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SHARP-INTERFACE LIMITS OF THE CAHN–HILLIARD
EQUATION WITH DEGENERATE MOBILITY∗

ALPHA ALBERT LEE† , ANDREAS MÜNCH‡, AND ENDRE SÜLI‡

Abstract. In this work, sharp-interface limits for the degenerate Cahn–Hilliard equation with
a polynomial double-well free energy and a mobility that vanishes at the minima of the double well
are derived. For the choice of a quadratic mobility, the leading order sharp-interface motion is not
governed by pure surface diffusion, as has been previously claimed in the literature, but contains
a contribution from nonlinear, porous-medium-type bulk diffusion at the same order. Our analysis
reveals that there are two subcases: One, where the solution for the order parameter is bounded
between the minima (proven to exist for the first mobility by Elliott and Garcke [SIAM J. Math.
Anal., 27 (1996), pp. 404–423]), and one where it converges to the classical stationary solution
of the Cahn–Hilliard equation. Consistent treatment of the bulk diffusion requires the matching
of exponentially large and small terms in combination with multiple inner layers. Moreover, the
leading order sharp-interface motion depends sensitively on the choice of mobility. The asymptotic
analysis shows that, for example, with a biquadratic mobility, the leading order sharp-interface
motion is driven only by surface diffusion. The sharp-interface models are corroborated by comparing
relaxation rates of perturbations to a radially symmetric stationary state with those obtained by the
phase field model.

Key words. Cahn–Hilliard equation, degenerate mobility, sharp-interface limit, surface diffu-
sion, matched asymptotics, singular perturbation methods
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1. Introduction. Phase field models are a common framework to describe the
mesoscale kinetics of phase separation and pattern-forming processes [50, 22]. Since
phase field models replace a sharp-interface by a diffuse order parameter profile, they
avoid numerical interface tracking, and are versatile enough to capture topological
changes. Their use as a numerical tool to approximate a specific free boundary prob-
lem requires in the first instance careful consideration of their asymptotic long-time
sharp-interface limits.

In this paper, we will mainly focus on the Cahn–Hilliard equation for a single
conserved order parameter u = u(x, t),

(1.1a) ut = −∇ · j, j = −M(u)∇μ, μ = −ε2∇2u+ f ′(u),

with a double-well potential

f(u) = (1− u2)2/2(1.1b)

and the degenerate, quadratic mobility

M(u) = (1− u2)+,(1.1c)
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434 ALPHA ALBERT LEE, ANDREAS MÜNCH, AND ENDRE SÜLI

on a bounded two-dimensional domain Ω with boundary conditions

∇u · n = 0, j · n = 0(1.1d)

at ∂Ω, and, moreover, on a modification of this problem, where a free boundary is
introduced, at u = 1. The domain is split along the free boundary and only the part
which contains the interface (identified with u = 0) is investigated. The precise speci-
fication of this second problem and its motivation require some preliminary discussion
and will therefore be given in the next section. Here, (·)+ is the positive part of the
quantity in the brackets, x represents the two-dimensional spatial coordinates, t is
the time, μ the chemical potential, j the flux, and n the outward pointing normal
to ∂Ω. Boldface characters generally represent two-dimensional vectors. Both the
potential and the mobility are defined for all u. The mobility is continuous but not
differentiable at u = ±1.

The case of a Cahn–Hilliard equation with a constant mobility has been inten-
sively discussed in the literature. In particular, the sharp-interface limit ε → 0 was
determined by Pego [49], and subsequently proven rigorously by Alikakos, Bates, and
Chen [3]. On a long time scale, t = O(ε−1), the result is the Mullins–Sekerka problem
[44]. In particular, the motion of the interface between the two phases is driven by
flux from bulk diffusion.

In contrast, Cahn–Hilliard equations with degenerate mobility are commonly ex-
pected to approximate interface motion by surface diffusion [18, 56] on the time scale
t = O(ε−2), where the interface velocity vn is proportional to the surface Laplacian
Δs of the interface curvature κ, as in Mullins’ paper on thermal grooving [43], that
is,

(1.2) vn ∝ Δsκ.

We note that the surface Laplacian is equal to ∂ssκ in two space dimensions, where
s is the arc length. In fact, for the case of degenerate mobility M(u) = 1 − u2 and
either the logarithmic free energy

f(u) =
1

2
θ [(1 + u) ln(1 + u) + (1− u) ln(1− u)] +

1

2
(1− u2),

with temperature θ = O(εα), or the double obstacle potential

f(u) = 1− u2 for |u| ≤ 1, f(u) = ∞ otherwise,

Cahn, Elliott, and Novick-Cohen [19] showed via asymptotic expansions that the
sharp-interface limit is indeed interface motion by surface diffusion (1.2).

Although the logarithmic potential and the double obstacle potential as its deep
quench limit are well motivated, in particular for binary alloys, [17, 18, 56, 20, 30,
35, 51, 12], other combinations of potentials and mobility have been used in the
literature as a basis for numerical approaches to surface diffusion [21]. Those models
are often employed in more complex situations with additional physical effects, such
as the electromigration in metals [42], heteroepitaxial growth [52], anisotropic fields
[57, 58], phase separation of polymer mixtures [63, 61], and more recently in solid-solid
dewetting [33] and coupled fluid flows [2, 55, 1]. In those models, a smooth polynomial
double-well free energy is used in combination with the mobility M(u) = 1−u2 or the
degenerate biquadratic mobility M(u) = (1− u2)2 for |u| ≤ 1. A smooth free energy
is numerically more convenient to implement, especially in a multiphyscial model, as
it avoids the singularity present in either the logarithmic or double obstacle potential.
Authors typically attempt to justify their choice of mobility and free energy by using
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CAHN–HILLIARD EQUATION WITH DEGENERATE MOBILITY 435

techniques from matched asymptotic analysis to obtain the interface motion (1.2) for
their model in the sharp-interface limit.

Interestingly, Gugenberger, Spatschek, and Kassner [32] recently revisited some
of these models and pointed out an apparent inconsistency that appears in the asymp-
totic derivations except when the interface is flat. Other evidence suggests that the
inconsistency may not be a mere technicality but that some bulk diffusion is present
and enters the interfacial mass flux at the same order as surface diffusion. This was
observed, for example, by Bray and Emmott [15] when considering the coarsening
rates for dilute mixtures, and by Dai and Du [23] where the mobility is degenerate
on one but is constant on the other side of the interface; the papers by Glasner [31]
and Lu et al. [41] also use a one-sided degenerate mobility but consider a time regime
where all contributions from the side with the degeneracy are dominated by bulk dif-
fusion from the other. In fact, an early publication by Cahn and Taylor [18] remarked
that using a biquadratic potential might not drive the order parameter close enough
towards ±1 to sufficiently suppress bulk diffusion, citing unpublished numerical re-
sults. Diffuse interface models for binary fluids with a double-well potential and a
quadratic mobility M(u) = 1 − u2 or M(u) = (1 − u2)+ are investigated in [1, 55].
However, in both studies, the leading order expressions for the interface motion do
not contain bulk diffusion contributions.

In this paper, we aim to resolve the apparent conundrum in the literature, and
revisit the sharp-interface limit for (1.1); for a brief heuristic derivation of our asymp-
totic results, see Lee et al. [40]. In addition to the outer regions and the usual inner
region located at the sharp-interface, our matched asymptotic analysis introduces
two additional inner layers: One at the additional free boundary at u = 1 that is
motivated in the next section, and another between the conventional inner and outer
region which is needed in particular to match the fluxes. Moreover, the matching
between these inner layers is slightly unusual as it requires the correct treatment of
exponential terms. We will obtain a sharp-interface model where the interface motion
is driven by surface diffusion, i.e., the surface Laplacian, and a flux contribution due
to nonlinear bulk diffusion either from one or both sides of the interface, depending
on the nature of the solutions for u in the outer regime. The matched asymptotic
analysis is rather subtle, and involves the matching of exponentially large and small
terms and multiple inner layers.

