QUIZ 3 SOLUTIONS

Problem 1

(15 Points) Let R be the region obtained by rotating the graph of $y=\sin ^{2}(x)$ for $0 \leqslant x \leqslant \pi$ about the y-axis. What is the volume of R ? (Hint: a dx integral will be nicer than a dy integral)
Answer: Here's a picture of what we're up against: a dx integral involves slicing across the blue line while a dy integral involves slicing across the red line:

The reason I suggested that you chop along blue rather than red is simple: we know that the height of the blue slice above each x is $\sin ^{2}(x)$, whereas if you wanted to figure out the width of the red slice at height y, then you'd have to solve $\sin ^{2}(x)=y$ for x in terms of y. So, we chop along the blue lines, and note that the area element involves a cylinder of radius x and height $\sin ^{2}(x)$. So, the area element is $d A=2 \pi x \sin ^{2}(x) d x$, and the limits clearly run from 0 to π. Finally, we have an integral which computes the desired area:

$$
A=2 \pi \int_{0}^{\pi} x \sin ^{2}(x) d x
$$

As usual, we immediately replace the $\sin ^{2}(x)$ by $\frac{1-\cos (2 x)}{2}$, which leaves

$$
A=\pi \int_{0}^{\pi}(x-x \cos (2 x)) d x=\pi \int_{0}^{\pi} x d x-\pi \int_{0}^{\pi} x \cos (2 x) d x .
$$

The first integral is very straightforward, and evaluates to $\frac{\pi^{3}}{2}$, so we attack the second integral via integration by parts. Set $u=x$ and $d v=\cos (2 x) d x$ so that $d u=d x$ and $v=\frac{1}{2} \sin (2 x)$. Now,

$$
A=\frac{\pi^{3}}{2}-\left.\frac{x}{2} \sin (2 x)\right|_{x=0} ^{x=\pi}-\frac{1}{2} \int_{0}^{\pi} \sin (2 x) d x
$$

The middle term and final integral both evaluate to zero, so in fact $A=\frac{\pi^{3}}{2}$.

Problem 2

(10 Points) Find the area of the region contained between the graphs of $x=y^{2}-2$ and $x=y$.
Answer: I really hope you drew a picture for this one. Behold: we want the area of the gray shaded region. The blue line is $y=x$ and the red parabola is $x=y^{2}-2$ (it touches the x-axis at $-2)$.

We need to figure out the two points where red intersects blue, but even before that, note that we want a dy integral rather than a $d x$ integral, because chopping along the x-axis would require two integrals. Now, to figure out the points of intersection, we must solve

$$
y=y^{2}-2, \text { so } y^{2}-y-2=0, \text { or }(y-2)(y+1)=0
$$

So, y runs from -1 to 2 . At each such y-value, our shaded region is bounded on the left by $x=y^{2}-2$ and on the right by $x=y$. So, the area element is $d A=\left(y-\left(y^{2}-2\right)\right) d y$, and our area is now computable by a single integral:

$$
\begin{aligned}
A & =\int_{-1}^{2}\left(y-y^{2}+2\right) d y \\
& =\left.\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}+2 y\right)\right|_{y=-1} ^{y=2} \\
& =\left(\frac{4}{2}-\frac{8}{3}+4\right)-\left(\frac{1}{2}+\frac{1}{3}-2\right) \\
& =\frac{9}{2}
\end{aligned}
$$

Problem 3

(15 Points) Use polar coordinates to find the area contained inside the circle of radius 1 centered at $(1,0)$ but outside the circle of radius 1 centered at $(0,0)$.

Answer: Picture! We want the gray region in the diagram below: it is outside the blue circle (radius 1 , centered at the origin) and inside the red circle (radius 1 , centered at $(1,0)$):

includegraphicsProb3.png

We must determine the θ-coordinates of the intersection points A and B shown above. The first circle has cartesian equation $x^{2}+y^{2}=1$, which is the polar equation $r=1$. The second circle has equation $(x-1)^{2}+y^{2}=1$, which becomes $r=2 \cos (\theta)$. Setting these two equal, we have $1=2 \cos (\theta)$, which means that $\theta= \pm \frac{\pi}{3}$ are the coordinates of A and B.
For each such θ value, the area element is a difference of two triangular wedges coming out from the origin: the first one terminates at the blue curve and the second one at the red curve. Their difference has area $\left.\mathrm{d} A=\frac{1}{2} 4 \cos ^{2}(\theta)-1\right) \mathrm{d} \theta$. So,

$$
A=\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left(4 \cos ^{2}(\theta)-1\right) d \theta
$$

Now, use $4 \cos ^{2}(\theta)=2(1+\cos (2 \theta))$ to obtain

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos (2 \theta)+1) d \theta \\
& =\left.\frac{1}{2}(\sin (2 \theta)+\theta)\right|_{\theta=-\pi / 3} ^{\theta=\pi / 3}
\end{aligned}
$$

We are evaluating an odd function in a symmetric domain, so we can cancel the leading $\frac{1}{2}$ and just evaluate at the upper limit of $\frac{\pi}{3}$. This gives $A=\sin (2 \pi / 3)+\pi / 3=\sqrt{\frac{\sqrt{3}}{2}+\frac{\pi}{3}}$.

Problem 4

(10 Points) Let A be the region contained above $y=x^{2}+1$ but below $y=2-x^{2}$. Set up, but do not solve an integral which computes the volume of the solid obtained by rotating A about the line $x=-1$.
Note: an earlier version of the solutions answered a different question where A was rotated around $y=-1$ rather than $x=-1$. Here is the correct answer.
Answer: Here's the picture: $y=x^{2}+1$ is the blue curve, $y=2-x^{2}$ is red, the line $x=-1$ is green, and the region we want to rotate about it is highlighted gray:

To get the intersection points, solve $x^{2}+1=2-x^{2}$ and get $x= \pm \frac{1}{\sqrt{2}}$. Now you could set this up as either a $d x$ integral or a dy integral, butdx is much, much simpler in this case. Note that over each x in $\left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$, the cross-sectional region is a line-segment of height red-blue, i.e., $\left(2-x^{2}\right)-\left(x^{2}+1\right)=\left(1-2 x^{2}\right)$. When you rotate this segment about $x=-1$, you get a cylinder of radius $x+2$ and height $\left(1-2 x^{2}\right)$, so the volume element is $d V=2 \pi(x+2)\left(1-2 x^{2}\right) d x$, and we have

$$
V=2 \pi \int_{-1 / \sqrt{2}}^{1 / \sqrt{2}}(x+2)\left(1-2 x^{2}\right) d x
$$

