QUIZ 1 SOLUTIONS

Problem 1

(15 Points) What is the Taylor series of $f(x)=\frac{1}{1-\arctan (2 x)}$ including all terms with order $\leqslant 3$?
Ans: At x near 0 , we have (for $|\arctan (2 x)|<1$) the geometric series:

$$
\frac{1}{1-\arctan (2 x)}=1+\arctan (2 x)+\arctan ^{2}(2 x)+\arctan ^{3}(2 x)+O\left(\arctan ^{4}(x)\right)
$$

and also that

$$
\arctan (2 x)=2 x-\frac{(2 x)^{3}}{3}+O\left(x^{5}\right)
$$

Plugging the second expression into the first, we have

$$
\begin{aligned}
\frac{1}{1-\arctan (2 x)}=1 & +\left(2 x-\frac{(2 x)^{3}}{3}+\mathrm{O}\left(x^{5}\right)\right)+\left(2 x-\frac{(2 x)^{3}}{3}+\mathrm{O}\left(x^{5}\right)\right)^{2} \\
& +\left(2 x-\frac{(2 x)^{3}}{3}+\mathrm{O}\left(x^{5}\right)\right)^{3}+\mathrm{O}\left(x^{4}\right)
\end{aligned}
$$

Collecting the terms of order three and below, we obtain

$$
\arctan (2 x)=1+2 x+4 x^{2}+\frac{16}{3} x^{3}+\mathrm{O}\left(x^{4}\right)
$$

Problem 2

(5 Points) For which values of x does the Taylor series for $f(x)=\frac{1}{x}$ about $x=1$ converge? You don't need to compute terms, just figure out the interval!

Ans: We know that the Taylor series of $\frac{1}{1-y}$ at $y=0$ converges whenever $|y|<1$, so let's rewrite:

$$
\frac{1}{x}=\frac{1}{1-(1-x)}
$$

and conclude that we have convergence whenever $|1-x|<1$, and hence for $0<x<2$.

Problem 3

(10 Points) What is $\lim _{x \rightarrow a} \frac{x-a}{\ln x-\ln a}$ for a constant $a>0$?
Ans: Taylor series will not be too helpful here since we'd have to expand $\ln (x)$ about $a>0$ rather than expanding $\ln (1+x)$ near $x=0$. So we use l'Hôpital's rule instead, checking first that $\frac{x-a}{\ln x-\ln a}$ has the familiar $0 / 0$ form at $x=a$. Differentiating both numerator and denominator with respect to x, we obtain

$$
\lim _{x \rightarrow a} \frac{x-a}{\ln x-\ln a}=\lim _{x \rightarrow a} \frac{1}{1 / x}=a .
$$

Problem 4

(10 Points) Find the largest integer n so that $\sin (x)-\arctan (x)$ is $O\left(x^{n}\right)$ as $x \rightarrow 0$.
Ans: Just Taylor-expand both functions near 0 :

$$
\sin (x)=x+\frac{x^{3}}{6}+O\left(x^{5}\right) \text { and } \arctan (x)=x-\frac{x^{3}}{3}+O\left(x^{5}\right)
$$

so $\sin (x)-\arctan (x)=\frac{x^{3}}{6}+O\left(x^{5}\right)$. Now, let's examine the limit of $\frac{\sin (x)-\arctan (x)}{x^{n}}$ as $x \rightarrow 0$ and see which n-value guarantees finiteness:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-\arctan (x)}{x^{n}}=\lim _{x \rightarrow 0} \frac{\frac{x^{3}}{6}+O\left(x^{5}\right)}{x^{n}}=\lim _{x \rightarrow 0} \frac{x^{3-n}}{6}+O\left(x^{5-n}\right)
$$

which is finite only for $n \leqslant 3$, so the largest possible n is 3 .

Problem 5

(10 Points) What is the Taylor series (include all terms of order 2 and below) of $f(x)=x^{1 / 2}$ near $x=4$? What is your best guess for the value of $\sqrt{4.4}$ obtained by using only the linear part (i.e., terms of order 0 and 1 only) of this series?
Ans: The Taylor series of $f(x)$ at $x=a$ has the form

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+O\left((x-a)^{3}\right)
$$

Clearly, $f(4)=2$, so we only need to compute the first and second derivatives of $f(x)=x^{1 / 2}$ and evaluate them at 4 . First, note that

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, \text { so } f^{\prime}(4)=\frac{1}{4} .
$$

Next, we have

$$
f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}, \text { so } f^{\prime \prime}(4)=-\frac{1}{32} .
$$

Therefore, the desired Taylor series is

$$
f(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+O\left((x-4)^{3}\right)
$$

Note that the linear part is just $2+\frac{1}{4}(x-4)$, so it evaluates to 2.1 at $x=4.4$.

