Tangent Space and Dimension Estimation
with the Wasserstein Distance

Uzu Lim, Harald Oberhauser, and Vidit Nanda

AssTtrACT. We provide explicit bounds on the number of sample points required to estimate
tangent spaces and intrinsic dimensions of (smooth, compact) Euclidean submanifolds via
local principal component analysis. Our approach directly estimates covariance matrices
locally, which simultaneously allows estimating both the tangent spaces and the intrinsic
dimension of a manifold. The key arguments involve a matrix concentration inequality,
a Wasserstein bound for flattening a manifold, and a Lipschitz relation for the covariance
matrix with respect to the Wasserstein distance.

1. Introduction

Much of modern data science relies on the assumption that the true distribution under-
lying a given data set concentrates near a manifold. Here, ‘manifold’ refers to a smoothly
embedded compact submanifold M of an ambient Euclidean space R”, with dim M consid-
erably smaller than D. This manifold hypothesis has been the subject of active mathematical
study; investigations include topological inference from finite samples [20], hypothesis
testing [9], and fitting manifolds to data [8], among many others. Furthermore, many di-
mensionality reduction techniques rely on the manifold hypothesis for their success — see
for instance Local Tangent Space Alignment [30] and Uniform Manifold Approximation
and Projection (UMAP) [18].

Our goal in this paper is to provide rigorous and explicit bounds on the number of
sample points required to estimate tangent spaces and intrinsic dimensions of smooth
manifolds with high confidence. The estimators arise from a local version of principal
component analysis (PCA). The local principal components approximate the tangent space
at the given point, whereas the associated eigenvalues allow us to infer the intrinsic
dimension. Our main contribution here is the derivation of probabilistic bounds for
Local PCA-based tangent space and dimension estimation. Crucially, these bounds adapt
to noisy non-uniform distributions concentrated near a manifold, and all the relevant
constants have been computed explicitly.
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Estimation with Local PCA. Let x = {x;,...x,} be points in RP and let ¥ = %Zixi,

both written as column vectors. PCA refers to the following diagonalizationlz

¥[x] = UAUT, where £[x] = Z(xl —-X)(x;—x)".

Here U is an orthogonal matrix and A is a diagonal matrix with entries A; > ... > Ap > 0.
We are interested in the following quantities obtained from PCA:

ITx[x] = span(vy, ..., k)
AL[X] = (A, ..., Ap)

where k lies in {1, 2, ..., D}, while vy, ... v, are the first k columns of U and XA denotes the
eigenvalues of a real symmetric matrix A, arranged in the decreasing order. We call vy the
k-th principal component of x.

Local PCA at an open set U C RP refers to performing PCA on points of x which lie in
U. Given a radius parameter r > 0, we may perform Local PCA at the open balls B,(x;) of
radius r. The points of interest are:

X0 = {xj}jzi N B,(x)

We then define the k-dimensional tangent space estimator and intrinsic dimension estimator at
point x; as follows:

17 := I [x?]

d? .= argmin, %X 2[x0] - X(k, D)”
(1.1) where /\(k D) = {,. .0)
2 \\/—/ \_\,__/

k D-k

Here, X(k, D) are eigenvalues of (the covariance matrix for) the uniform distribution over
a k-dimensional unit disk embedded in RP (see Lemma 6.1). Thus, the estimator d®
determines for which k the sample is the closest to a k-dimensional unit disk.

IThe empirical covariance matrix we consider is a biased estimator in which we take % Yilxi—X)(xi—x)7
instead of the unbiased estimator ﬁ Y.i(xi — X)(x; — %)T. This is not an issue when m goes to infinity; the
relevant notions are proved precisely in Section 2.



Ficure 1. Local PCA on a dataset concentrated near a torus. The two di-
agrams on the right respectively indicate tangent space estimation and in-
trinsic dimension estimation.
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Ficure 2. An illustration of the dimension estimation process. The dotted
lines are plots of /'_\)(d, D)forD =10andd = 1,...10. The solid line is a plot of
empirically obtained eigenvalues, which is close to A(4,10), indicating that
the estimated intrinsic dimension is 4.

Probabilistic guarantees. When the estimators ﬂg) and d? are calculated for a sample
drawn from a probabiltiy distribution on a d-dimensional manifold, we expect that they
will respectively estimate the tangent spaces and the dimension d of the manifold. This is
because when a manifold is zoomed in closely enough at each point, its curvature flattens
out and we essentially get a d-dimensional disk.