The paper is organized as follows: Section 2 approximates solutions of (1.1) which
satisfy |u| ≤ 1; section 3 considers the asymptotic structure of the radially symmetric
stationary state, which demonstrates the matched asymptotic expansion and expo-
nential matching technique in a simpler setting; section 4 returns to the general two-
dimensional time-dependent problem; section 5 briefly discusses the sharp-interface
limit for a class of solutions with the mobility M(u) = |1 − u2|, where |u| ≤ 1 is
not satisfied, and for the Cahn–Hilliard model with a biquadratic degenerate mobility
M(u) = ((1 − u2)+)

2; section 6 summarizes and concludes the work.

2. Preliminaries. In this paper, we are interested in the behavior of solutions
to (1.1a) describing a system that has separated into regions where u is close to ±1,
except for inner layers of width ε between them, and evolve on the typical time for
surface diffusion, t = O(ε−2). We thus rescale time via τ = ε2t, so that the Cahn–
Hilliard equation reads

(2.1a) ε2∂τu = ∇ · j, j = M(u)∇μ, μ = −ε2∇2u+ f ′(u),

and we keep the boundary conditions on ∂Ω,

(2.1b) ∇u · n = 0, j · n = 0.
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436 ALPHA ALBERT LEE, ANDREAS MÜNCH, AND ENDRE SÜLI

We will denote the subsets where u > 0 and u < 0 by Ω+ and Ω−, respectively,
and identify the location of the interface with u = 0. Moreover, we assume that
Ω+ is convex unless otherwise stated, and has O(1) curvature everywhere, which, by
convention, we define to be positive. We will focus on solutions of (2.1a) and (2.1b)
that satisfy |u| ≤ 1. The existence of such solutions has been shown by Elliott and
Garcke [25].

The general procedure to obtain a description of the interface evolution is then to
consider and match expansions of (2.1a) and (2.1b), the so-called outer expansions,
with inner expansions using appropriate scaled coordinates local to the interface.
The approach assumes that the solution of (2.1a) and (2.1b) is quasi-stationary i.e.,
close to an equilibrium state. Unfortunately, it is not obvious what the appropriate
nearby equilibrium state could be in the situation we consider here. The problem
arises because the equilibrium solution to (2.1a) and (2.1b) with constant μ does not
generally satisfy the bound |u| < 1 inside of Ω+ [49].

It is helpful to revisit the standard matched asymptotics procedure for (2.1a)
and (2.1b) to understand the implications of this observation. Notice that the time
derivatives drop out of the lower order outer and inner problems. The leading order
inner solution for the double-well potential is simply a tanh profile, which matches
with ±1 in the outer solution; the corresponding leading order chemical potential
is zero. To next order, the inner chemical potential is proportional to κ, and this
supplies boundary conditions for the chemical potential in the outer problem via
matching to be μ1 = c1κ. Here, μ1 denotes the first nontrivial contribution to the
chemical potential in the outer expansion, μ = εμ1 +O(ε2), and c1 represents a fixed
numerical value. It is obtained from a detailed calculation along the lines of section 3,
which in fact shows that c1 > 0. It is easy to see from the third equation in (2.1a)
that the outer correction u1 for u = ±1 + εu1 is given by u1 = μ1/f

′′(±1), thus
u = ±1 + c1κε/4 + O(ε2) near the interface. Inside Ω+, we therefore have that the
outer solution u > 1. Notice that we have used that f is smooth at u = ±1—for
the double obstacle potential, there is no correction to u = ±1 in the outer problem;
see [19].

The resolution to the above conundrum comes from the observation that for a
degenerate mobility, slowly evolving solutions can arise from situations other than
constant μ once |u| gets close to 1. To obtain an indication of how such solutions
evolve, we look at numerical solutions of the radially symmetric version of (2.1a) and
(2.1b) on the domain Ω = {(x, y); r < 1}, where r = (x2 + y2)1/2, starting with a
tanh function as initial profile such that uinit(r) < 1. The spectral method we used is
briefly described in the appendix. The numerical solution at a later stage as shown in
Figure 1 is positive for r < 0.5 and negative for r > 0.5. Notice that while for r > 0.6
the solution for u levels out into a flat state that is larger than −1 by an amount of
O(ε), for r < 0.4 the solution is much closer to u = 1. Closer inspection shows that
u has a maximum which approaches u = 1, say at r = r∗. The maximum of u may
touch u = 1 in either finite or infinite time. In either case, the solution in Ω+ splits
into two parts to the left and right of r∗. The flux between the two parts is very
small, and this suggests that they are nearly isolated from each other. In particular,
they do not have to be at the same chemical potential. Since we are only interested in
the phase field where it determines the evolution of the interface, we cut off the part
with r < r∗, and consider the remaining part r > r∗ as a free boundary problem.

Returning to the general case of not necessarily radially symmetric solutions, we
introduce a free boundary Γ near the interface inside Ω+, and cut off the parts of the
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Fig. 1. The long-time solution u for the radially symmetric degenerate Cahn–Hilliard equation
(1.1) for different initial data and different mobilities. In (a), the mobility is (1.1c) and initial data
are bounded within [−1, 1], while in (b) it exceeds 1 and −1 to the left and right, and the mobility
is replaced by M(u) = |1 − u2|, respectively. In both panels, the initial data are shown by dashed
lines while the long-time solutions for ε = 0.05 are given by solid lines and have converged close to
a stationary state. In (a), this stationary profile is bounded between [−1, 1], where we emphasize
that u in the left inset is still below 1 (dashed line in the inset), while in (b), the upper bound 1 is
exceeded for r less than about 0.4 (see left inset in (b)). Notice that in both (a) and (b), the value
for u for r > 0.7 is close to but visibly larger than −1, by an amount that is consistent with the O(ε)
correction predicted by the asymptotic analysis (for (a) in (3.15)).

solution further inside of Ω+. At Γ, we impose

(2.1c) u = 1, nΓ · j = 0, nΓ · ∇u = 0.

Notice that in addition to u = 1 and a vanishing normal flux, a third condition has
been introduced at Γ. This is expected for nondegenerate fourth order problems and
permits a local expansion satisfying (2.1c) that has the required number of two degrees
of freedom [34]. Indeed, expanding the solution to (2.1) in a traveling wave frame local
to Γ with respect to the coordinate η normal to Γ gives u = 1 − aη2 +O(η3), where
a and the position of the free boundary implicit in the traveling wave transformation
represent the two degrees of freedom.

Also, the approximation of (1.1) by a free boundary problem (2.1) could be in-
vestigated systematically by using the typical magnitude, say b, of 1− u away from Γ
inside Ω+ as a small regularization parameter b � 1, since, as we observed from the
(limited) numerical experiments for the radially symmetric case, 1 − u becomes very
small (smaller than ε) for all r ≤ r∗ in the course of the evolution of u. This approach
would follow a similar idea to the precursor regularization in thin film problems, for
example, what was done in [34] for a spreading droplet. The conditions at the free
boundary Γ could then be recovered from matching to the inner solution describing
the “precursor.” If, however, “rupture” occurs at a finite time 0 < t+ < ∞, i.e., 1−u
becomes zero at some r+ as t → t+, the regularization of the precursor is lost and
either the regularizing effect implicit in the numerical discretization has to be taken
into account or another explicit regularization has to be introduced, e.g., the one sug-
gested in [25]. Further regularizations could be adapted from the thin film literature
such as the reference cited above. It would be interesting to see for which regulariza-
tions the conditions in (2.1c) are recovered. We note, however, that the evolution of
the leading order sharp-interface model in Ω− obtained in the next section does not
change if a regularization, for example, selects a modification of the third boundary
condition in (2.1c), where nΓ · ∇u is nonzero but small (of O(ε)).
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Also observe that if u > −1 by O(ε) as suggested by the numerical solution in
Figure 1(a), then M(u) = O(ε). Since μ = O(ε), we expect a nonlinear bulk flux of
order O(ε2) at the interface arising from Ω−. This is the same order as the expected
flux from surface diffusion. Indeed, as shown below, both contributions are present
in the leading order sharp-interface model (4.33d).

