HOMEWORK ASSIGNMENT 6

Name:
Due: Monday Apr 7
Problem 1: Strang 6.2 \#1 and \#2 page 307
Solve the following two problems.
(1) Find matrices S and D which diagonalize $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ into $S D S^{-1}$
(2) A 2×2 matrix B has eigenvalue $\lambda_{1}=2$ with corresponding eigenvector $\nu_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and eigenvalue $\lambda_{2}=5$ with corresponding eigenvector $\nu_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. What is B ?

Ans:

Problem 2: Strang 6.2 \#4 Page 308
Let A be a matrix whose eigenvectors are all linearly independent, and let S be the matrix containing those eigenvectors as columns. State true or false for each of the following, giving reasons whenever true and counterexamples whenever false.
(a) A is invertible
(b) A is diagonalizable
(c) S is invertible
(d) S is diagonalizable

Ans:

Problem 3: Strang 6.2 \#18 Page 309

$$
\text { If } A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \text {, show that } A^{k}=\frac{1}{2}\left[\begin{array}{ll}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right] \text {. }
$$

Hint: Use $A^{k}=S D^{k} S^{-1}$.
Ans.

Problem 4: Strang 6.3 \#1 Page 325
Solve the linear differential system $x^{\prime}=A x$ where

$$
A=\left[\begin{array}{ll}
4 & 3 \\
0 & 1
\end{array}\right]
$$

and $x(0)=\left[{ }_{-2}^{5}\right]$.
Ans:

Problem 5: Strang 6.3 \# 10 Page 326

You are given the second-order differential equation $y^{\prime \prime}=5 y^{\prime}+4 y$ with initial conditions $y(0)=1$ and $y^{\prime}(0)=0$. Solve this equation as follows: introduce a new variable $x=y^{\prime}$, so that the original equation becomes $x^{\prime}=5 x+4 y$. Now solve the linear differential system

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
5 & 4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

with initial conditions $\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Ans:

Problem 6: Strang 6.4 \#5 Page 338
Find an orthogonal matrix Q which diagonalizes

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right]
$$

That is, $Q^{\top} A Q$ must be a diagonal matrix.
Ans:

Problem 7: Strang 6.4 \#21 Page 340

State true (with reason) or false (with counterexample):
(1) Any matrix with real eigenvalues and eigenvectors must be symmetric.
(2) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
(3) If a symmetric matrix is invertible, then its inverse is also symmetric.
(4) The eigenvector matrix S of a symmetric matrix is symmetric.

Ans:

Problem 7: Strang 6.7 \#6 Page 372
Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(1) Compute the singular value decomposition of \mathcal{A} by producing the matrices $\mathrm{U}, \mathrm{D}, \mathrm{V}$ for which $A=U D V^{\top}$.
(2) Use this SVD to read off orthonormal bases for the four fundamental subspaces associated to A.
(Continue answer to \#7 here if you need extra space)

