QUIZ 4

Instructions

Please answer the following questions to the best of your ability and understanding within 30 minutes. Do not use books, notes, the internet, calculators, etc.

Problem 1

(10 Points) Consider the sequence $a_{n}=\left(\frac{n}{n+2}\right)^{n}$.

Part A. (6 Points) Either compute $\lim _{n \rightarrow \infty} a_{n}$, or explain why this sequence diverges.
Answer: Set $b_{n}=\ln \left(a_{n}\right)=\ln \left(\frac{n}{n+2}\right)^{n}=n \ln \left(\frac{n}{n+2}\right)$. Now rearrange the stuff inside the logarithm a bit, writing the numerator as $n=n+2-2$ so that we have $b_{n}=\ln \left(\frac{1}{2} \frac{2}{n}\right)$, so we can use the Taylor expansion for natural \log (because $\frac{2}{n} \rightarrow 0$ as $n \rightarrow \infty$). Therefore,

$$
\mathrm{b}_{\mathrm{n}}=\mathrm{n} \ln \left(1-\frac{2}{\mathrm{n}}\right)=\mathrm{n}\left(-\frac{2}{\mathrm{n}}+\mathrm{O}\left(\mathrm{n}^{-2}\right)\right)=-2+\mathrm{O}\left(\mathrm{n}^{-1}\right)
$$

Therefore, $\lim _{n \rightarrow \infty} b_{n}=-2$ and since $b_{n}=\ln \left(a_{n}\right)$ we have $\lim _{n \rightarrow \infty} a_{n}=e^{-2}$. So the sequence converges to $\frac{1}{e^{2}}$.

Part B. (4 Points) Does the series $\sum_{n=0}^{\infty} a_{n}$ converge or diverge? Explain why.
Answer: Since the terms a_{n} comprise a sequence whose limit is not zero, the series diverges by the n-th term test.

Problem 2

(15 Points) Carefully explain whether the following series converge or diverge, making sure that you mention which covergence test(s) have been used.

Part A. (5 Points) $\sum_{n=1}^{\infty} n^{2}\left(e^{-1 / n^{3}}-1\right)$
Answer Note that $e^{-1 / n^{3}}-1=-\frac{1}{n^{3}}+O\left(n^{-6}\right)$, so the summand $n^{2} e^{-1 / n^{3}}$ equals $\frac{-1}{n}+O\left(n^{-4}\right)$. Note that the leading term is always negative (and not alternating). Therefore, this series diverges by limit comparison to the (negative) harmonic series $-\sum \frac{1}{n}$.

Part B. (5 Points) $\sum_{n=1}^{\infty}(-1)^{n}\left[\left(\frac{n}{n+2}\right)^{n}-1\right]$ (Hint: it will help if you have solved Problem 1 first).
Answer: This is an alternating series, but the n-th term $\left(\frac{n}{n+2}-1\right)^{n}$ does not go to zero as $n \rightarrow \infty$: it goes to e^{-2} by the previous question. Therefore, this series diverges by the alternating series test.

Part C. (5 Points) $\sum_{n=1}^{\infty} \frac{2^{n} \ln (n)}{(2 n)!}$
Answer: Ratio test! Here $a_{n}=\frac{2^{n} \ln (n)}{(2 n)!}$, so

$$
\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{2^{n+1} \ln (n+1)}{(2 n+2)!} \cdot \frac{(2 n)!}{2^{n} \ln (n)}
$$

Many things will cancel:

$$
\rho=\lim _{n \rightarrow \infty} 2 \cdot\left(\frac{\ln (n+1)}{\ln (n)}\right) \frac{1}{(2 n+1)(2 n+2)}
$$

It should be clear that $\rho=0$ for the following reasons. First, 2 is a constant so who cares? Second, that ratio of natural logs limits to 1 : to see this, expand out the numerator and use the identity $\ln (a b)=\ln (a)+\ln (b):$

$$
\ln (n+1)=\ln (n(1+1 / n))=\ln (n)+\ln (1+1 / n)
$$

so when you divide this by $\ln (n)$ you get $1+$ something going to o. The last factor contains a quadratic expression in the denominator with numerator $=1$, so that certainly goes to zero for large n. Since $\rho=0<1$, this series converges by the ratio test.

