HOMEWORK ASSIGNMENT 6

Name: Due: Monday Apr 7

Problem 1: Strang 6.2 # 1 and # 2 page 307

Solve the following two problems.

- (1) Find matrices S and D which diagonalize $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ into SDS^{-1}
- (2) A 2×2 matrix B has eigenvalue $\lambda_1 = 2$ with corresponding eigenvector $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and eigenvalue $\lambda_2 = 5$ with corresponding eigenvector $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. What is B?

Ans:

PROBLEM 2: STRANG 6.2 #4 PAGE 308

Let A be a matrix whose eigenvectors are all linearly independent, and let S be the matrix containing those eigenvectors as columns. State true or false for each of the following, giving reasons whenever true and counterexamples whenever false.

- (a) A is invertible
- (b) A is diagonalizable
- (c) S is invertible
- (d) S is diagonalizable

Ans:

Problem 3: Strang 6.2~#18 page 309

If
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^k = \frac{1}{2} \begin{bmatrix} 1+3^k & 1-3^k \\ 1-3^k & 1+3^k \end{bmatrix}$.

 $\mathbf{Hint} \colon \operatorname{Use} \, A^k = SD^k S^{-1}.$

Ans.

Problem 4: Strang 6.3~#1 Page 325

Solve the linear differential system $\mathbf{x}' = A\mathbf{x}$ where

$$A = \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix},$$

and $x(0) = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$.

Ans:

Problem 5: Strang 6.3 # 10 Page 326

You are given the second-order differential equation y'' = 5y' + 4y with initial conditions y(0) = 1 and y'(0) = 0. Solve this equation as follows: introduce a new variable x = y', so that the original equation becomes x' = 5x + 4y. Now solve the linear differential system

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}' = \begin{bmatrix} 5 & 4 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

with initial conditions $\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Ans:

PROBLEM 6: STRANG 6.4 #5 PAGE 338

Find an orthogonal matrix Q which diagonalizes

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}.$$

That is, $\mathbf{Q}^\mathsf{T} \mathbf{A} \mathbf{Q}$ must be a diagonal matrix.

Ans:

Problem 7: Strang 6.4 # 21 Page 340

State true (with reason) or false (with counterexample):

- (1) Any matrix with real eigenvalues and eigenvectors must be symmetric.
- (2) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
- (3) If a symmetric matrix is invertible, then its inverse is also symmetric.
- (4) The eigenvector matrix S of a symmetric matrix is symmetric.

Ans:

PROBLEM 7: STRANG 6.7 #6 PAGE 372

Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

- (1) Compute the singular value decomposition of A by producing the matrices U, D, V for which $A = UDV^T$.
- (2) Use this SVD to read off orthonormal bases for the four fundamental subspaces associated to A.

(Continue answer to #7 here if you need extra space)