QUIZ 4

Instructions

Please answer the following questions to the best of your ability and understanding within 30 minutes. Do not use books, notes, the internet, calculators, etc.

Problem 1

(10 Points) Consider the sequence $a_{n}=\left(\frac{n}{n+2}\right)^{n}$.
Part A. (6 Points) Either compute $\lim _{n \rightarrow \infty} a_{n}$, or explain why this sequence diverges.

Part B. (4 Points) Does the series $\sum_{n=0}^{\infty} a_{n}$ converge or diverge? Explain why.

Problem 2

(15 Points) Carefully explain whether the following series converge or diverge, making sure that you mention which covergence test(s) have been used.

Part A. (5 Points) $\sum_{n=1}^{\infty} n^{2}\left(e^{-1 / n^{3}}-1\right)$

Part B. (5 Points) $\sum_{n=1}^{\infty}(-1)^{n}\left[\left(\frac{n}{n+2}\right)^{n}-1\right]$ (Hint: it will help if you have solved Problem 1 first).

Part C. (5 Points) $\sum_{n=1}^{\infty} \frac{2^{n} \ln (n)}{(2 n)!}$

Problem 3

(15 Points) Consider the power series $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{1-3 n^{2}}$.
Part A. (8 Points) Find the interval of convergence.

Part B. (7 Points) Use any convenient method to find a suitable N so that the error when approximating $f(x)$ by the first N terms of its power series is guaranteed to be smaller than 0.01 .
(10 Points) Five series are given below. Write down which of them converge absolutely, converge conditionally, or diverge. You don't have to show much work here, just a brief line (eg: diverges by limit comparison to $\sum \frac{1}{n}$, or diverges by ratio test) will suffice. Each answer is worth two points, but there is no partial credit for incorrect responses.
Part A. $\sum_{n=1}^{\infty} \frac{n-\ln (n)}{\sqrt[3]{n^{2}+n-7 \ln (n+5)}}$

Part B. $\sum_{n=1}^{\infty}\left(\frac{n^{2}-1}{n^{2}+3}\right)^{n}$

Part C. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n+1}}{\sqrt[3]{n^{2}-5}}$

Part D. $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}-n^{3}}$

Part E. $\sum_{n=1}^{\infty} \frac{\cos ^{3}\left(e^{n}-28 n^{2}\right)}{n^{2}+2 n}$

