MIDTERM EXAM 3

MATH 104, SECTION 007

Name:

The use of calculators, computers and similar devices is neither necessary nor permitted during this exam. Correct answers without proper justification will not receive full credit. Clearly highlight your answers and the steps taken to arrive at them: illegible work will not be graded.

Problem	Points	Earned
1	15	
2	15	
3	10	
4	10	
5	10	
6	15	
7	100	
Total	10	

Problem 1 (15 points)

Consider the function $f(x)=\frac{\ln (x)}{x}$ defined for all $x>0$.
Part A. [3 points] For which values $b \geqslant 1$ is $f(x)$ a probability density function (PDF) on $[1, b]$?

Part B. [6 points] Find the expectation $\mathbb{E}\left[x^{2}\right]$ when x is chosen randomly according to the PDF above.

Part C. [6 points] Set up, but do not solve, an expression which computes the variance $\mathbb{V}\left[x^{2}\right]$.

Problem 2 (15 points)

Let R be the region defined in the plane by $x \geqslant 0, y \geqslant 0$ and $y \leqslant 1-\frac{x^{2}}{4}$
Part A. [4 Points] Find the area of R.

Part B. [5 Points] Find \bar{x}, the x-coordinate of the centroid of R.

Part C. [6 Points] Find \bar{y}, the y-coordinate of the centroid of R.

Problem 3 (io Points)

What is the probability that a point (x, y) sampled uniformly from the unit disk (defined by $x^{2}+y^{2}=1$) satisfies $x+y>1$?
(continue)

Problem 4 (25 Points)

Consider the function $f(x)=\sqrt{x}$ for x between 0 and 4 , and let S be the solid defined by rotating the graph of this function about the y axis.

Part A. (5 Points) What is the volume of S?

Part B. (10 Points) Given a density $\rho(\mathrm{y})=\frac{1}{\mathrm{y}^{3}}$, find the work done to dig a S-shaped ditch.

Part C. (1o Points) Assuming a constant density ρ, find the moment of inertia when rotating S about its central axis.

Problem 5 (io Points)
Consider the function $y=\frac{x^{2}}{4}-\frac{\ln (x)}{2}$ for $1 \leqslant x \leqslant e$.
Part A. [5 Points] Find the arclength of the graph of y.

Part B. [5 Points] Set up, but do not solve, an integral which computes the surface area of the graph of y rotated about the x-axis

Problem 6 (io Points)

Use polar coordinates to compute the area lying inside the disk of radius 2 with center $(0,0)$ for which $y \geqslant 1$.

Problem 7 (15 Points)

For which interest rate $r>0$ will the income stream $I(t)=t$ (where $0 \leqslant t<\infty$) have present value $=10,000$?

For Scratchwork

