HOMEWORK ASSIGNMENT 4

Name:

Due: Wednesday Mar 19

PROBLEM 1: STRANG 4.1 #6 PAGE 203

This system of equations Ax = b has no solutions.

$$x + 2y + 2z = 5$$

 $2x + 2y + 3z = 5$
 $3x + 4y + 5z = 9$

- (1) Find numbers y_1, y_2 and y_3 so that scaling the first equation by y_1 , the second by y_2 and the third by y_3 before adding them all up leads to the contradiction 0 = 1.
- (2) Which of A's four fundamental subspaces contains the vector $y = (y_1, y_2, y_3)$?

 $\begin{cases} y_{2}=1 \\ y_{2}=1 \end{cases}$

which of As told fundamental subspaces contains the vector
$$\mathbf{g} = (\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3)$$
.

therefore $(1, 1, -1)$ is in the null space of \mathbf{A}^T , i.e. $\mathbf{N}(\mathbf{A}^T)$

2) from 1), we get $(1, 1, -1) \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 4 & 5 \end{pmatrix} = (0, 0, 0)$

so $(1, 1, -1)$ is perpendicular to the column space of \mathbf{A} ,

PROBLEM 2: STRANG 4.1 #11 PAGE 203

Draw and label the four fundamental subspaces for

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}.$$

Draw the row and null space in one figure and the column and left null space in another.

Ans:

$$R(A) = Span (1, 2)$$

 $C(A) = Span (3)$

$$R(A) = Span (1, 2)^T$$
, the rest two fundamental spaces are $C(A) = Span (\frac{1}{3})$. determined by orthogonal relations

Generated by CamScanner

PROBLEM 3: STRANG 4.1 #22 PAGE 204

Suppose V is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find a basis for V^{\perp} . This is the same as solving Ax = 0 for which matrix A?

Let
$$A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{pmatrix}$$
 \longrightarrow $\begin{pmatrix} 1 & 2 & 2 & 3 \\ 0 & 1 & 1 & -1 \end{pmatrix}$
 $\downarrow^{+} = Span \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 1 \\ 0 \\ 1 \end{pmatrix}$

PROBLEM 4: STRANG 4.2 #10 PAGE 215

Given

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix},$$

- (1) Find the matrix P which projects onto the column space of A,
- (2) Compute the projection p of b onto this column space,
- (3) Find the error e = b p and show that it lies in the left nullspace of A.

Ans:

1) We compare
$$P = A (A^{T}A)^{-1} A^{T}$$

$$A^{T}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$(A^{T}A)^{-1} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$

So $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

2) $Pb = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$

3) $Pa = b - Pa = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$

5 $Pa = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$

6 $Pa = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$

7 $Pa = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$

8 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

9 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

10 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

11 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

12 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

13 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

14 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

15 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

16 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

17 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

18 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

19 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

10 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

10 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

10 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

11 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

12 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

23 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

24 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

25 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

26 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

27 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

28 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

29 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

20 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

20 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

20 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

20 $Pa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Generated by CamScanner

PROBLEM 5: STRANG 4.2 #17 PAGE 215

If P is a square matrix with $P^2 = P$, show that $(I - P)^2 = (I - P)$ where I is the identity matrix. Hint: just multiply out (I - P)(I - P) and use the information given already.

we compare

$$(I-P)(I-P) = I-P-P+P^2$$

 $= I-P-P+P$
 $= I-P$

PROBLEM 6: STRANG 4.2 #19 PAGE 216

Choose two independent vectors lying on the plane x - y - 2z = 0 and make them the columns of a matrix A. Then compute the matrix $A(A^TA)^{-1}A^T$: this matrix projects onto our plane!

Ans:

$$X = y + 2Z$$
so the place is spanned by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

$$A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$

$$A^{T} A = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix} \qquad (A^{T}A)^{-1} = \frac{1}{6} \begin{pmatrix} 5 - 2 \\ -2 & 2 \end{pmatrix}$$

$$P = A (A^{T}A)^{-1}A^{T} = \frac{1}{6} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 5 - 2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 1 & 2 \\ 5 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & \text{Generated by CamScanner} \end{pmatrix}$$

PROBLEM 7: STRANG 4.3 #6 PAGE 227

Compute the projection of $\mathbf{b} = (0, 8, 8, 20)$ onto the line through $\mathbf{a} = (1, 1, 1, 1)$ by first finding the scalar $\mathbf{c} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}$.

Ans:

$$a^{T}b = (1, 1, 1, 1) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 36$$
 $a^{T}a = (1, 1, 1, 1) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 4$
 $C = \frac{a^{T}b}{a^{T}a} = 9$

$$p = ca = 9a = (9, 9, 9, 9)$$

PROBLEM 8: STRANG 4.3 #9 PAGE 227

Use the method of least squares to find the parabola $y = C + Dx + Ex^2$ which best approximates the four data points given in (x, y) format by (0, 0), (1, 8), (3, 8) and (4, 20).