For the mobility |1 − u2|, a scenario is conceivable where u is not confined to
|u| < 1 and where in fact the solution obtained numerically for appropriate initial
conditions converges to the usual stationary Cahn–Hilliard solution (considered, for
example, in [45]), for which μ is constant in Ω, and for which u is larger than one in
most of Ω+. These results are shown in Figure 1(b). In this case, bulk fluxes from
both Ω+ and Ω− contribute to the leading order interface dynamics; see section 5.1.

3. Radially symmetric stationary solution. By setting ∂τu = 0 in (2.1) for
a radially symmetric domain Ω = {(x, y); r < 1} and radially symmetric u = u(r),
where r = (x2 + y2)1/2, and then integrating twice we obtain

ε2

r

d

dr

(
r
du

dr

)
+ η − 2u(u2 − 1) = 0,(3.1a)

u′(0) = 0,(3.1b)

u(r∗) = 1, u′(r∗) = 0.(3.1c)

The point r∗ represents the location of the free boundary Γ that needs to be de-
termined as part of the problem. The chemical potential η arises as an integration
constant and acts as a free parameter; thus an additional condition can be prescribed.
Note that if we do not consider a free boundary Γ and impose u′(1) = 0 instead of
(3.1c), then there exist exactly two solutions that have a specified mass, i.e., that
satisfy a mass constraint

ˆ 1

0

u(r)rdr = π ū

for a specified average −1 ≤ ū ≤ 1, which can be discerned from the sign of u(0). This
was shown in [45]. A mass constraint is a natural condition since the time-dependent
Cahn–Hilliard equation (2.1a) conserves the order parameter, i.e.,

´
Ω
u is constant, so

that for the stationary solution that arises as the long-time limit, ū is simply obtained
from the average of the initial condition. Instead of the mass, we can also specify the
position r0 of the interface,

(3.1d) u(r0) = 0.

This is closer to what we require for the derivation of the sharp-interface limit for the
more general, time-dependent situation in section 4.

We will now investigate (3.1) in the sharp-interface limit ε → 0 using matched
asymptotics. There is one outer region away from the interface, and two inner layers,
one located at the interface r0 and one located at r∗.

Outer region. Inserting the ansatz

u = u0 + εu1 + · · · , η = η0 + εη1 + · · · ,
into (3.1a) and (3.1b) and taking into account that the chemical potential η is a
constant quickly reveals that u0, u1, and u2 are also constants. Their values are fixed
by standard matching, that is, they are equal to the limits of the inner solutions as
ρ = (r − r0)/ε → ∞, which therefore have to be bounded in this limit.
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Inner layer about the interface. To elucidate the asymptotic structure of the
interface, we strain the coordinates about r0 and write

(3.2) ρ =
r − r0

ε
,

so that for U(ρ) = u(r), and with the interface curvature κ = 1/r0, we have

(3.3) U ′′ + ε
U ′

κ−1 + ερ
+ η − 2(U3 − U) = 0, U(0) = 0.

Expanding U = U0 + εU1 + · · · , we have, to leading order,

(3.4) U ′′
0 − 2(U3

0 − U0) = η0, U0(0) = 0.

To match with the outer solution and the solution near Γ, U0 needs to have the finite
limit ∓1 as ρ → ±∞, respectively, which gives

(3.5) U0 = − tanh ρ, η0 = 0.

To O(ε) we have

(3.6) U ′′
1 − 2(3U2

0 − 1)U1 = −η1 − κU ′
0, U1(0) = 0,

for which the solution that is bounded as ρ → ∞ is given by

U1 = − 1

16
(η1 + 2κ)sech2ρ+

1

3
(3η1 − 2κ)sech2ρ

(
3ρ

8
+

1

4
sinh 2ρ+

1

32
sinh 4ρ

)
+
1

8
(2κ− η1) +

1

48
(2κ− 3η1)(2 cosh 2ρ− 5 sech2ρ).(3.7)

Inner layer about Γ. We center the coordinates about the free boundary r = r∗

and write

(3.8) z = ρ+ σ, σ ≡ (r0 − r∗)/ε.

Substituting in the ansatz Ū = 1+ εŪ1+ ε2Ū2+ · · · , we obtain, to O(ε), the problem

Ū ′′
1 − 4Ū1 = −η1,(3.9a)

Ū1(0) = 0, Ū ′
1(0) = 0,(3.9b)

with the solution

(3.10) Ū1 =
η1
4

(1− cosh 2z) .

Matching. We first observe from (3.1c) that the location of the free boundary Γ
in the inner coordinate ρ = −σ satisfies U(−σ) = 1, U ′(−σ) = 0. However, for ε → 0,
we also have U(ρ) = − tanh(ρ)+O(ε), thus we obtain the estimate that σ = O(log(ε)).
This means that σ depends on ε and tends to infinity as ε → 0. We therefore have the
task to match two inner solutions U and Ū which are characterized by coordinates ρ
and z that only differ by a large shift, in contrast to the usual situation in matched
asymptotic expansions where the independent variables differ by a scaling factor in
ε. In each coordinate system, the other layer appears to move far away as ε → 0; in
terms of ρ, Γ tends to −∞, while the z-location of the interface layer tends to +∞.
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We therefore reexpand the Γ-layer solutions at z → ∞ and the interface i.e., r0-layer
solutions at ρ → −∞, rewrite one expansion in terms of the variables of the other
(which introduces the shift), and match the terms. Contrast this with conventional
matched asymptotics, where the outer solution is reexpanded at a finite point, for
example at a boundary point.

Notice now that the expansion of U0(ρ) at ρ → −∞ contains the exponentially
small term −2e2ρ. Normally, such a term would be dropped from matched asymp-
totic expansions i.e., ignored in the subsequent matching. Conversely, Ū1 contains a
term −2e2z, which is exponentially large as z → ∞, and would normally be deemed
unmatchable. However, we are shifting, not scaling the arguments as we change coor-
dinates. We demonstrate the consequences for the example term: Upon substituting
(3.8) into −2e2ρ, we obtain −2e−2σe2z. We have, however, already estimated that
σ ∼ C1 log(1/ε), with some constant C1 > 0. Thus, the term then becomes −2ε2C1e2z

which can be matched to the term in Ū1 (keeping in mind that the latter enters the
Ū expansion to O(ε)) by setting C1 = 1/2. In many ways, the matching approach
used here does follow that of conventional matching, except that instead of rescaling
the independent variables we only shift them, and typically match exponential rather
than power terms.

This approach is very much in the spirit of Lange [38], who introduced it to
resolve an indeterminacy arising from matching “spike” solutions in certain boundary
value problems. This indeterminacy concerns the position of the spikes relative to
each other, and can be resolved within the matching procedure if the exponential
terms are treated correctly. A similar situation was treated in [37] for a multilayer
solution in the convective Cahn–Hilliard equation and its higher order counterpart.
It is tempting to think that the body of theory developed for conventional matching
can be brought to bear on these situations by rewriting the problem in terms of the
logarithm of a new independent variable, which would then be rescaled rather than
shifted (and the exponentials would turn into powers of the new variable), but this
connection was not explored in [38]. Finally, notice that in section 4, we also carry
out conventional matching of inner and outer solutions using rescaled independent
variables.

Expanding U0 and U1 for ρ → −∞ and substituting ρ = z − σ gives

U =
(
1− 2e−2σe2z︸ ︷︷ ︸

A

+O(e4z)
)
+ ε

⎧⎪⎨
⎪⎩ 1

24
(2κ− 3η1)e

2σe−2z︸ ︷︷ ︸
B

+
1

2
(κ− η1)︸ ︷︷ ︸

C

+

[(
7η1
4

− 11κ

6

)
+

(
3η1
2

− κ

)
(z − σ)

]
e−2σe2z︸ ︷︷ ︸

D

+O(e4z)

⎫⎪⎪⎬
⎪⎪⎭

+O(ε2).(3.11)

The inner expansion for Ū at z → ∞ is

(3.12) Ū = 1 +
εη1
4︸︷︷︸
E

− εη1
8

e2z︸ ︷︷ ︸
F

− εη1
8

e−2z︸ ︷︷ ︸
G

+O(ε2).