Problem 3

(15 Points) Consider the power series $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{1-3 n^{2}}$.
Part A. (8 Points) Find the interval of convergence.
Answer: The radius of convergence is given by $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$, so

$$
R=\lim _{n \rightarrow \infty} \frac{3(n+1)^{2}-1}{3 n^{2}-1}
$$

(Note that because of the absolute value I have replaced the negative expressions like $1-3 n^{2}$ by positive ones like $3 n^{2}-1$). This limit equals 1 by L'Hôpital or by comparison of leading terms in numerator and denominator (both are $3 n^{2}$). So, the series definitely converges on $(-1,1)$ and we only need to check our endpoints. At $x=1$ we have an alternating series $\sum \frac{(-1)^{n}}{1-3 n^{2}}$, which converges by the alternating series test: the terms are going to zero because of the $3 \mathrm{n}^{2}$ in the denominator. At $x=-1$, you get a non-alternating series $\sum \frac{1}{1-3 n^{2}}$, which also converges by comparison to $\frac{1}{n^{2}}$. So, the interval of convergence is $[-1,1]$.
Part B. (7 Points) Use any convenient method to find a suitable N so that the error when approximating $f(x)$ by the first N terms of its power series is guaranteed to be smaller than 0.01 .
Answer: The series is alternating, so of course we want to use the alternating series bound. Let $\mathrm{E}_{\mathrm{N}}(\mathrm{x})$ be the error in approximating x when only the first N terms are added up. By the alternating series bound, we have

$$
\mathrm{E}_{\mathrm{N}}(\mathrm{x}) \leqslant\left|\mathrm{a}_{\mathrm{N}+1}\right|
$$

where the right hand side is the absolute value of the coefficient of the $(N+1)$-st power of x in the series. Clearly, we have

$$
\left|a_{N+1}\right|=\frac{1}{3(N+1)^{2}-1}
$$

so we want to solve for N in the right side to be smaller than 0.01 . This gives

$$
\frac{1}{3(N+1)^{2}-1}<0.01
$$

so $3(N+1)^{2}-1>100$, meaning $3(N+1)^{2}>101$, which gives $N>\sqrt{\frac{101}{3}}-1$.

Problem 4

(10 Points) Five series are given below. Write down which of them converge absolutely, converge conditionally, or diverge. You don't have to show much work here, just a brief line (eg: diverges by limit comparison to $\sum \frac{1}{n}$, or diverges by ratio test) will suffice. Each answer is worth two points, but there is no partial credit for incorrect responses.
Part A. $\sum_{n=1}^{\infty} \frac{n-\ln (n)}{\sqrt[3]{n^{2}+n-7 \ln (n+5)}}$
Diverges by n-th term test: as n is made large, the numerator behaves like n and the denominator like $n^{\frac{2}{3}}$, so overall the terms behave like $n^{1 / 3}$ which certainly does not go to zero for large n.

Part B. $\sum_{n=1}^{\infty}\left(\frac{n^{2}-1}{n^{2}+3}\right)^{n}$
Root test doesn't work (it gives $\rho=1$), but this also diverges by the n-th term test, since the sequence of terms will converge to $e^{\text {stuff }}$ rather than zero.
Part C. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n+1}}{\sqrt[3]{n^{2}-5}}$
This is an alternating series, so we only have to check that the (absolute values of the) terms are going to zero as $n \rightarrow \infty$. But this is clearly true, just compare with leading terms $\sum \frac{n^{1 / 2}}{n^{2 / 3}}=$ $\sum n^{-1 / 6}$. Thus, the series converges. On the other hand, the sum of absolute values does not converge by the p-test (where $p=\frac{1}{6}<1$), so the convergence is conditional.
Part D. $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}-n^{3}}$
Converges absolutely by comparison to $\sum\left(\frac{3}{5}\right)^{n}$. Note that this latter series is geometric, and $|3 / 5|<1$.
Part E. $\sum_{n=1}^{\infty} \frac{\cos ^{3}\left(e^{n}-28 n^{2}\right)}{n^{2}+2 n}$
Converges absolutely by limit comparison to $\sum \frac{1}{n^{2}}$: the numerator is a cosine which is always smaller than 1 , while the denominator behaves like n^{2} for large n.

