HOMEWORK ASSIGNMENT 8

Name:
Due: Never!

Problem 1

Find the maximum value taken by $f(x, y)=2 x+3 y$ for positive x and y subject to the three constraints $x \leqslant 4, x+y \leqslant 10$ and $y \leqslant 6$ using only geometric techniques. More precisely,
(1) Draw the feasible region D as a subset of \mathbb{R}^{2}
(2) Identify the five corner points of D : what are the (x, y) values of these corner points?
(3) Evaluate f at each of the corner points and find the maximum.

Problem 2

Now we will solve the optimization problem from Problem 1 using the Simplex method.
(1) Express the optimization problem in standard form: meaning, find \mathcal{A}, b and c so that we are being asked to maximize $c^{\top}\left[\begin{array}{l}x \\ y\end{array}\right]$ subject to $A\left[\begin{array}{l}x \\ y\end{array}\right] \leqslant b$ and $\left[\begin{array}{l}x \\ y\end{array}\right] \geqslant 0$.
(2) Write down the augmented block matrix

$$
\mathrm{B}=\left[\begin{array}{ccccc}
1 & -\mathrm{c}^{\top} & 0 & \vdots & 0 \\
0 & \mathrm{~A} & \mathrm{Id} & \vdots & \mathrm{~b}
\end{array}\right] .
$$

The penultimate three columns correspond to slack variables $r, s, t \geqslant 0$. At this initial stage, these three are pivot variables while x and y are not.
(3) On B, perform the row operations needed by the simplex algorithm of B. Carefully explain how you are selecting each column and row to produce a new pivot.

Problem 3

Throughout this problem, assume that $\mathrm{N}=6$.
(1) What is the primitive N -th root ω_{N} of 1 ?
(2) Write down the discrete Fourier matrix D_{N} in terms of negative powers of ω_{N}. Simplify so that no power is smaller than -5 . (So it is okay to populate the matrix with entries like ω_{6}^{-2} but not something like ω_{6}^{-9} and definitely not something awful like $\left(\frac{1-\sqrt{3} i}{2}\right)^{-2}$.
(3) Write down the 6×6 matrices A_{N} and B_{N} so that

$$
\mathrm{D}_{\mathrm{N}}=A_{\mathrm{N}}\left[\begin{array}{cc}
\mathrm{D}_{\mathrm{N} / 2} & 0 \\
0 & \mathrm{D}_{\mathrm{N} / 2}
\end{array}\right] \mathrm{B}_{\mathrm{N}},
$$

which come from the Cooley-Tukey fast Fourier transform algorithm.

Problem 4

In this problem, we have $\mathrm{N}=4$.
(1) Write down the discrete Fourier matrix D_{4} and explain how you have obtained its entries.
(2) There are only two distinct columns of D_{4} which don't contain exclusively real numbers. Identify these two columns, and check that they are orthogonal.
(3) What is the inverse matrix D_{4}^{-1} ?

Problem 5

Given the matrix

$$
A=\left[\begin{array}{ccc}
5 & -2 & -3 \\
-1 & 4 & -3 \\
1 & -4 & 3
\end{array}\right]
$$

(1) Compute all the eigenvalues of A and write down their algebraic multiplicities.
(2) Compute eigenvectors corresponding to the eigenvalues of A : what are the geometric multiplicities of the eigenvalues?
(3) Is A diagonalizable? If yes, write it as $S D S^{-1}$. Otherwise, explain why we can't find S and D.
(4) Compute the Jordan decomposition of A - that is, find matrices S and J so that S is invertible, J is in Jordan form, and $A=S J S^{-1}$.

Problem 6

Consider a $k \times k$ Jordan block

$$
M=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \lambda & 1 \\
0 & \cdots & \cdots & 0 & \lambda
\end{array}\right]
$$

Show that if $M^{2}=M$ then k must equal 1 , and λ must be either 0 or 1 . (Hint: Assume $k=2$ and compute M^{2} for an arbitrary λ, and set it equal to M. The argument for general k is quite similar!).

