MIDTERM EXAM \quad

MATH 104, SECTION 007

Name:

The use of calculators, computers and similar devices is neither necessary nor permitted during this exam. Correct answers without proper justification will not receive full credit. Clearly highlight your answers and the steps taken to arrive at them: illegible work will not be graded. You may find the following information useful: for $|x|<1$ and about the point 0 ,

$$
\begin{aligned}
\arctan (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1} \\
(1+x)^{\alpha} & =\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}, \text { where }\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}
\end{aligned}
$$

Problem	Points	Earned
1	10	
2	10	
3	15	
4	20	
5	15	
6	10	
7	5	
8	100	

Consider the function $f(x)=x^{\ln (x)}$.
Part A. [7 points] Compute the derivative $\mathrm{df} / \mathrm{dx}$. Make sure you explain which differentiation rules you are using!

Part B. [3 points] Use a convenient linear approximation to estimate f(1.01e).

Problem 2 (10 points)
If x and y are related by the equation $\cos (x y)=y^{3}-x^{2}$, find $\frac{d y}{d x}$ in terms of of x and y. Make sure you explain the differentiation rules which you have used!

Problem 3 (15 Points)

Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)-2 x}{x(\cos (x)-1)} .
$$

Problem 4 (20 Points)

Consider the polynomial $f(x)=\frac{1}{2} x^{4}+\frac{2}{3} x^{3}-6 x^{2}+5$.
Part A. (7 Points) Find all the critical points of f.

Part B. (7 Points) Classify each critical point from Part A as max, min or fail.

Part C. (6 Points) Find the global max and min of f on $[-1,1]$.

Problem 5 (15 Points)
Consider the function $g(x)=(x-4)^{-1 / 2}$.
Part A. (4 Points) What is the domain of g ?

Part B. (7 Points) What is the coefficient of the $(x-8)^{3}$ term in the Taylor series of g about $x=8$? There is no need to simplify the answer too much.

Part C. (4 Points) In which interval does the Taylor series from Part B converge?

Problem 6 (15 Points)

Find the Taylor series of $f(x)=(1+\arctan (x))^{-1 / 2}$ near $x=0$, including all terms of order 3 and below.

Consider the functions $f(x)=\ln (x)$ and $g(x)=x^{3}-8$.
Part A. (2 Points) Find a function $h(x)$ so that $h(x)=0$ only at those x values where $f(x)=g(x)$.

Part B. (6 Points) What is the update rule to obtain x_{n+1} from x_{n} when solving $h(x)=$ 0 by Newton's method?

Part C. (2 Points) Use your update rule from Part B to compute x_{1} when $x_{0}=1$.

Problem 8 (5 Points)

This problem asks for two definitions. No partial credit will be awarded for incorrect answers.
Part A. (3 Points) Complete this sentence, using suitable ϵ^{\prime} s and δ 's as necessary: the limit $\lim _{x \rightarrow a} f(x)$ equals Lif...

Part B. (2 Points) Fill up the box with a suitable expression for $f^{\prime}(x)$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \square
$$

For Scratchwork