Comparing terms in (3.11) and (3.12) of the same order of ε functional dependence
with respect to z, we notice first that the constant terms at O(1) are already matched.
Matching εC and E, yields
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(3.13) η1 =
2

3
κ.

As a result, the term B is zero. Matching terms A and F, we arrive at the condition
2e−2σ = εκ/12, which we solve for σ, giving

(3.14) σ =
1

2
log

(
24

εκ

)
.

We can now determine the outer solutions. We note that in the more general,
time-dependent situation, the presence of a nonzero correction will give rise to a flux
at O(ε2). Using the limits of U0 and U1 as ρ → ∞, we obtain

(3.15) u0 = −1, u1 =
κ

6
.

Higher corrections. At this stage, it is obvious that the matching is not yet
complete toO(ε), as the terms in (3.12) and (3.11), respectively, εD and G, are nonzero
and lack counterparts in the other expansion. This can be resolved by considering the
next higher order solutions Ū2 and U2, which, in fact, will also be useful in section 4.
We include ε2η2 in the expansion for η, and allow for corrections to σ via the expansion

(3.16) σ =
1

2
log

(
24

εκ

)
+ εσ1 + · · · .

The O(ε2) problem at the interface is given by

U ′′
2 − 2(3U2

0 − 1)U2 = −η2 − κU ′
1 + ρκ2U ′

0 + 6U0U
2
1

= −η2 − κ2

6
tanh5 ρ− ρκ2sech2ρ− κ2

3
tanh ρ sech2ρ,(3.17)

together with U2(0) = 0 and boundedness for U2 as ρ → ∞. The solution is

U2 = −η2
8

− ρκ2

4
− 1

8
cosh 2ρ

(
η2 +

2

3
ρκ2

)
+

1

16
sech2ρ

(
5η2 +

23

6
ρκ2 − 2ρ2κ2

)

+
1

4
ρκ2 log

(
1

2
eρ
)
sech2ρ+

κ2

8
sech2ρ Li2(−e2ρ)

− κ2

288
sinh 2ρ (1− 24 log cosh ρ)

− κ2

96
tanh ρ

(
1− 24 log coshρ− 8

3
sech2ρ

)
+

1

16

(
π2

6
κ2 − η2

)
sech2ρ

+

(
κ2

36
(1 + 24 log 2) + η2

)
sech2ρ

(
3ρ

8
+

1

4
sinh 2ρ+

1

32
sinh 4ρ

)
,

(3.18)

where Li2(x) is the dilogarithm, or Spence’s function [48], as used by Matematica [62];
see also [24].

For Ū2(z) we have

Ū ′′
2 − 4Ū2 + κŪ ′

1 − 6Ū2
1 + η2 = 0,(3.19a)

Ū2(0) = 0, Ū ′
2(0) = 0,(3.19b)
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Fig. 2. Comparing the asymptotic and numerical results for (left) the position of the free
boundary and (right) the chemical potential, for a range of ε and r0 = 1/2.

which has the solution

Ū2 =
( κ

12

)2
(cosh 4z + 3e−2z(1 + 4z)− 9) +

( κ

12

)2
e2z

+
(κ
6

)2
e−2z +

η2
4
(1− cosh 2z).(3.20)

Expanding U = U0 + εU1 + ε2U2 + · · · for ρ → −∞, substituting in ρ = z − σ,
and using (3.16) leads to

U = 1− εκ

12
e2z(1− 2εσ1) +

1

2

(εκ
12

)2
e4z + ε

(
κ

6
− εκ2

36
e2z
)

+ε2
[
−1

8
η2

(
24

εκ

)
(1 + 2εσ1)e

−2z +

(
η2
4

− κ2

16

)]
+O(ε3).(3.21)

Similarly, the expansion for Ū = Ū0 + εŪ1 + ε2U2 + · · · as z → ∞ is

Ū = 1 + ε
κ

6
(1− cosh 2z)

+ ε2
[
1

2

( κ

12

)2
e4z +

1

2

( κ

12

)2
e−4z +

( κ

12

)2
(3e−2z(1 + 4z)− 9)

+
( κ

12

)2
e2z +

(κ
6

)2
e−2z +

η2
4
(1− cosh 2z)

]
.(3.22)

Now, we can match the e−2z at O(ε) and the e2z at O(ε2) terms, and arrive at,
respectively,

η2 =
κ2

36
, σ1 =

3κ

16
.(3.23)

For completeness we note that the next order outer correction u2 is again a constant
equal to the limit of U2 as ρ → ∞, with the value u2 = 7κ2/144.

Figure 2 shows that the asymptotic results agree well with the position of Γ and
the chemical potential obtained from numerical solutions of the ODE free boundary
problem (3.1), confirming the validity of the matched asymptotic results. The so-
lutions were obtained by a shooting method with fixed η using the Matlab package
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ode15s, with u(1) and (3.1c) as the shooting parameter and condition. The value of
η is adjusted in an outer loop via the bisection method until r0 = 1/2 is achieved to
a 10−10 accuracy.

4. Sharp-interface dynamics.

4.1. Outer variables. Motivated by the stationary state, we now consider the
asymptotic structure of the dynamical problem that arises for nonradially symmetric
interface geometries. For the outer expansions, we will use

u = u0 + εu1 + ε2u2 + · · · , μ = μ0 + εμ1 + ε2μ2 + · · · , j = j0 + εj1 + ε2j2 + · · · .

4.2. Inner variables. As in other cases where the interface motion has been
determined for a diffuse interface models in two (or higher) dimensions via a sharp-
interface limit (see [54, 16], and [49] for the Cahn–Hilliard equation with constant
mobility), we define the local coordinates relative to the position of the interface
(parametrized by s), and write

(4.1) r(s, r, τ) = R(s, τ) + rn(s, τ),

where R, the position of the interface ζ, is defined by

(4.2) u(R, t) = 0,

and t = ∂R/∂s is the unit tangent vector, and n is the unit outward normal. From
the Serret–Frenet formula in 2D we have that ∂n/∂s = κt, thus

(4.3)
∂r

∂r
= n(s),

∂r

∂s
= (1 + rκ)t(s),

where t(s) is the unit tangent vector to the interface, and κ is the curvature. We
adopt the convention that the curvature is positively defined if the osculating circle
lies on the side of Ω+. The gradient operator in these curvilinear coordinates reads

(4.4) ∇ = n∂r +
1

1 + rκ
t ∂s,

and the divergence operator of a vector field A ≡ Arn+Ast reads

(4.5) ∇ ·A =
1

1 + rκ

[
∂r

(
(1 + rκ)An

)
+ ∂s

(
1

1 + rκ
As

)]
.

We let s and ρ = r/ε be the inner coordinates at the interface, and let U(ρ, s, τ),
η(ρ, s, τ), and J(ρ, s, τ) denote the order parameter, chemical potential, and flux writ-
ten in these coordinates, respectively. In inner coordinates, the combination of the
first two equations, in (2.1a), and (4.2), become,

ε2∂τU − εvn∂ρU = ∇ · (M(U)∇η) ,(4.6a)

η = −ε2∇2U + f ′(U),(4.6b)

U(0) = 0(4.6c)
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with vn = Rτ · n. Using (4.4) and (4.5), we obtain

∇ · (M(U)∇) = ε−2∂ρM(U0)∂ρ

+ε−1

{
∂ρ

(
κρM(U0) +M ′(U0)U1

)
∂ρ − κρ ∂ρM(U0)∂ρ

}

+

{
κ2ρ2∂ρM(U0)∂ρ − κρ∂ρ

(
κρM(U0) +M ′(U0)U1

)
∂ρ

+∂ρ

(
κρM ′(U0)U1 +

1

2
M ′′(U0)U

2
1 +M ′(U0)U2

)
∂ρ

+∂sM(U0)∂s

}
+O(ε).(4.6d)

Notice that the corresponding expression for ∇2 can be easily obtained from this by
setting M ≡ 1.

