CAT 2019

Problem Sheet 1

Simplicial Complexes and Homotopy

- (1) Show that for any fixed pair of topological spaces *X* and *Y*, *homotopy* is an equivalence relation on the set of all continuous functions $X \rightarrow Y$.
- (2) Show that *homotopy equivalence* is an equivalence relation on the set of all topological spaces.
- (3) What does it mean for two topological spaces to be homeomorphic (you can use Google if you don't know this already)? Show that homeomorphic topological spaces are automatically homotopy equivalent.
- (4) Show that the one-point space and the two-point space • are *not* homotopy equivalent.
- (5) Let *M* be a finite metric subspace of an ambient metric space (Z, d). Show, for each $\epsilon > 0$, that the associated Čech complex $\check{\mathbf{C}}_{\epsilon}(M)$ is a subcomplex of the Vietoris-Rips complex $\mathbf{VR}_{2\epsilon}(M)$. Then, show that no matter what *Z* you had chosen this $\mathbf{VR}_{2\epsilon}(M)$ is itself a subcomplex of $\check{\mathbf{C}}_{2\epsilon}(M)$.
- (6) (Bonus! No need to solve this or hand it in, but think about how you might try to approach it). Let *M* be a finite subset of points in Euclidean space ℝⁿ (with its standard metric). As a function of *n*, can you find the *smallest* δ so that VR_ε(*M*) is always a subcomplex of Č_δ(*M*)? [Here the Čech complex has been constructed with respect to the ambient Euclidean space ℝⁿ]