2

PROBLEM 1 (10 POINTS)

Consider the function $f(x) = x^{\ln(x)}$.

Part A. [7 points] Compute the derivative df/dx. Make sure you explain which differentiation rules you are using!

	Set	y = .	χ ln(χ)	-1 point
and the same	Iny =		$d(N_{x}(x)) \leftarrow (q + p p q p v)$	- 2 psints
	d(Iny		2 ln(x). / dx e-(chain rule)	I 2 points
	dy/dx		2 ln(x) · 8/x	
•	-0/9X	ज्युल्यों ने । - क्यूल्यों ने ।	ZINA XXXX	- 2 points

Part B. [3 points] Use a convenient linear approximation to estimate f(1.01e).

$$f(x) \approx f(a) + f'(a)(x-a)$$
] - 1 point set $a = e$: $f(e) = e$, and $f'(e) = 2$] - 1 point so, $f(1.01e) = e + 2(0.01e) = [1.02e]$] - 1 point

PROBLEM 2 (10 POINTS)

If x and y are related by the equation $\cos(xy) = y^3 - x^2$, find $\frac{dy}{dx}$ in terms of of x and y. Make sure you explain the differentiation rules which you have used!

Grade
$$d(\cos(xy)) = d(y^3 - x^2)$$
 (linearity) $d(xy) = d(y^3) - d(x^2)$ $d(xy) = 2$ points.

Postuct $d(xy) = d(y^3) - d(x^2)$ $d(xy) = 2$ points.

Postuct $d(xy) = d(xy) + y d(x) = 3y^2 d(x^2 - 2x d$

Problem 3 (15 Points)

Consider the polynomial $f(x) = \frac{1}{2}x^4 + \frac{2}{3}x^3 - 6x^2 + 5$.

Part A. (7 Points) Find all the critical points of f.

$$f'(x) = 0$$
 $f'(x) = 0$ $f'($

Part B. (7 Points) Classify each critical point from Part A as max, min or fail.

$$f'(x) = 6x^2 + 4x - 12$$
. J-1 points
So, $f''(0) = -12 < 0$, 0 is max J-2 points
 $f''(2) = 20 > 0$ 2 is min J-2 points
 $f''(-3) = 30 > 0$ -3 is Min J-2 points

Part C. (6 Points) Find the global max and min of f on [-1, 1].

The only critical Part of fin EVI is
$$2 + 1$$
 point $3 + 1 + 2 + 2 + 2 + 3 + 6 + 5 = \frac{1}{6} + 1$ point $\frac{3}{12} + \frac{1}{12} + \frac{1}{$

Consider the function $g(x) = (x-4)^{-1/2}$.

Part A. (4 Points) What is the domain of g?

A. (4 Points) What is the domain of
$$g$$
?

$$g(X) = \frac{1}{12} = \frac{1}$$

Part B. (7 Points) What is the coefficient of the $(x-8)^3$ term in the Taylor series of g about x = 8?

Part B. (7 Points) What is the coefficient of the
$$(x-8)^3$$
 term in the Taylor series of g about $x=8$?

$$g(x) = (x-4)^{1/2}$$

$$g(x) = (x-4)^{1/2}$$
For brownial (1+y) the y form was coeff term was coef

Part C. (4 Points) In which interval does the Taylor series from Part B converge?

Problem 6 (15 Points)

Find the Taylor series of $f(x) = (1 + \arctan(x))^{-1/2}$ near x = 0, including all terms of order 3 and below.

order 3 and below.

1 point
$$\frac{1}{2}(1+y)^2 = \frac{1}{2}(\frac{x}{2})^4$$
, so when $y = avoidan x$,

4 points $\frac{1}{2}(x) = \frac{1}{2}arcdon(x) + \frac{1}{2}accdon(x) - \frac{1}{2}accdon(x) + \frac{1}{2}accdon(x) + \frac{1}{2}accdon(x) - \frac{1}{2}accdon(x) + \frac{1}{2}acc$

PROBLEM 7 (10 POINTS)

Consider the functions $f(x) = \ln(x)$ and $g(x) = x^3$.

Part A. (2 Points) Find a function h(x) so that h(x) = 0 only at those x values where f(x) = g(x).

Part B. (6 Points) What is the update rule to obtain x_{n+1} from x_n when solving h(x) = 0 by Newton's method?

$$h(x) = \frac{1}{x^2} + \frac{3x^2}{3x^2} + \frac{3x^2}{3x^2} + \frac{2 points}{5}$$

$$x_{n,i} = \frac{f(x_n)}{f'(x_n)} + \frac{1}{x^2} + \frac{2 points}{3x^2} + \frac{2 points}{3x^2}$$

$$x_n = \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{2 points}{3x^2} + \frac{1}{x^2} + \frac{1}{x^$$

6

Part C. (2 Points) Use your update rule from Part B to compute x_1 when $x_0 = 1$.

This problem asks for two definitions. No partial credit will be awarded for incorrect answers.

Part A. (3 Points) Complete this sentence, using suitable ϵ 's and δ 's as necessary: *the limit* $\lim_{x\to a} f(x)$ *equals* L *if* ...

For every \$70, there is \$70 so that]-3

[x-a| < 8 means | f(x)-f(a) | < 8.

Part B. (2 Points) Fill up the box with a suitable expression for f'(x):

$$f'(x) = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right]$$

1-205