Taking only the first equation in (2.1a) we have

(4.7) ε2∂τU − εvn∂ρU =
1

1 + ερκ

[
ε−1∂ρ

(
(1 + ερκ)Jn

)
+ ∂s

(
1

1 + ερκ
Js

)]
.

In inner coordinates, we will only need to know the normal component Jn = n · J of
the flux explicitly in terms of the order parameter and chemical potential. It is given
by

Jn =
M(U)

ε
∂ρη

= ε−1M(U0)∂ρη0 +M ′(U0)U1∂ρη0 +M(U0)∂ρη1

+ ε

(
M(U0)∂ρη2 +M ′(U0)U1∂ρη1 +M ′(U0)U2∂ρη0 +

1

2
M ′′(U0)U

2
1 ∂ρη0

)

+ ε2
[
M(U0)∂ρη3 +M ′(U0)U1∂ρη2 +

(
M ′(U0)U2 +

1

2
M ′′(U0)U

2
1

)
∂ρη1

+

(
M ′(U0)U3 +M ′′(U0)U1U2 +

1

6
M ′′′(U0)U

3
1

)
∂ρη0

]
+O(ε3),(4.8)

which also motivates our ansatz for the expansion for J given the obvious ansatz for
the other variables,

U = U0 + εU1 + ε2U2 + · · · , η = η0 + εη1 + ε2η2 + · · · ,
J = ε−1J−1 + J0 + εJ1 + ε2J2 + · · · .

We note that a similar approach for the expansions at the inner layer (also for the
other inner layer appearing just below in this section) was taken in [19, 46, 47], in
particular, the flux was explicitly expanded in the inner and outer layers and explicitly
included in the matching.

Moreover, we introduce z = ρ+σ(s, t) as the coordinate for the inner layer about
the free boundary Γ, so that the order parameter, chemical potential, and flux in these
variables are given by Ū(z, s, τ), η̄(z, s, τ) and J̄(z, s, τ) respectively, with expansions

Ū = Ū0 + εŪ1 + ε2Ū2 + · · · , η̄ = η̄0 + εη̄1 + ε̄2η̄2 + · · · ,
J̄ = ε−1J̄−1 + J̄0 + εJ̄1 + ε2J̄2 + · · · .
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Notice that the location where the two inner layers are centered depends on ε
and, therefore, in principle, σ and also R need to be expanded in terms of ε as well.
However, we are only interested in the leading order interface motion, so as to keep
the notation simple, we do not distinguish between σ and R and their leading order
contributions. We now solve and match the outer and inner problems order by order.

4.3. Matching.

Leading order. For the outer problem, we obtain to leading order

(4.9) ∇ · j0 = 0, j0 = M(u0)∇μ0, μ0 = f ′(u0).

The requisite boundary conditions are ∇nu0 = 0 and n · j0 = 0 on ∂Ω. We have

(4.10) u0 = −1, μ0 = 0.

The leading order expansion about the interface reads,

(4.11) M(U0)∂ρη0 = a1(s, τ), f ′(U0)− ∂ρρU0 = η0.

From the matching conditions, we require U0 to be bounded for ρ → ±∞. In fact,
U(ρ → −∞) = −1, giving η0 → 0. This implies a1 = 0, therefore also η0 = 0, which
we note matches with μ0. Moreover, from (4.11)2 and from (4.8) we have

(4.12) U0 = − tanh ρ, Jn,−1 = 0.

The leading order approximation of the order parameter in the coordinates of the
inner layer at Γ is easily found to be Ū0 = 1, and also for the chemical potential
η̄0 = 0, and the normal component of the flux J̄n,−1 = 0.

O(ε) correction. The first two parts of the outer correction problem for (2.1a)
are automatically satisfied, since μ0 = 0 and M(u0) = 0, by

(4.13) j1 = 0.

The last part requires

(4.14) μ1 = f ′′(u0)u1 = 4u1.

From (4.6), and noting that η0 = 0, we have

(4.15) ∂ρ (M(U0)∂ρη1) = 0, η1 = −∂ρρU1 − κ∂ρU0 + f ′′(U0)U1, U1(0) = 0,

thus M(U0)∂ρη1 = Jn,0 is constant in ρ. Since Jn,0 has to match with j0, it is zero.
Therefore, η1 = η1(s, t) does not depend on ρ. Now (4.15)2 and (4.15)3 represent the
same problem as (3.6). As such, the solution U1(ρ, s, τ) that is bounded as ρ → ∞
can be read off (3.7).

The O(ε) problem for the inner layer at Γ becomes

(4.16) η̄1 = −∂zzŪ1 + 4Ū1

with η̄1 that does not depend on z, supplemented with the conditions Ū1(z, 0, τ) = 1,
Ū1z(z, 0, τ) = 0. This equation is the same as the O(ε) equation for the stationary
state about the free boundary, and the solution is given by (3.10). The inner layers
about Γ and about the interface can be matched, as outlined in section 3, to obtain

(4.17) η̄1 = η1 =
2

3
κ.

We also recover the expression (3.14) for σ.
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O(ε2) correction. Combining the first two equations in (2.1a) and expanding
to O(ε2) yields

(4.18) ∇ · (M ′(u0)u1∇μ1) = 0.

In view of the discontinuous derivative of M at u = u0 = −1, we remark that here
and in the following we will use the convention that M ′(±1) denotes the one-sided
limit for |u| → 1−, in particular that M ′(−1) = 2, and likewise for higher derivatives.
Equation (4.14) provides a relation between μ1 and u1. Thus, we have

(4.19) ∇ · (μ1∇μ1) = 0

with the boundary condition ∇nμ1 = 0 on ∂Ω, and, from matching μ1 with η1 (given
in (4.17)) at the interface,

(4.20) μ1 =
2

3
κ.

Expanding the second equation in (2.1a) to O(ε2) also gives us an expression for the
normal flux

(4.21) n · j2 = u1M
′(u0)∇nμ1 =

1

2
μ1∇nμ1,

which is not in general zero.

Inner expansion about the interface. From the O(1) terms in (4.6), we
obtain

(4.22) ∂ρ (M(U0)∂ρη2) = 0.

Thus, M(U0)∂ρη2 is constant in ρ and we can identify this expression via (4.8) as
Jn,1, which has to match with n · j1 = 0. Therefore we can deduce that

(4.23) Jn,1 = M(U0)∂ρη2 = 0,

and η2 is independent of ρ. The solution for η2 is found in essentially the same way
as in section 3 (see (3.16) – (3.23)), thus

(4.24) η2(s, τ) =
κ2

36
.

O(ε3) correction. Noting that η0, η1, and η2 are independent of ρ, the O(ε)
terms in (4.6) yield

−vn∂ρU0 = ∂ρM(U0)∂ρη3 +
2

3
M(U0)∂ssκ.(4.25)

Integrating (4.25) from −∞ to ∞, we arrive at

(4.26) vn =
1

2
[M(U0)∂ρη3]

∞
−∞ +

2

3
∂ssκ.

From (4.8), we can identify the term in the brackets as

(4.27) Jn,2 = M(U0)∂ρη3.
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At ρ → −∞, we need to match η3 and Jn,2 with the solution for η̄3 and n · J̄2 in
the inner layer at Γ, which in the former case is a function independent of z, and in
the latter is just zero. Thus, η3 is matched to a constant for ρ → −∞, and Jn,2 is
matched to zero, thus

(4.28) lim
ρ→−∞M(U0)∂ρη3 = lim

ρ→−∞ Jn,2 = 0.

