HOMEWORK ASSIGNMENT 1

Name:
Due: Friday Jan 31
Problem 1: Strang 2.2 \#4 Page 52
What multiple of the first equation should be subtracted from the second equation in order to proceed with the Gaussian elimination algorithm?

$$
\begin{aligned}
2 x-4 y & =6 \\
-x+5 y & =0 .
\end{aligned}
$$

After this elimination step, solve the resulting triangular system. If the right side of the first equation changes to -6 (from the current 6), what is the new solution?

Ans:

Problem 2: Strang 2.2 \#5 Page 52
Choose a right side for the second equation which gives no solution and another right side which gives infinitely many solutions to the following linear system. What are two of these solutions?

$$
\begin{aligned}
& 3 x+2 y=10 \\
& 6 x+4 y=
\end{aligned}
$$

Ans:

Problem 3: Strang 2.2 \#6 Page 52

Choose a coefficient b which makes the following system singular (i.e., degenerate). Then choose a g on the right side which gives infinitely many solutions,

$$
\begin{aligned}
& 2 x+b y=16 \\
& 4 x+8 y=g .
\end{aligned}
$$

Ans:

Problem 4: Strang $2.2 \# 7$ Page 52
For which a does elimination break down (1) temporarily and (2) permanently?

$$
\begin{aligned}
& a x+3 y=-3 \\
& 4 x+6 y=6 .
\end{aligned}
$$

Solve for x and y after fixing the temporary breakdown in case (1) with a suitable row exchange. Ans:

Problem 5: Strang 2.2 \# 10 Page 52
Draw the lines $x+y=5$ and $x+2 y=6$ in the $x y$ plane. Then draw the line $y=$ \qquad which comes from elimination. The line $5 x-4 y=c$ will go through the solution of these equations if $c=$ \qquad Ans:

Problem 6: Strang 2.2 \#13 Page 53

Apply Gaussian elimination (circle the pivots) and then back-substitute to solve for x, y, z in the following linear system:

$$
\begin{aligned}
& 2 x-3 y=3 \\
& 4 x-5 y+z=7 \\
& 2 x-y-3 z=5 .
\end{aligned}
$$

List the three operations that you used in the following format: Subtract \qquad times Equation from Equation \qquad
Ans:

Problem 7: Strang 2.2 \#19 Page 54

Which number q makes the following system singular (i.e., degenerate) and which number t gives infinitely many solutions for that choice of q ?

$$
\begin{aligned}
x+4 y-2 z & =1 \\
x+7 y-6 z & =6 \\
3 y+q z & =t .
\end{aligned}
$$

Ans:

Problem 8

Write the equations of three planes in 3-dimensional space so that
(1) no two of them are parallel and yet their common intersection is empty,
(2) all three of them meet in a single line.

Ans:

