The Basic Tests for Infinite Series

(A) Divergence Test

(B) Integral Test

(C) Comparison Test

(D) Limit Comparison Test

(E) Ratio and Root Tests

(F) Leibniz Test for Alternating Series

<«-- REMINDER The Leibniz Test states that
o0

> (=1)"ay converges if the sequence {ay}

n=0

is positive, decreasing, and lim a, = 0.
n—0oQ

This test does not apply to the series in

Example 1 (b) because the terms

n2

n = n?+1

do not satisfy either of the two hypotheses:

{an} is not decreasing and lim a, is
n—0oQ

nonzero.

STRATEGIES FOR

FITESTING SERIES

e have considered many basic convergence tests for infinite series in Chapter 11.

So given a particular infinite series, which test should you use? There is no single
answer, but there are some facts and general guidelines you should keep in mind. First of
all, to develop your intuition, you should be familiar with the following key examples:

o0
» Geometric series: Z r'* converges if |r| < | and diverges otherwise.
n=0
1
e p-series: Z — converges if p > 1 and diverges otherwise.
n=1 n?
=1
Z — converges by the Ratio Test.
= n!
o0 n
3D

n=1

converges conditionally but not absolutely (Example 4, Section 11.4).

A first step, when testing an infinite series

00

n=1
is to check that the general term a,, approaches zero. By the Divergence Test, if lim a,
n—oo

does not exist, or if lim a,, exists but is not equal to zero, then Z ap diverges.
n—oo

B EXAMPLE 1 First Check Whether the General Term Approaches Zero Determine the

convergence of (a) - and (b) —
—n +1 —n +1

Solution Both series diverge:

2 2

(a) lim diverges

o
A T T = (onzer0) = X_;

n
— n?+1

1\ ,2 _ 1\
() lim M — lim &

0 n,2
(does not exist) = E u diverges M
n—oo n2 +1 n—oo | 4+ n—2 = n2 +1

Next, ask yourself if the series resembles a series whose behavior is known. If so,
try using the Comparison or Limit Comparison Tests. The following guidelines may be
useful:
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If the series contains: Try:

n* or other powers of n Comparison or Limit Comparison with p-series

b" (b constant) Ratio Test

factorials such as n!, (2n)! Ratio Test

n'" Root Test

(=" Check for absolute convergence or use Leibniz Test

B EXAMPLE 2 Check for a Simple Comparison Determine the convergence of

i 1

— 1.6" +n~!

n=1

1 1

Solution The series converges by the Comparison Test because ——— <
1.6" +n-1 7 1.67

o0

1 1
and Z e is a convergent geometric series (with r= R) Although the inequal-

n=1

. 1 . ) . —
ity ——— = n is also true, it cannot be used to test our series because Z n
1.6" =+ Vl71 n=1

diverges. [ ]

1
< —
n-1

Often there is more than one way of testing the convergence of a series. For example,
we may prove that the following series converges in at least three ways:

> 1
l;nz—i-l

®  dx
1. Integral Test: / ——— converges.
1 x24—1

> 1 1 1
2. Comparison Test with —: < —.
P r; n?" n?2+1 " n?
.. . . 1 . n2]+1 . ’12
3. Limit Comparison with E —: L= lim = lim =1L
n2 n—oo L n—o00 p2 1
n=1 2 +

n

When a, = f(n) where f(x) is a rational or algebraic function, we may apply the
Limit Comparison Test with a p-series. Recall that the behavior of f(n) asn — oo is
determined by the highest powers of n appearing in the numerator and denominator.

B EXAMPLE 3 Terms Defined by a Rational Function: Limit Comparison Determine the

i 4n? +2n -9

o0
convergence of Z =2 7,72 {32 — 2"

n=1 n=1
Solution

Step 1. Determine behavior of a,, as n — oc.
The highest powers of n in the numerator and denominator are n? and n’/2, so a,
behaves like the ratio

a, ~ =-n

T2 T

asn — oQ.
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o0
This suggests a limit comparison with the p-series Z n=32,

n=1

Step 2. Apply the Limit Comparison Test with b, = n=3/2,
4n%42n—9
. . 721 32—
L — llm _}’l — 11 M
n—oo b, n— 00 n—3/2
4n®+2n -9 1
= lim .
n—oo Tn7/2 +3p2 =2 pn=3/2
; ; . 4n%+2n -9
<«-- REMINDER By Theorem 1 in Section = lim 5 72 =
4.5, if a, by # 0, then n=>00 Tn= 4 3n'/2 —2n
n n—1 4n% 4 .
. anx" +ay_1x"" " +---Fap = lm -—— == (see marginal note)
lim — n—o0 7 n2 7
x—>%00 bmx’” +bm_1xm +~-~+b0
o0 o o
a . — . . —3/2 . .
= i xl:Iiloo X Since L exists and Z b, = Z n>?isa convergent p-series, Z ay also converges
o n:ll n=1 n=1
by the Limit Comparison Test. |

B EXAMPLE 4 Terms Defined by an Algebraic Function: Limit Comparison Determine
i n?+2n—9

o0
the convergence of E a, = W
n n -

n=1 n=1
Solution

Step 1. Determine behavior of a, asn — oo.
Although the denominator (n” + 503 is an algebraic function rather than a poly-
nomial, its behavior is still determined by its leading term:

1/3
(n” + 5013 = (n7(1 + 5n‘4)) — a3 (145043
—_—
approaches 1 asn — 0o
Thus

n>+2n—9 n? —1/3
5 =n asn — oo.

B NV E R
Step 2. Apply the Limit Comparison Test with b, = n~1/3,
24219
L g G W i42n=9
Tl b, bt no1B  nbee (nl +5n0)B  n-1/3

T o o e S T o B AN 1 1
_nl>HOIO n2(1+5n—4)1/3 - ni>nolo n2 nl>ngo (1+5n—4)1/3 -

o0 o o0

Since L > 0 and Z b, = Zn_l/ Sisa divergent p-series, Zan also diverges by
n=1 n=1 n=1

the Limit Comparison Test. |

B EXAMPLE 5 Series Involving Factorials: Ratio Test Determine the convergence of

00 100" [ nlOO
() 2 pr and (b) 27
n= n=
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Note that for all k,

i+ DF o on+ 1\
lim = lim =1

n—o00 nk

In Example 7, there are infinitely many
ways of writing the general term as a
product of a bounded term and n=P with

p > 1. For example, instead of (2), we may
write

In2n In2n 1 C
L5a =005 )\ iz ) =02

l
for some constant C. Since Z —— isa
n= 1
convergent p-series, we conclude aga/n

that S also converges.

Solution The limit p is zero in both cases, so both series converge by the Ratio Test:

100n+1
(a)p:liman—H:li M:lmﬂzim 1002
=00 dp n—00 % n—oo 100"(n + 1)! n—oon—+1
(n+1)100 100
o Angl o exDr . (m+ 1) n!
(b) p_nlingo an —nlglgo ﬂ _nlggo 17100 n+ 1!
n!
1 100 1
=<lim %)(m >=1.0=0 m
n—00 n n—oon + 1

A factorial in the denominator does not guarantee convergence, as the next example
shows.

n2

B EXAMPLE 6 Determine the convergence of Z e
n

Solution This series diverges by the Ratio Test because p is infinite:

S+ 1)?

IS (n+1)? 12
. a . 2 e n!
p= lim ntl g (@D . (n!)
n—o0 n—o0o  on n—oo e ((n+ D2
(n")?
. en+D?—n’ _ o2n+1
=lm —— = lim ———— = [ ]

n—o0 n2 4+ 2n + 1
L’Hopital’s Rule

n—oo (n 4+ 1)2

When the general term a, involves logarithms, we may use that fact that Inn grows
more slowly than ¥ for all kK > 0. More precisely, it follows from L’Hdpital’s Rule that

a

1
lim - kx =0 (for all exponents a and k > 0)

n—oo n

In?
B EXAMPLE 7 Determine the convergence of § = Z o

Solution The term n°/* in the denominator suggests comparison with a p-series. We
o0

1
cannot compare with Z A because In” n appears in the numerator. However, we can

="
still show that S converges by writing the general term of S as a product:

1 1 1
2374 /8 " 978

In2n In“n
Pz =< l/8> ( 9/8)

bounded p=9 / 8
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2

1
Applying (1) with a = 2 and k = 1/8, we see that lim nl_/;z = 0. In particular, the
n—-oo n
1/8

sequence {ln2 n/n"/°} is bounded by a constant C, and we obtain

In?n
/8

In” n 1 C for all
WSC m :m ora nZl

<C

o
1
Since E —5/g 18 a convergent p-series, the series S converges by comparison. ]
n

n=1

Note, by contrast with Example 7, that

00

I n 4 - <1
E W 1verges (Compare Wit E 1 W)
n= n=

2

In 1
Indeed, it is easy to check that 7 2 33 for n > 3. Since the p-series with p = 3/4
n3/4 n3/4

diverges, our series also diverges by the Comparison Test.

Exercises
Determine whether the series converges absolutely, converges condi- 10 i 12n% 4+ 4n +5
tionally, or diverges, by any method. — 3p13/4 —2pn

o0
1. 24*"
n=1

o0
2. 2(0.2)—"
n=1

e " 3
3y B
— 213 — 4
n=0
X, 321 4547
107

o0 (I’l9 _ I’l)l/3

11.
r; n +3n
& 1
12. - —
Z( )" cosh .
n=1
e 1
13. R B —
Z nr—3.5n
n=1
o0
n
14. _
Z n? +nl/4
n=1
1
15. Z 57
n=1

o 1
16. 27_2

o0
1
17. e
n;l Vn+n2
18. g S

19.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
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n=1

2

n=3

2

n=3

25110 4 51

25110 4 55
1.on

n+ (—m"
22n
8
nl
e’
()3
n2

(n=Dm—-2(n+3)

(=D"n

(n=1n-2)

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.




Solutions to Appendix F Odd Exercises

11.
13.
15.
17.
19.
21.
23.
25.
27.

converges

. diverges
. diverges
. converges conditionally

. converges

converges
converges

diverges

diverges

converges

converges

converges conditionally
converges

converges

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

51.

53.
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converges
converges conditionally
converges absolutely
diverges

converges conditionally
converges conditionally
diverges

converges

converges

converges

diverges

converges

converges
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