions in materi-

als lies in linking macroscopic interfacial motion and meso-

scopic dynamics. A common approach is phase field models,

which replace a sharp interface with order parameters that

are continuous across the interface. Phase field models can

be constructed from systematic coarse-graining of the micro-

scopic Hamiltonian and are often written as a gradient mini-

misation of a certain microscopic free energy functional.1–3

As such, they provide the crucial link between microscopic

interactions and the kinetics of phase separation and pattern-

formation.

Mesoscopic phase field descriptions have been widely

used in the literature as their numerical approximation is less

complicated than the approximation of macroscopic descrip-

tions based on sharp interfaces. By using a continuous order

parameter field, phase field approaches are versatile enough

to capture topological changes and replace the numerically

challenging task of interface tracking with integration of a

time-dependent partial differential equation. Therefore, the

phase field formalism is increasingly used as a numerical

approximation for a wider class of free boundary problems

than what the free energy describes microscopically.4–6

A particularly noteworthy class of free boundary prob-

lem is when the velocity of the interface vn is proportional to

the surface Laplacian of the mean curvature j and

vn ¼MDsj; (1)

where M is the mobility. Equation (1) is known as the sur-

face diffusion flow and has been used as a model for many

complex processes such as electromigration in metals,7 het-

eroepitaxial growth,8 and more recently solid-solid

dewetting.9

The Cahn-Hilliard equation with degenerate mobility is

the commonly used phase field model to approximate surface

diffusion (e.g., Refs. 7–14), where the order parameter u is

conserved and satisfies (in dimensionless units)

ut ¼ �r � j; j ¼ ��MðuÞrl; (2a)

�l ¼ ��2r2uþ f 0ðuÞ; (2b)

f uð Þ ¼ 1

4
1� u2ð Þ2; M uð Þ ¼ 1� u2; (2c)

where M(u) is the mobility function; j is the flux; l is the

chemical potential; � is the interfacial tension which deter-

mines the width of the interface; and f(u) is the bulk free

energy. Throughout the paper, we will assume the no-flux

condition n � j ¼ 0, and the variational Neumann condition

n � ru ¼ 0 on the boundaries of the solution domain. The

two pure phases are denoted by u ¼ 61, and the interface is

located at the contour u¼ 0.

The precise form of the mobility is usually chosen on

thermodynamic grounds.15,16 For the lattice-gas entropy

sðuÞ ¼ u log uþ ð1� uÞ logð1� uÞ, the Einstein relation

stipulates that the mobility is related to the entropy function

s(u) via MðuÞ ¼ ð@2s=@u2Þ�1 ¼ 1� u2. This motivates the

choice of mobility in (2).

More elaborate multiphase-field models have been

constructed in the literature to describe phase transition

when multiple phases coexist17,18 as is the case for many

technologically important alloys. In addition, the inverse

problem of relating physical parameters of the phases to

the form of the free energy and the interfacial tension is

non-trivial.19,20 Here, for simplicity, we restrict ourselves

to considering a binary system with only two phases and

consider a simple quartic free energy; as is seen in the anal-

ysis below, the fact the coarsening occurs in the sharp inter-

face limit is a generic feature of the system (2) independent

of its parameterisation.

We are interested in the long-time behaviour when the

initial mixture has separated into regions where u is either

close to 1 or to �1, except for regions of width Oð�Þ close to

the interface over which u transitions between these two

regions. Heuristically, the width of this interface layer

decreases as �! 0. One may think that if the mobility func-

tion is degenerate and vanishes at the pure phases, the flux

normal to the interface is suppressed and therefore only sur-

face diffusion via mass flux tangential to the interface can

occur. However, this heuristic argument neglects the fact that

the gradient of the interface diverges as �! 0. Therefore,
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whether the degenerate mobility function is sufficient to sup-

press the normal mass flux at leading order is unclear.21,22

The key result of this paper is the presence of a nonlin-

ear bulk diffusion term at leading order for the interface ve-

locity, and the correct sharp interface limit that describes the

quasistationary evolution of the interface f, located at u¼ 0,

is given by

r � ðlrlÞ ¼ 0; in X�; (3a)

l ¼ 2

3
j; on f; (3b)

vn ¼
2

3
Dsjþ

1

4
lrnl on f; (3c)

rnl ¼ 0; on @Xext; (3d)

where vn is the normal velocity, and the definitions of X�
and f are given in Figure 1. The possibility of bulk diffusion

was noted in earlier works21,23 and analysed recently by Dai

and Du.24 However, in Ref. 24, the analysis was done on the

(unphysical) solution branch with juj > 1 in some region.

