
F STRATEGIES FOR
TESTING SERIES

W e have considered many basic convergence tests for infinite series in Chapter 11.The Basic Tests for Infinite Series

(A) Divergence Test

(B) Integral Test

(C) Comparison Test

(D) Limit Comparison Test

(E) Ratio and Root Tests

(F) Leibniz Test for Alternating Series

So given a particular infinite series, which test should you use? There is no single
answer, but there are some facts and general guidelines you should keep in mind. First of
all, to develop your intuition, you should be familiar with the following key examples:

• Geometric series:
∞∑

n=0

rn converges if |r | < 1 and diverges otherwise.

• p-series:
∞∑

n=1

1

n p
converges if p > 1 and diverges otherwise.

•
∞∑

n=0

1

n! converges by the Ratio Test.

•
∞∑

n=1

(−1)n

n
converges conditionally but not absolutely (Example 4, Section 11.4).

A first step, when testing an infinite series

∞∑
n=1

an

is to check that the general term an approaches zero. By the Divergence Test, if lim
n→∞ an

does not exist, or if lim
n→∞ an exists but is not equal to zero, then

∑
an diverges.

EXAMPLE 1 First Check Whether the General Term Approaches Zero Determine the

convergence of (a)
∞∑

n=0

n2

n2 + 1
and (b)

∞∑
n=0

(−1)nn2

n2 + 1
.

Solution Both series diverge:REMINDER The Leibniz Test states that∞∑
n=0

(−1)nan converges if the sequence {an}
is positive, decreasing, and lim

n→∞ an = 0.

This test does not apply to the series in
Example 1 (b) because the terms

an = n2

n2 + 1

do not satisfy either of the two hypotheses:
{an} is not decreasing and lim

n→∞ an is
nonzero.

(a) lim
n→∞

n2

n2 + 1
= lim

n→∞
1

1 + n−2
= 1 (nonzero) ⇒

∞∑
n=0

n2

n2 + 1
diverges

(b) lim
n→∞

(−1)nn2

n2 + 1
= lim

n→∞
(−1)n

1 + n−2
(does not exist) ⇒

∞∑
n=0

(−1)nn2

n2 + 1
diverges

Next, ask yourself if the series resembles a series whose behavior is known. If so,
try using the Comparison or Limit Comparison Tests. The following guidelines may be
useful:
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F2 A P P E N D I X F STRATEGIES FOR TESTING SERIES

If the series contains: Try:

nk or other powers of n Comparison or Limit Comparison with p-series

bn (b constant) Ratio Test

factorials such as n!, (2n)! Ratio Test

nn Root Test

(−1)n Check for absolute convergence or use Leibniz Test

EXAMPLE 2 Check for a Simple Comparison Determine the convergence of

∞∑
n=1

1

1.6n + n−1

Solution The series converges by the Comparison Test because
1

1.6n + n−1
≤ 1

1.6n

and
∞∑

n=1

1

1.6n
is a convergent geometric series

(
with r = 1

1.6

)
. Although the inequal-

ity
1

1.6n + n−1
≤ 1

n−1
= n is also true, it cannot be used to test our series because

∞∑
n=1

n

diverges.

Often there is more than one way of testing the convergence of a series. For example,
we may prove that the following series converges in at least three ways:

∞∑
n=1

1

n2 + 1

1. Integral Test:
∫ ∞

1

dx

x2 + 1
converges.

2. Comparison Test with
∞∑

n=1

1

n2
:

1

n2 + 1
≤ 1

n2
.

3. Limit Comparison with
∞∑

n=1

1

n2
: L = lim

n→∞

1
n2+1

1
n2

= lim
n→∞

n2

n2 + 1
= 1.

When an = f (n) where f (x) is a rational or algebraic function, we may apply the
Limit Comparison Test with a p-series. Recall that the behavior of f (n) as n → ∞ is
determined by the highest powers of n appearing in the numerator and denominator.

EXAMPLE 3 Terms Defined by a Rational Function: Limit Comparison Determine the

convergence of
∞∑

n=1

an =
∞∑

n=1

4n2 + 2n − 9

7n7/2 + 3n2 − 2
.

Solution

Step 1. Determine behavior of an as n → ∞.
The highest powers of n in the numerator and denominator are n2 and n7/2, so an

behaves like the ratio

an ≈ 4n2

7n7/2
= 4

7
n−3/2 as n → ∞.
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This suggests a limit comparison with the p-series
∞∑

n=1

n−3/2.

Step 2. Apply the Limit Comparison Test with bn = n−3/2.