Ans:

we get
$$4 = q \text{ untion} : b^{T} = (0, 8, 8, 20)$$

$$C + D \cdot 0 + E \cdot 0^{2} = 0$$

$$C + D \cdot 1 + E \cdot 1^{2} = 8$$

$$C - D \cdot 3 + E \cdot 3^{2} = 8$$

$$C + D \cdot 4 + E \cdot 4^{2} = 20$$

$$A^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}$$

$$A^{T} A = \begin{pmatrix} 4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 339 \end{pmatrix}$$

$$A^{T} A \cdot \begin{pmatrix} C \\ P \\ E \end{pmatrix} = \begin{pmatrix} 36 \\ 112 \\ 400 \end{pmatrix}$$

$$C = 2$$

$$C = 2$$

$$C = 2$$

$$C = 2$$

$$C = 339$$

$$C = 34$$

$$C = 36$$

$$C = 2$$

$$C = 36$$

$$C =$$

PROBLEM 9: STRANG 4.4 #6 PAGE 240

If Q_1 and Q_2 are orthogonal matrices, show that their product Q_1Q_2 is also orthogonal. Hint: use the fact that Q^TQ is the identity whenever Q is orthogonal.

Ans:

$$(Q_1Q_2)^T Q_1Q_2$$

$$= (Q_2^T Q_1^T)Q_1Q_2$$

$$= Q_2^T (Q_1^T Q_1) Q_2$$

$$= Q_2^T Q_2$$

$$= Q_2^T Q_2$$

$$= T$$

PROBLEM 10: SIMILAR TO STRANG 4.4 #11 PAGE 240

Use the Gram-Schmidt method to find orthonormal vectors q_1 and q_2 in the plane spanned by (1,0,-1,1,3) and (2,3,2,0,1).

Ans:

$$A = (1, 0, -1, 1, 3)$$

$$B = b - \frac{A^{Tb}}{A^{T}A} \cdot A$$

$$= (2, 3, 2, 0, 1) - \frac{3}{1+|1+|4|} \cdot (1, 0, -1, 1, 3)^{t}$$

$$= (2, 3, 2, 0, 1) - \frac{1}{4} (1, 0, -1, 1, 3)$$

$$= (\frac{7}{4}, 3, \frac{9}{4}, -\frac{1}{4}, \frac{1}{4})$$

$$q_{1} = \int_{BB}^{A} = \frac{1}{3} (1, 0, -1, 1, 3)$$

$$q_{2} = \int_{BB}^{B} = \frac{1}{3} (7, 12, 9, -1, 1)$$
Generated by CamScanner

PROBLEM 11: STRANG 4.4 #15 PAGE 241

Given the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix},$$

- (1) Find three orthonormal vectors q_1 , q_2 and q_3 so that q_1 and q_2 span the column space of
- (2) Which of the four fundamental subspaces contains q_3 ?
- (3) Solve $Ax = \begin{bmatrix} 1\\2\\7 \end{bmatrix}$ by least squares. Hint: it will *greatly* simplify computations if you use

Solve
$$Ax = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 by least squares. Thin: It will ground start the orthonormal basis for $C(A)!$

the orthonormal basis for $C(A)!$

$$\widehat{q}_1 = \frac{q_1}{\|q_1\|} = \frac{1}{3} \cdot \binom{2}{2-2}, \quad \widehat{q}_2' = \widehat{q}_2 - \frac{q_1^T q_1}{q_1^T q_1} \cdot q_1 = \binom{1}{4} + \binom{1}{2} = \binom{2}{1}$$

$$\widehat{q}_3 = \frac{q_1'}{\|q_2'\|} = \frac{1}{3} \cdot \binom{2}{2}.$$

$$\widehat{q}_3 = \widehat{q}_1 \times \widehat{q}_2 = \frac{1}{3} \cdot \binom{2}{2}.$$

$$\widehat{q}_3 = \widehat{q}_1 \times \widehat{q}_2 = \frac{1}{3} \cdot \binom{2}{2}.$$

$$\widehat{q}_3 = \widehat{q}_1 \times \widehat{q}_2 = \frac{1}{3} \cdot \binom{2}{2}.$$

$$\widehat{q}_3 = \widehat{q}_1 \times \widehat{q}_2 = \frac{1}{3} \cdot \binom{2}{2}.$$

2)
$$q_s = q_1 \times (z - 3(-1))$$

2) $q_s \in N(A^T)$ since it satisfies $\begin{pmatrix} q_1^T \\ q_2^T \end{pmatrix} q_s = 0$. i.e. $A^Tq_3 = 0$
3) $Q = \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}$, then we need to solve $Q^TQX = Q^Tb$ with $b = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

3)
$$Q = \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}$$
, then we need to solve $Q^TQX = Q^Tb$ with $b = \begin{pmatrix} 1 \\ -2 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 8 \end{pmatrix}$ So. $C = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 & 8 \end{pmatrix}$

PROBLEM 12: STRANG 4.4 #31 PAGE 243

Consider the matrix

- (1) Choose c so that Q becomes an orthogonal matrix.
- (2) Project b = (1, 1, 1, 1) onto the line spanned by the first column of Q.
- (3) Project b onto the plane spanned by the first two columns of Q.

3) Project 6 onto the plane spanned by the matrix
$$C = \frac{1}{4}$$

$$Q^{T}Q = C^{2} \cdot \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{pmatrix} = I \implies C = \frac{1}{4} \implies C = \pm \frac{1}{2}$$

$$b = (1, 1, 1, 1) , C = \frac{V^{T} \cdot b}{V^{T}V} = \frac{1}{1} = -1, P = C \cdot N = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$V = (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$