We next consider the contribution from Jn,2 as ρ → ∞. It is tempting to use
(4.27) to argue that, since M(U0) → 0 exponentially fast, Jn,2 also has to tend to
zero. Then, however, Jn,2 cannot be matched with n · j2, as we cannot simply set the
latter to zero: the bulk equation (4.19) has already got a boundary condition at ζ,
namely, (4.20), and setting n · j2 = 0 would impose too many conditions there. We
also note that explictly matching fluxes was the path taken in [19, 46, 47] for models
involving degenerate Cahn–Hilliard equations. We therefore drop the idea to infer
the limit of Jn,2 as ρ → ∞ by arguing with M(U0) → 0 and instead match the inner
normal flux to the outer,

lim
ρ→∞ Jn,2 = n · j2|ζ .(4.29)

Keeping in mind that nontrivial solutions for μ1 will arise from (4.19), (4.20), and
∇nμ1 = 0 at ∂Ω, we expect that Jn,2 will not, in general, be zero because of (4.21)
and (4.29). Substituting (4.27) and (4.21) into the left- and right-hand sides of (4.29),
respectively, we obtain

lim
ρ→∞M(U0)∂ρη3 =

1

2
μ1∇nμ1|ζ ,(4.30)

so that now the boundary terms in (4.26) have been determined in terms of μ1, and
we have

(4.31) vn =
2

3
∂ssκ+

1

4
μ1∇nμ1.

Now, however, we have to accept that, in general, there will be exponential growth
in η3 as ρ → ∞: If the right-hand side in (4.30) is nonzero (which, in general, we
expect it to be), and M(U0) decays exponentially fast to zero as ρ → ∞, then η3 has
to grow exponentially. In fact, if we integrate (4.25) from −∞ to ρ using also (4.28),
then solve for ∂ρη3, integrate again from −∞ to ρ, and eliminate vn with the help of
(4.31), we obtain

(4.32) η3 =
μ1∇nμ1|ζ

16

(
e2ρ + 2ρ

)
+ η03 ,

where η03 is an integration constant. The term proportional to e2ρ is the exponentially
growing term and it does not appear to be matchable to the outer solution. We will
resolve this issue in a separate section, by introducing another inner layer, and for
now continue with analyzing the sharp-interface model, which in summary is given
by

∇ · (μ1∇μ1) = 0 in Ω−,(4.33a)

μ1 =
2

3
κ on ζ,(4.33b)

∇nμ1 = 0 on ∂Ω,(4.33c)

vn =
2

3
∂ssκ+

1

4
μ1∇nμ1 on ζ.(4.33d)
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4.4. Additional inner layer. The exponential growth of η3 at ρ → ∞ is a
direct consequence of the exponential decay of M(U0) to 0 as U0 approaches −1
exponentially fast. Notice, however, that the inner solution including the correction
terms does not decay to −1, because U1(ρ → ∞) > 0, so that

M(U0 + εU1 + · · · ) = M(U0) + εM ′(U0)U1 + · · ·
approaches a nonzero O(ε) value as ρ → ∞. We need to ensure that the correction
εM ′(U0)U1 to M(U0) enters into the calculation of the chemical potential as soon as
ρ is in the range where M(U0) and εM ′(U0)U1 have the same order of magnitude.
This happens when U0+1 = O(ε), i.e., when ρ ∼ −(1/2) ln ε. We therefore introduce
another layer via

ρ =
1

2
ln

(
1

ε

)
+ y, Û(y) = U(ρ), η̂(y) = η(ρ), Ĵ(y) = J(ρ).

Notice the similarity with the change of variables at Γ. Indeed, the solution in the
new layer will have exponential terms in the expansion at y → −∞ that need to be
matched with the expansion at the interface ρ → ∞. In terms of the new variables,
the Cahn–Hilliard equation becomes

ε2∂τ Û − εvn∂yÛ = ∇ ·
(
M(Û)∇η̂

)
,(4.34)

η̂ = −∂yyÛ − εκ

1 + εκ
(
y − 1

2 ln ε
)∂yÛ

− ε2

1 + εκ
(
y − 1

2 ln ε
)∂s

(
∂sÛ

1 + εκ
(
y − 1

2 ln ε
))+ f ′(Û).(4.35)

We expand

Û = −1 + εÛ1 + ε2Û2 + · · · , η̂ = εη̂1 + ε̂2η̂2 + · · · ,
Ĵ = Ĵ0 + εĴ1 + ε2Ĵ2 + · · · ,

where we have tacitly anticipated that η̂0 = 0, Ĵ−1 = 0. Inserting these gives

∇ ·
(
M(Û)∇η̂

)
= ∂y

[
M ′(−1)Û1∂y η̂1

]
+ ε∂y

[
M ′(−1)Û1∂y η̂2

]
+O(ε2).(4.36)

The normal flux Ĵn = n · Ĵ is given by

Ĵn =
M(U)

ε
∂ρη =

[
M ′(−1)Û1 + ε

(
(M ′′(−1)/2) Û2

1 +M ′(−1)Û2

)
+O(ε2)

]
× [ε∂y η̂1 + ε2∂y η̂2 +O(ε3)

]
.(4.37)

Comparison with the ansatz for the expansion of Ĵ immediately implies Ĵn,0 = 0.

Leading order problem. To leading order, we have

−∂y

[
M ′(−1)Û1∂y η̂1

]
= 0, −∂yyÛ1 + f ′′(−1)Û1 = η̂1.(4.38)

Integrating the first of these once, we obtain that the expression in square brackets
has to be a constant in y. From (4.37), we see that this is the term Ĵn,1 in the normal
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flux, which has to match to Jn,1 and n ·j1 in the interface layer and the outer problem,

respectively. Thus Ĵn,1 = 0. Therefore, the contribution η̂1 is also a constant that
needs to match to the same value κ/6 towards the outer and the interface layer, i.e.,
for ŷ → ±∞, so that we have

η̂1 =
2

3
κ, Û1 = c1e

−2y + c2e
2y +

1

6
κ.(4.39)

Matching this to the constant outer u1 = κ/6, obtained from (4.14) and (4.17), forces
c2 = 0. We next expand U0 at ρ → ∞,

(4.40) U0 = −1 + 2e−2ρ +O(e−4ρ).

The second term accrues a factor of ε upon passing to y-variables, and thus has to
match with the exponential term in εÛ1, giving c1 = 2 and

(4.41) Û1 = 2e−2y +
1

6
κ.

First correction problem. To next order, we obtain

−∂y

[
M ′(−1)Û1∂y η̂2

]
= 0,(4.42a)

−∂yyÛ2 − κ∂yÛ1 + f ′′(−1)Û2 + f ′′′(−1)Û1 = η̂2,(4.42b)

Ĵn,2 = M ′(−1)Û1∂y η̂2.(4.42c)

From (4.42a) and (4.42c), and matching the flux contribution Ĵn,2 to the outer n · j2,
we obtain

M ′(−1)Û1∂y η̂2 =
1

2
μ1∇nμ1|ζ ,(4.43)

which in turn has the solution

(4.44) η̂2 =
3μ1∇nμ1|ζ
2κM ′(−1)

ln
( κ

12
e2y + 1

)
+

κ2

36
.

The integration constant has been fixed by matching η̂2 for y → −∞ with the interface
solution η2; see (4.24). We now need to check if the exponential term in (4.44) matches
with the exponential term in (4.32). Expanding at y → −∞ is trivial, and then
substituting in y = ρ+ ln ε/2 gives

(4.45) η̂2 =
ε

8M ′(−1)
μ1∇nμ1|ζ e2ρ +

κ2

36
.

Thus, ε2η̂2 contains a term proportional to the ε3e2ρ term that is identical to the
ε3e2ρ term that appears in ε3η3; see (4.32). Thus, we have resolved the issue with the
exponentially growing term (for ρ → ∞) in the correction to the chemical potential
in the interface layer expansion.