REMINDER By Theorem 1 in Section
4.5, if an , bm �= 0, then

lim
x→±∞

(
an xn + an−1xn−1 + · · · + a0

bm xm + bm−1xm−1 + · · · + b0

)

= an

bm
lim

x→±∞ xn−m

L = lim
n→∞

an

bn
= lim

n→∞

4n2+2n−9
7n7/2+3n2−2

n−3/2

= lim
n→∞

4n2 + 2n − 9

7n7/2 + 3n2 − 2
· 1

n−3/2

= lim
n→∞

4n2 + 2n − 9

7n2 + 3n1/2 − 2n−3/2

= lim
n→∞

4

7

n2

n2
= 4

7
(see marginal note)

Since L exists and
∞∑

n=1

bn =
∞∑

n=1

n−3/2 is a convergent p-series,
∞∑

n=1

an also converges

by the Limit Comparison Test.

EXAMPLE 4 Terms Defined by an Algebraic Function: Limit Comparison Determine

the convergence of
∞∑

n=1

an =
∞∑

n=1

n2 + 2n − 9

(n7 + 5n3)1/3

Solution

Step 1. Determine behavior of an as n → ∞.
Although the denominator (n7 + 5n3)1/3 is an algebraic function rather than a poly-
nomial, its behavior is still determined by its leading term:

(n7 + 5n3)1/3 =
(

n7(1 + 5n−4)
)1/3 = n7/3 (1 + 5n−4)1/3︸ ︷︷ ︸

approaches 1 as n → ∞
Thus

an = n2 + 2n − 9

(n7 + 5n3)1/3
≈ n2

n7/3
= n−1/3 as n → ∞.

Step 2. Apply the Limit Comparison Test with bn = n−1/3.

L = lim
n→∞

an

bn
= lim

n→∞

n2+2n−9
(n7+5n3)1/3

n−1/3
= lim

n→∞
n2 + 2n − 9

(n7 + 5n3)1/3
· 1

n−1/3

= lim
n→∞

n2 + 2n − 9

n2(1 + 5n−4)1/3
=

(
lim

n→∞
n2 + 2n − 9

n2

) (
lim

n→∞
1

(1 + 5n−4)1/3

)
= 1

Since L > 0 and
∞∑

n=1

bn =
∞∑

n=1

n−1/3 is a divergent p-series,
∞∑

n=1

an also diverges by

the Limit Comparison Test.

EXAMPLE 5 Series Involving Factorials: Ratio Test Determine the convergence of

(a)
∞∑

n=1

100n

n! and (b)
∞∑

n=1

n100

n! .
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Solution The limit ρ is zero in both cases, so both series converge by the Ratio Test:

(a) ρ = lim
n→∞

an+1

an
= lim

n→∞

100n+1

(n+1)!
100n

n!
= lim

n→∞
100n+1n!

100n(n + 1)! = lim
n→∞

100

n + 1
= 0

(b) ρ = lim
n→∞

an+1

an
= lim

n→∞

(n+1)100

(n+1)!
n100

n!
= lim

n→∞
(n + 1)100

n100
· n!
(n + 1)!Note that for all k,

lim
n→∞

(n + 1)k

nk
=

(
lim

n→∞
n + 1

n

)k
= 1

=
(

lim
n→∞

(n + 1)100

n100

) (
lim

n→∞
1

n + 1

)
= 1 · 0 = 0

A factorial in the denominator does not guarantee convergence, as the next example
shows.

EXAMPLE 6 Determine the convergence of
∞∑

n=1

en2

(n!)2
.

Solution This series diverges by the Ratio Test because ρ is infinite:

ρ = lim
n→∞

an+1

an
= lim

n→∞

e(n+1)2

((n+1)!)2

en2

(n!)2

= lim
n→∞

e(n+1)2

en2 · (n!)2

((n + 1)!)2

= lim
n→∞

e(n+1)2−n2

(n + 1)2
= lim

n→∞
e2n+1

n2 + 2n + 1
= ∞︸ ︷︷ ︸

L’Hôpital’s Rule

When the general term an involves logarithms, we may use that fact that ln n grows
more slowly than nk for all k > 0. More precisely, it follows from L’Hôpital’s Rule that

lim
n→∞

lna x

nk
= 0 (for all exponents a and k > 0) 1

EXAMPLE 7 Determine the convergence of S =
∞∑

n=1

ln2 n

n5/4
.

Solution The term n5/4 in the denominator suggests comparison with a p-series. We

cannot compare with
∞∑

n=1

1

n5/4
because ln2 n appears in the numerator. However, we can

still show that S converges by writing the general term of S as a product:

In Example 7, there are infinitely many
ways of writing the general term as a
product of a bounded term and n−p with
p > 1. For example, instead of (2), we may
write

ln2 n

n5/4
=

(
ln2 n

n0.05

) (
1

n1.2

)
≤ C

n1.2

for some constant C. Since
∞∑

n=1

1

n1.2
is a

convergent p-series, we conclude again
that S also converges.

