Lecture 6 wed. Sept. 9th
Questions? Trouble understanding binomial formula

$$
\begin{aligned}
& \text { Questions? Trouble understanding binomial formula } \\
& (1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} \quad \text { where }\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!} \quad \text { Note }\binom{\alpha}{0}=0 \quad \begin{array}{l}
\text { Stopping } \\
\text { term }
\end{array} \\
& \begin{array}{l}
\alpha \text {, any } \\
\text { real number }
\end{array} \\
& \text { example: }\binom{10}{3}=\frac{10.9 .8 \cdot 7 \%}{3!2 \%}=\frac{10.9 .8<\text { stopping }}{3!} \begin{array}{l}
\text { term } \\
(10-3+1)
\end{array}
\end{aligned}
$$

Probability

$$
\begin{aligned}
& \text { Probability } \\
& \binom{n}{r}=\text { the number of ways to } \\
& \text { Chooser objects from }
\end{aligned}=\frac{n!}{(n-r)!r!} \text { (n) } \quad \begin{aligned}
& \text { when order doesn't } \\
& \text { matter }
\end{aligned}
$$

Trouble under standing big O notation.
$b \operatorname{ly} 0$ is a formal replacement to H.O.T. (higher order terms)

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+H .0 . T \\
& \cos x=1-\frac{x^{2}}{2!}+0\left(x^{4}\right)
\end{aligned}
$$

(1) Fac all x "near" 0 , we say $f(x)$ is $O(g(x))$ as $x \rightarrow 0$ if $|f(x)| \leqslant c|g(x)|$ for someconstant C " $\frac{f(x)}{g(x)}$ is bounded as $x \rightarrow 0$ "
(2) For all large x, we say $f(x)$ is $\delta(g(x))$ as $x \rightarrow \infty$ if $|f(x)| \leqslant c \lg (x) \mid$ for some constant C

The definition of the derivative :

Derivative (first definition)

$$
f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

If the limit does not exist, then the derivative is not defined at a.

This first definition emphasizes that the derivative is the rate of change of the output with respect to the input. The next definition is similar.

Derivative (second definition)

$$
f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

If the limit does not exist, then the derivative is not defined at a.

This definition can be interpreted as the change in output divided by the change in input, as the change in input goes to 0 . One can see this is equivalent to the first definition by making the substitution $h=x-a$ The third definition looks quite different from the first two.

Third definition

$$
\begin{aligned}
& f(\underbrace{a+h}_{\text {Changein }})=f(a)+\underbrace{\left[\left.\frac{d f}{d x}\right|_{x=a}\right]} \cdot h+O \underbrace{\left(h^{2}\right)} \rightarrow 0 \text { as } h \rightarrow 0 \\
& \text { First order variation } \\
& \text { of the out put } \\
& \text { measures the } \\
& \begin{array}{l}
\text { cores funding chance } \\
\text { in the out put }
\end{array} \\
& \begin{array}{c}
\text { pres founding change } \\
\text { in the out put } \\
\text { at } x=a
\end{array}
\end{aligned}
$$

$$
f(x+h)=f(x)+\underbrace{\frac{d f}{d x}}_{\substack{\text { formula for } \\ \text { the derivative } \\ \text { at any value } X}} h+O\left(h^{2}\right) .
$$

Examples

$x(t)=$ position as a function of time $\frac{d x}{d t}=\frac{\text { change in position }}{\text { change in time }}=$ velocity $=v(t)$
$\frac{d v}{d t}=\frac{\text { change invelocity }}{\text { Change in time }}=$ acceleration $=a(t)=\underbrace{\frac{d}{d t}\left(\frac{d x}{d t}\right)}$
$Q(t)=\begin{aligned} \text { charge in a circuit } \\ \text { as a function of time }\end{aligned}$
$\frac{d Q}{d t}=\frac{\text { change in charge }}{\text { Change in time }}=\underbrace{\text { current }}_{I(t)}$

Differentiation rules
Suppose u and v are differentiable functions of x. Then the following rules (written using the shorthand differential notation) hold:

LINEARITY

$$
d(u+v)=d u+d v \quad \text { and } \quad d(c \cdot u)=c \cdot d u, \text { where } c \text { is a constant. }
$$

PRODUCT

$$
d(u \cdot v)=u \cdot d v+v \cdot d u
$$

CHAIN

$$
d(u \circ v)=d u \cdot d v
$$

For the quotient rule, you can tho k of it as a product rule.

$$
\begin{aligned}
& h(x)=\frac{f(x)}{g(x)}=f(x) \cdot \frac{1}{g(x)}=f(x) \cdot[g(x)]^{-1} \\
& h^{\prime}(x)=f^{\prime}(x) \cdot[g(x)]^{-1}+f(x) \cdot-1[g(x)]^{-2} \cdot g^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
& \frac{f^{\prime}(x)}{g(x)}-\frac{f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

Use the third definition of the derivative to prove the

$$
\begin{aligned}
& f(x+h)=f(x)+\frac{d f}{d x} h+O\left(h^{2}\right) . \\
& \text { product } \\
& \text { rule } \\
& f(x)=u(x) \cdot v(x)=(u \cdot v)(x) \\
& f(x+h)=(u \cdot v)(x+h) \\
& f(x+h)=u(x+h) \cdot v(x+h) \\
& f(x+h)=\left[u(x)+\frac{d u}{d x} \cdot h+\sigma\left(h^{2}\right)\right] \cdot\left[v(x)+\frac{d v}{d x} \cdot h+O\left(h^{2}\right)\right] \\
& f(x+h)=u(x) \cdot v(x)+u(x) \frac{d v}{d x} \cdot h+\left(u(x) \cdot \cdot\left(h^{2}\right)\right. \\
& \begin{aligned}
+u(x) \frac{d v}{d x} \cdot h & +(x) \cdot(h) \\
+v(x) & +\frac{d u}{d x} \frac{d v}{d x} h^{2}+\frac{d u}{d x} \cdot h \cdot O\left(h^{2}\right) \\
& +\left(x(x) O\left(h^{2}\right)+\frac{d v}{d x} h O\left(h^{2}\right)+O\left(h^{2}\right) O\left(h^{2}\right)\right.
\end{aligned} \\
& \left.f(x+h)=m(x) \cdot v(x)+\left[h(x) \frac{d v}{d x}+v(x) \frac{d x}{d x}\right] \cdot h+O\left(h^{2}\right)^{2}\right)^{2}
\end{aligned}
$$