4.5. Linear stability analysis. Besides the usual surface diffusion term, (4.33)
contains an additional normal flux term which is nonlocal. In the cases where there
are multiple regions of u close to 1, the nonlocal term couples the interfaces of these
regions with each other and drives coarsening where the larger regions grow at the
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Table 1

Relaxation rates obtained from the linearized phase field model (4.48) are shown for different
values of ε in the first five columns, and compared to the eigenvalues obtained for linearized sharp-
interface models for pure surface diffusion (4.46) and the porous medium type model (4.47) in the
next-to-last and the last column, respectively, with M = 2/3.

ε 0.01 0.005 0.003 0.002 0.001 Eq (4.47) Eq (4.46)
λm=2 −133.2 −133.8 −136.0 −136.3 −137.0 −137.4 −128

expense of smaller ones. This is not expected for pure surface diffusion. Even for a
single convex domain that is slightly perturbed from its radially symmetric state, the
effect on the relaxation dynamics is noticeable, as we now explore.

To compare the sharp-interface model with the phase field model, we consider the
relaxation of an azimuthal perturbation to a radially symmetric stationary state with
curvature κ = 1/r0. For azimuthal perturbations proportional to cosmθ, the pure
surface diffusion model vn = M∂ssκ predicts an exponential decay rate

(4.46) λ = −M
m2(m2 − 1)

r40
.

In contrast, the decay rate in the porous medium model, (4.33), is given by

(4.47) λ = −2

3

m2(m2 − 1)

r40
− 1

9

m(m2 − 1)

r40
tanh(m log r−1

0 ).

In the diffuse interface model, the perturbation v1(r, t) cosmθ satisfies

v1t =
1

r

∂

∂r

(
rM(v0)

∂m1

∂r

)
− m2

r2
M(v0)m1,

m1 = −ε2

r

∂

∂r

(
r
∂v1
∂r

)
+
(mε

r

)2
v1 + f ′′(v0)v1,(4.48)

where v0(r) is the radially symmetric stationary state. We solve this system nu-
merically, using the Chebyshev spectral collocation method (see the appendix) with
Δt = 10−3 and 400 mesh points until t = 1/ε2. The decay rate of the eigenfunction
is tracked by monitoring its maximum. The diffuse interface decay rates are scaled
with 1/ε2 to compare with the sharp-interface model. The base state that is needed
for this calculation is determined a priori with the interface, i.e., the zero contour,
positioned at r0 = 0.5. The initial condition for the perturbation,

(4.49) v1(0, r) = exp
[
1/(a2 − (r0 − r)2)

]
,

acts approximately as a shift to the leading order shape of the inner layer. The
constant a is chosen so that the support of v1(0, r) lies in the range r > r∗. Notice
that r∗ = r0 − εσ∗ can be estimated from the asymptotic results in section 2, as

(4.50) r∗ = r0 − 1

2
log

(
24

εκ

)
ε− 3κ

16
ε2 + o(ε2),

with κ = 1/r0.
The results are compared in Table 1. They show that the decay rate of the

azimuthal perturbation to the radially symmetric base state obtained for m = 2

D
ow

nl
oa

de
d 

03
/0

5/
16

 to
 1

29
.6

7.
24

6.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CAHN–HILLIARD EQUATION WITH DEGENERATE MOBILITY 451

Table 2

The decay rates of an azimuthal perturbation obtained by the diffuse and sharp-interface models
show good agreement for general initial condition not bounded between ±1 and mobility M(u) =
|1 − u2|. The numerical method and discretization parameters are the same as in Table 1. The
description of the numerical approach and parameters carries over from Table 1.

ε 0.01 0.005 0.002 0.001 Eq (5.2)
λm=2 −144.7 −146.3 −147.5 −147.8 −148.1

tends to the eigenvalue for the linearized sharp-interface model with the contribu-
tion from nonlinear bulk diffusion, rather than to the one for pure surface diffusion.
This confirms that (4.33) describes the leading order sharp-interface evolution for the
Cahn–Hilliard model (1.1) correctly, and that the sharp-interface motion is distinct
from the one induced by pure surface diffusion.

5. Modifications.

5.1. Solutions with u > 1 for the mobility M(u) = |1 − u2|. As pointed
out in section 3, solutions that have a modulus |u| > 1 and converge to the usual
stationary Cahn–Hilliard solutions are conceivable for the mobility M(u) = |1 − u2|
and are seen to arise in numerical solutions with this mobility for appropriate initial
conditions. For this case, we can carry out the asymptotic derivations to obtain the
sharp-interface limit and match the inner problem to outer solutions on both sides of
the interface, without first introducing additional free boundaries at |u| = 1, accepting
thereby that the outer solution for u in Ω+ is larger than one. Otherwise the detailed
derivations follow the same pattern as in section 4.3 and can be found in [39].

The upshot is that the sharp-interface model now has contributions from nonlinear
bulk diffusion on both sides of the interface, in addition to surface diffusion, viz.

∇ · (μ±
1 ∇μ±

1 ) = 0 on Ω±,(5.1a)

μ±
1 =

2

3
κ on ζ,(5.1b)

∇nμ
+
1 = 0 on ∂Ω,(5.1c)

vn =
2

3
∂ssκ+

1

4
(μ+

1 ∇nμ
+
1 + μ−

1 ∇nμ
−
1 ), on ζ.(5.1d)

This sharp-interface model predicts an exponential decay rate of

(5.2) λ = −2

3

m2(m2 − 1)

r40
− 1

9

m(m2 − 1)

r40
(tanh(m log r−1

0 ) + 1)

for the evolution of the perturbation to the radially symmetric stationary state with
wave number m. Table 2 shows that (5.2) is indeed consistent with numerical results
for the diffuse model. As a cautionary remark, we note that we are dealing here with
a sign-changing solution of a degenerate fourth order problem, in the sense that 1−u
changes sign and the mobility degenerates. The theory for this type of problem is still
being developed [27, 26, 4, 13, 11, 28].

5.2. Degenerate biquadratic mobility. For the mobilities investigated so far,
nonlinear bulk diffusion enters at the same order as surface diffusion. If we employ
M̃(u) = ((1 − u2)+)

2, then

(5.3) j2 = u1M̃
′(u0)∇nμ1 = 0.
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Table 3

The decay rates obtained by the diffuse interface model for the mobility M(u) = ((1 − u2)+)2

and |u| < 1 show good agreement with the surface diffusion model in (4.46) with M = 4/9, as ε → 0.
The description of the numerical approach and parameters carries over from Table 1.

ε 0.01 0.005 0.001 Eq (4.46)
λm=2 −84.6 −84.7 −85.2 −85.3

The contribution of the bulk diffusion flux to the normal velocity of the interface is
subdominant to surface diffusion and therefore

vn =
1

3

ˆ ∞

−∞
sech4ρ dρ ∂ssκ =

4

9
∂ssκ.(5.4)

Table 3 shows that the decay rate obtained from the numerical solution of the diffuse
interface model for the degenerate biquadratic mobility is indeed consistent with the
predictions obtained for the sharp-interface model (5.4) with pure surface diffusion.

6. Conclusions. In this paper, we have derived the sharp-interface limit for
a Cahn–Hilliard model in two space dimensions with a nonlinear mobility M(u) =
(1 − u2)+, and a double-well potential with minima at ±1 for the homogeneous part
of the free energy. We found that in addition to surface diffusion, there is also a con-
tribution from bulk diffusion to the interface motion which enters at the same order.
This contribution enters only from one side of the interface, whereas for the mobility
M(u) = |1 − u2|, solutions have also been considered for which bulk diffusion in the
sharp-interface limit enters from both sides at the same order as surface diffusion.