1

n5/4
= 1

n1/8
· 1

n9/8

ln2 n

n5/4
=

(
ln2 n

n1/8

)
︸ ︷︷ ︸

bounded

(
1

n9/8

)
︸ ︷︷ ︸

p = 9/8

2
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Applying (1) with a = 2 and k = 1/8, we see that lim
n→∞

ln2 n

n1/8
= 0. In particular, the

sequence {ln2 n/n1/8} is bounded by a constant C , and we obtain

ln2 n

n1/8
≤ C

ln2 n

n5/4
≤ C

(
1

n9/8

)
= C

n9/8
for all n ≥ 1

Since
∞∑

n=1

1

n9/8
is a convergent p-series, the series S converges by comparison.

Note, by contrast with Example 7, that

∞∑
n=1

ln2 n

n3/4
diverges

(
compare with

∞∑
n=1

1

n3/4

)

Indeed, it is easy to check that
ln2 n

n3/4
≥ 1

n3/4
for n ≥ 3. Since the p-series with p = 3/4

diverges, our series also diverges by the Comparison Test.

Exercises
Determine whether the series converges absolutely, converges condi-
tionally, or diverges, by any method.

1.
∞∑

n=1

4−n

2.
∞∑

n=1

(0.2)−n

3.
∞∑

n=0

(−1)nn3

2n3 − 4

4.
∞∑

n=1

32n + 5 · 4n

10n

5.
∞∑

n=1

1

n1/n

6.
∞∑

n=1

n−0.35

7.
∞∑

n=1

(−1)n

ln(n2 + n)

8.
∞∑

n=1

n7n

n!

9.
∞∑

n=1

1

n + en

10.
∞∑

n=1

12n2 + 4n + 5

3n13/4 − 2n

11.
∞∑

n=1

(n9 − n)1/3

n5 + 3n

12.
∞∑

n=1

(−1)n cosh
1

n

13.
∞∑

n=1

1

n2 − 3 · 5−n

14.
∞∑

n=1

n

n2 + n1/4

15.
∞∑

n=1

1

n0.7

16.
∞∑

n=2

1√
n − n−2

17.
∞∑

n=1

1√
n + n−2

18.
∞∑

n=1

(n9 + 4n)1/6

(n9 + 2n)1/3

19.
∞∑

n=1

ln n

n3/2
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20.
∞∑

n=1

25n10 + 5n

n!

21.
∞∑

n=1

25n10 + 5n

1.2n

22.
∞∑

n=1

ln4 n

n3

23.
∞∑

n=2

(−1)nn2

n3 − 1

24.
∞∑

n=0

1

(n2)!

25.
∞∑

n=1

1

2n/2 + n2/n

26.
∞∑

n=1

4n2

n!

27.
∞∑

n=1

10n + e2n

52n

28.
∞∑

n=1

n4 + (−9)n

n!

29.
∞∑

n=1

ln5 n

n1.1

30.
∞∑

n=1

ln n

n1/3

31.
∞∑

n=8

(−1)n ln n√
n

32.
∞∑

n=1

(−e)−3n

33.
∞∑

n=1

n + (−π)n

22n

34.
∞∑

n=1

n8

n!

35.
∞∑

n=1

en2

(n!)3

36.
∞∑

n=3

n2

(n − 1)(n − 2)(n + 3)

37.
∞∑

n=3

(−1)nn

(n − 1)(n − 2)

38.
∞∑

n=1

1

n + ln4 n

39.
∞∑

n=1

(−1)n

n + ln n

40.
∞∑

n=1

1√
n!

41.
∞∑

n=1

1

[√
n ]

42.
∞∑

n=1

(
3n + 5

4n − 3

)n

43.
∞∑

n=2

1

n3 − √
n

44.
∞∑

n=0

(−1)n√
n

3n

45.
∞∑

n=1

10n

nn

46.
∞∑

n=1

n!√
(2n)!

47.
∞∑

n=1

e
√

n
√

n!

48.
∞∑

n=1

(−5)n
√

n!

49.
∞∑

n=2

1

ln4 n

50.
∞∑

n=0

(1 + n−1/2)n

2n

51.
∞∑

n=1

n3e−n2

52.
∞∑

n=1

(
1 + 1

n

)−n2

53.
∞∑

n=3

ln(n2 − n)

n2

54.
∞∑

n=1

en2

nn



A P P E N D I X F STRATEGIES FOR TESTING SERIES F7

Solutions to Appendix F Odd Exercises
1. converges

3. diverges

5. diverges

7. converges conditionally

9. converges

11. converges

13. converges

15. diverges

17. diverges

19. converges

21. converges

23. converges conditionally

25. converges

27. converges

29. converges

31. converges conditionally

33. converges absolutely

35. diverges

37. converges conditionally

39. converges conditionally

41. diverges

43. converges

45. converges

47. converges

49. diverges

51. converges

53. converges