Our analysis below considers the physical branch of solution

where juj < 1 everywhere and derives the limiting model as

�! 0. It can be shown using rigorous mathematical analysis

that the physical branch with juj < 1 everywhere exists for

all parameter values.25

To begin our analysis, we drop the time derivative from

(2). Rewriting the Laplacian in polar coordinates, and resolv-

ing the boundary layer near the interface by noting that the

interface is Oð�Þ thick, we obtain the leading order solution

u0 rð Þ ¼ tanh
r � r0

�

� �
; l ¼ ljf: (4)

Here, r is the radial coordinate with respect to the centre of

the osculating circle to the interface, r0 is the position of the

interface in these coordinates, and ljf is a constant. Equation

(4) reveals how the interface is being represented as a contin-

uous, albeit thin, order parameter profile of width � around

r¼ r0. A key physical intuition is that the relaxation of the

local order parameter profile to (4) is rapid (as it is driven by

local rearrangement of particles), and the late stage dynamics

is quasi-static and determined by the movement of the inter-

face, i.e., change in r0.

To put this intuition onto firmer footing, we consider the

chemical potential l away from the interface. There, the sys-

tem is almost a pure phase (say u ¼ �1þ �~u; l ¼ �~l, with

~u; ~l ¼ Oð1Þ), and the spatial variation of u is negligible so

that the Laplacian can be neglected. Expanding Equation

(2b) in powers �, the leading order term is given by

~l ¼ f 00ð�1Þ~u; (5)

and substituting (5) into (2a), we obtain

~ut ¼ M0 �1ð Þr � ~ur~lð Þ ¼ M0 �1ð Þ
f 00 �1ð Þ r � ~lr~lð Þ: (6)

Further, we use the aforementioned quasi-static approxima-

tion and assume that ~ut is small. Thus, to leading order,

r � ð~lr~lÞ ¼ 0: (7)

The chemical potential at the interface can be obtained

by multiplying (2a) by @ru, and integrating both sides.

Assuming that the azimuthal variations in u are asymptoti-

cally smaller than the radial variation, we have

ðr0þg

r0�g
�l@rudr ¼

ðr0þg

r0�g
� �

2

r
@r r@ruð Þ þ f 0 uð Þ

� �
@rudr; (8)

where g is an intermediate lengthscale bridging the interface

of width � and the macroscopic lengthscale; Kaplun’s exten-

sion theorem in asymptotic theory provides a rigorous justifi-

cation of the existence of such a lengthscale under mild

assumptions.26 Close to the interface, u and l can be

approximated by (4). Substituting (4) and g � � logð1=�Þ into

(8) and taking �! 0þ, we obtain

ljf ¼
2

3
j; (9)

where j ¼ 1=r0 is the curvature of the interface. The above

choice of g satisfies both the requirement that (4) is valid

near the interface (we have assumed l to be constant over

short radial distances r; over O(1) length scales, this is not,

in general, the case) and the integrals converge to (9) (for

g� �). From u0 in (4), it can be readily seen that we have

u0 � 61þ Oð�aÞ with some positive a for the above choice

of g, and this gives (9) in the limit �! 0þ as claimed.

In the quasi-static approximation, we neglect time de-

pendence except for the slow motion of the interface. To

obtain the interface velocity, we focus on the boundary layer

region and move into a Lagrangian frame by making the

transformation ut 7!ut � ðv � rÞu. Now, noting that the nor-

mal velocity is much larger than the lateral velocity, we have

FIG. 1. Illustration of the asymptotic structure of the degenerate mobility

case. The domain Xext is split into interfaces f where u¼ 0 which enclose the

solid domains Xþ where u> 0 (coloured red), and the region X� with vapor

(colored green) where u< 0. The normal n to the interfaces points out of Xþ.
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ðv � rÞu � �2vn@ru, where �2vn is the normal velocity, scaled

in anticipation of the order of the right-hand side which will

turn out to be Oð�2Þ. Equation (2a) becomes

��2vn@ru ¼ �@rðj � nÞ � @sðj � tÞ; (10)

where s denotes the coordinate tangent to the interface, and

n and t are the (outward pointing) unit normal and the unit

tangent vector, respectively. Close to the interface, the tan-

gential flux is given by j � t ¼ ��MðuÞ@sl ¼ ��MðuÞ@sljf.
Thus, again substituting (4) for u, and integrating over the

interface, we arrive at

2�2vn ¼ � j � n½ �r0þg
r0�gþ

4

3
�2@ssj: (11)

Now, for �� g� 1, we obtain

j � njr0þg ¼ ��M uð Þ@rl ¼ ��2 M0 �1ð Þ
f 00 �1ð Þ l@rlþ O �3ð Þ;

and j � njr0�g ¼ 0 as the system reaches the pure phase u¼ 1

deep in Xþ. Therefore, all in all, we obtain (3c), where we

have identified @ss with the surface Laplacian Ds. Equation

(3c) shows that the interface velocity in the sharp interface

model has two contributions: one from surface diffusion,

Equation (1), which is local to the interface, and another con-

tribution from nonlinear bulk diffusion which satisfies a

porous-medium Equation (3a). Unlike pure surface diffusion,

the mass flux arising from bulk diffusion couples disjoint

solid domains with each other. This results in coarsening

where larger solid domains grow at the expense of smaller

ones, which cannot happen for pure surface diffusion.

Moreover, for non-circular interfaces, the contribution from

surface and bulk diffusion enters the interface evolution to

the same order, i.e., the effect of the latter does not become

negligible compared to the former even when letting �! 0.

To test this prediction of our analysis, we consider the

relaxation of an azimuthal perturbation to a radially symmet-

ric stationary state with radius r0 and hence curvature

j ¼ 1=r0. For azimuthal perturbations proportional to

cos mh, the pure solid diffusion model (1) predicts an expo-

nential decay rate

r ¼ � 2

3
j4m2ðm2 � 1Þ: (12)

In contrast, the decay rate in the porous medium model (3) is

given by

r ¼ �j4 2

3
m2ðm2 � 1Þ þ 1

9
mðm2 � 1Þtanh m log jð Þ

� �
: (13)

Table I shows the decay rate numerically obtained by

solving the phase field model, Equations (2). It shows how

the decay rate of the azimuthal perturbation to the axisym-

metric base state tends to the linearised sharp interface

model with the contribution from nonlinear bulk diffusion,

rather than to the one for pure surface diffusion.

Our analysis only applies to free energy functions f for

which f 0ð61Þ ¼ 0 and f 00ð61Þ > 0 at the minima u ¼ 61.

Indeed, according to the asymptotic analysis in Ref. 27, the

double obstacle free energy

fdoðuÞ ¼
1� u2 if juj < 1

1 if juj 	 1;

�

gives rise to pure surface diffusion flow for MðuÞ ¼ 1� u2 in

the sharp interface limit (�! 0), and also if the logarithmic

free energy f ðuÞ ¼ �u2 þ �aðu log uþ ð1� uÞ logð1� uÞÞ
with a > 0 is used instead.

In conclusion, our analysis establishes that phase field

models for pure surface diffusion cannot be realised using

the Cahn-Hilliard equation with the degenerate mobility and

Ginzburg-Landau free energy as in (2), as was repeatedly

assumed in the literature.9,10,13,14 A nonlinear bulk diffusion

term appears to leading order of the sharp interface limit,

hence affecting the coarsening behaviour on the same time

scale as surface diffusion. In particular, it allows, on this

time scale, disjoint interfaces to coarsen and cannot be sup-

pressed by reducing �.
We note that the derivation presented in this work could

be made mathematically robust via matched asymptotic anal-

ysis. Such an approach was applied to analyse the Cahn-

Hilliard equation with constant mobility.28,29 Extending the

method of matched asymptotics to model (2) with a degener-

ate mobility will be the subject of a subsequent publication.

The heuristic approach presented here, however, reveals

clearly the salient physics involved in the sharp interface

limit.
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