The situation studied here was focused on the case of convex Ω+ = {x ∈ Ω; u > 0}
with an O(1) curvature for the interface u = 0, though the asymptotic analysis also
remains valid if Ω+ is the union of well-separated convex domains. The dynamics
for concentric circles of different phases has also been looked into [39]. For the case
where the interface has inflection points, the derivation needs to be revisited, since
the location of the free boundary Γ, given by ρ = σ in inner coordinates about the
interface, depends on the curvature. In fact, (3.14) suggests that |σ0| and hence
|σ| → ∞ if κ tends to zero. Observe, however, that (3.14) was derived under the
assumption that κ = O(1) so the case κ → 0 requires a separate investigation. As the
curvature has different signs along the interface before and after an inflection point,
Γ is located on different sides of the interface. It thus appears that as an inflection
point is passed, Γ moves away from the interface, eventually disappears to infinity,
and reappears on the other side as the curvature becomes larger again but with the
opposite sign. Further questions arise in three dimensions, where the interface has
multiple principal curvatures, which can have opposing signs. On a different plane,
it would also be interesting to investigate the coarsening behavior [15] for the sharp-
interface model (4.33). For ensembles of two or more disconnected spheres, pure
surface diffusion does not give rise to coarsening, but coarsening is expected for the
mixed surface/bulk diffusion flux in (4.33).

While the Cahn–Hilliard equation (1.1) plays a role in some biological models
(see, for example, [36]), and may have significance in modeling spinodal decom-
position in porous media, possibly with different combinations of mobilities, e.g.,
M(u) = |1 − u2| + α(1 − u2)2 (see [39]) the main motiviation for our investigation
stems from the role degenerate Cahn–Hilliard models play as a basis for numerical
simulations for surface diffusion with interface motion driven by (1.2). The upshot
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for the specific combination of mobility and double-well potential used in (1.1) is not
useful for this purpose, since a contribution from bulk diffusion enters at the same
order. For mobilities with higher degeneracy, such as M(u) = ((1−u2)+)

2, this unde-
sired effect is of higher order and can be made arbitrarily small, at least in principle,
by reducing ε. Nevertheless, for finite ε, it is still present and a cumulative effect
may arise for example through a small but persistent coarsening of phase-separated
domains.

A range of alternatives can be found in the literature, in particular, using the
combination ofM = (1−u2)+ or M = |1−u2| with the logarithmic or with the double
obstacle potential [19]. These combinations force the order parameter u to be equal
to or much closer to ±1 away from the interface, thus shutting out the bulk diffusion
more effectively. Numerical methods have been developed for these combinations and
investigated in the literature; see, for example, [6, 9, 7, 8, 10, 29, 5]. Other approaches
that have been suggested include a dependence of the mobility on the gradients of the
order parameter [42], tensorial mobilities [32], or singular expressions for the chemical
potential [53].

As a final remark, we note that many, also analytical, questions remain open.
For example, the existence of solutions that preserve the property that |u| > 1 in
some parts of Ω has not been shown as far as we know, and the scenarios linking
(1.1) with the free boundary problem (2.1) discussed in section 2 also require further
investigation.

Appendix. Numerical methods. We numerically solved the radially symmet-
ric counterpart to (1.1) in polar coordinates without an explicit regularization (such
as the one used in [25]) via a Chebyshev spectral collocation method in space and
semi-implicit time stepping, using a linearized convex splitting scheme to treat f . For
details on spectral methods in general, we refer the reader to [59, 60]. We also split
the mobility as M(u) ≡ (M(u)− θ) + θ, to evaluate (M(u)− θ) at the previous time
step while solving the remaining θ portion at the next time step, which improved
the stability. We choose θ = 0.01ε in our simulations. Varying θ confirmed that the
results did not sensitively depend on its value provided it was O(ε).

As the Chebyshev–Lobatto points are scarcest in the middle of the domain, we
resolve the interior layer by introducing a nonlinear map x ∈ [−1, 1] �→ r ∈ [0, 1], as
suggested in [14], r = (1/2) + arctan (δ tanπx/2) /π, where 0 < δ < 1 is a parameter
that determines the degree of stretching of the interior domain, with a smaller value
of δ corresponding to a greater degree of localization of mesh points about the center
of the domain. In this paper, we generally set δ = 10ε. This choice of δ is guided
by numerical experiments, which show that a further increase in the number of mesh
points does not alter the stationary solution. Moreover, since r = 0 is a regular singu-
lar point, we additionally map the domain r ∈ [0, 1] linearly onto a truncated domain
[10−10, 1]. Again, we verified that varying the truncation parameter did not affect the
numerical results. Unless otherwise stated, the numerical simulations reported in the
paper are done with 400 collocation points and time step Δt = 10−3.

The linearized phase field models were solved using the same method, with a
base state that was obtained from a preceding run and then “frozen” in time, i.e., not
coevolved with the perturbation.
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[40] A. A. Lee, A. Münch, E. Süli, Degenerate mobilities in phase field models are insufficient to
capture surface diffusion, Appl. Phys. Lett., 107 (2015), 081603.

[41] H.-W. Lu, K. Glasner, A. L. Bertozzi, and C.-J. Kim, A diffuse-interface model for elec-
trowetting drops in a Hele-Shaw cell, J. Fluid Mech., 590 (2007), pp. 411–435.

[42] M. Mahadevan and R. M. Bradley, Phase field model of surface electromigration in single
crystal metal thin films, Phys. D, 126 (1999), pp. 201–213.

[43] W. W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1957), pp. 333–339.
[44] W. W. Mullins and R. F. Sekerka, Morphological stability of a particle growing by diffusion

or heat flow, J. Appl. Phys., 34 (1963), pp. 323–329.
[45] B. S. Niethammer, Existence and uniqueness of radially symmetric stationary points within

the gradient theory of phase transitions, European J. Appl. Math., 6 (1995), pp. 45–67.
[46] A. Novick-Cohen, Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Phys. D,

137 (2000), pp. 1–24.
[47] A. Novick-Cohen and L. Peres Hari, Geometric motion for a degenerate Allen-Cahn/Cahn-

Hilliard system: The partial wetting case, Phys. D, 209 (2005), pp. 205–235.
[48] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark., NIST Handbook of

Mathematical Functions, Cambridge University Press, New York, 2010.
[49] R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, R. Soc. Lond. Proc. Ser.

A Math. Phys. Eng. Sci., 422 (1989), pp. 261–278.
[50] N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering,

Wiley Interscience Weinheim, Germany, 2010.
[51] S. Puri, A. J. Bray, and J. L. Lebowitz, Phase-separation kinetics in a model with order-

parameter-dependent mobility, Phys. Rev. E(3), 56 (1997), pp. 758–765.
[52] A. Rätz, A. Ribalta, and A. Voigt, Surface evolution of elastically stressed films under

deposition by a diffuse interface model, J. Comput. Phys., 214 (2006), pp. 187–208.
[53] A. Rätz, A. Ribalta, and A. Voigt, Surface evolution of elastically stressed films under

deposition by a diffuse interface model, J. Comput. Phys., 214 (2006), pp. 187–208.
[54] J. Rubinstein, P. Sternberg, and J. B. Keller, Fast Reaction, Slow Diffusion, and Curve

Shortening, SIAM J. Appl. Math., 49 (1989), pp. 116–133.
[55] D. N. Sibley, A. Nold, and S. Kalliadasis, Unifying binary fluid diffuse-interface models in

the sharp-interface limit, J. Fluid Mech., 736 (2013), pp. 5–43.
[56] J. E. Taylor and J. W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via

gradient flows, J. Statist. Phys., 77 (1994), pp. 183–197.
[57] S. Torabi and J. Lowengrub, Simulating interfacial anisotropy in thin-film growth using an

extended Cahn-Hilliard model, Phys. Rev. E(3), 85 (2012) 041603.
[58] S. Torabi, J. Lowengrub, A. Voigt, and S. Wise, A new phase-field model for strongly

anisotropic systems, R. Soc. Lond. Prod. Ser. A Math., Phys. Eng. Sci., 465 (2009),
pp. 1337–1359.

[59] L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools, SIAM, Philadel-
phia, 2000.D

ow
nl

oa
de

d 
03

/0
5/

16
 to

 1
29

.6
7.

24
6.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

456 ALPHA ALBERT LEE, ANDREAS MÜNCH, AND ENDRE SÜLI
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