Let’s set the stage for our main theorems, which show that ﬂg) and d) work as expected.
Let M C RP be a smoothly embedded d-dimensional compact manifold. Denote by 7 the
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reach of M, which is the maximum length to which M can be thickened normally without
self-intersection. Let o be a Borel probability measure on RP defined using a probability
density function ¢ : M — R*: for each open U C RP, define:

o(U) := o dH*

unM
where H? is the d-dimensional Hausdorff measure. We assume that fM(pdﬂd =1 so
that 1 is a probability measure. We also assume that ¢ satisfies the Lipschitz condition
llp(x) — (W)l < @ - du(x, v), where dy is the geodesic distance on M. Let X ~ i, and let Y
be a random variable valued in RP with bounded norm ||Y|| < s. Here Y represents noise
and s represents the noise radius. Finally, define the measure of interest as the law

u = Law(X +Y)

Here onwards, w,; denotes the volume of the unit d-dimensional ball:
s
ST+ 1)

Let X = (X4,...X,,) be an i.i.d.” sample drawn from p and let X;,...X;,; be their
orthogonal projections to M. Then we have the following guarantee for tangent space

Wq

estimation:

TueoreM A (Tangent Space Estimation). Suppose 0, 6 are positive real numbers and k
is a positive integer. Let € = sin 0. If r and m satisfy:

2
—S<1<£ and mZCz~log(

(4D+2)k)+1
T T

0
Then with probability at least 1 — 6, the following holds for every i < k:
(119, . M) < 0

where ﬁg) is defined in Equation (1.1), and «(I'L;,IL,) is the principal angle between
subspaces I, I, (see Definition 5.6). The constants c;, ¢, are given by:

8Pmaxd + 5aT
&1 = erld, @, ) = 16(d +2) (3 + 2t 7200
1 4794(d + 2)°
(12) G = CZ(dl ®,5,1, €) = C()d(r — ZS)dQDmm ’ 2

where Qmax = maXyepm @(x) and Pmin = Minyep @(x).
The constants above can be improved in several ways:

%i.i.d. stands for ‘independent and identically distributed’.



e The constants ¢;, ¢; above can be improved by replacing each occurrence of @min
by 1.04®, where @ is defined as:

& = ing &P Frz)
xeM  wy(r — 2s)?
Here exp, @r_ZS is the geodesic ball of radius r — 2s centered at x. The intuitive
meaning of @ is a lower bound of local concentration of the measure . Replacing
@min by 1.04® avoids division by zero in case @i, vanishes at a small region. This
replacement is possible since @nin < 1.04®. Note that the constant 4794 in ¢,
appears by rounding up 1.04 x 4609, with 4609 coming from Lemma 5.4. See the
proof of Theorem A in Section 5 for details.
e The condition given by two inequalities between s, 1, € can be collectively replaced
by the following (single) weaker condition:
rs re
Q(_ ) = Te[d+ 2t
where Q is a function defined in Proposition 4.4. See the curvature control part of

,—
T T

the proof of Theorem 5.3 to see how this modification may be done.

We now state the guarantee for intrinsic dimension estimation:
TueorEM B (Intrinsic Dimension Estimation). Suppose 6 is a positive real number and

V@ +1)(d+4)

k is a positive integer. Let

2VD(d + 3)
If r and m satisfy:
§< 1< £ and chz-log(M)+1
T T 1)
Then with probability at least 1 — 9, the following holds for every i < k:
d9 =d

where d? is defined in Equation (1.1). Here, c;, ¢, are defined as in Theorem A, only with
a different prescription of € in c,.

We make a few remarks regarding the main results.

e We emphasize that the noise term Y is not assumed to be independent of X ~ py,
when defining the probability measure of interest 1 = Law(X + Y).



e In the case of uniform distribution, we note that the constants c;, ¢; in Theorem A
become easily interpretable:

c1 =16(d + 2)(8d + 2) ~ 1284>

o (@alr = 2s)° 1 4794(d + 2)?
27 Vol €2

where Vol is the d-dimensional Hausdorff measure of M. In particular, the
fraction wy(r — 2s)?/ Voly indicates how large a d-dimensional disk of radius r —2s
is, compared to the manifold M.

e Both Theorems require both a lower and upper bound for the radius r. This
reflects the observation that » must be large enough to overcome the effects of
noise, but small enough to ignore the effects of curvature.

e Theorem A relies on the knowledge of the true intrinsic dimension d. This quantity
can be either obtained using Theorem B, or other methods for intrinsic dimension
estimation, such as in [5].

e Constants in Theorem B depend on the intrinsic dimension d, which is the quantity
to be estimated. This doesn’t make the theorem circular, since d is a well-defined
quantity. Nevertheless, a practitioner will not know d a priori. Therefore for a
practical application, d in the constants can be replaced by D, or any 4’ that is a
priori known to be greater: d < d'.

e Theorem A and B are corollaries of Theorem 5.3, and this can be seen as the main
theorem of our work. Theorem 5.3 gives probabilistic guarantees for estimating
covariance matrices locally, for a probability distribution concentrated near a
manifold.

e A conventional method of estimating intrinsic dimension from eigenvalues is
by testing how many principal components account for (say) 95% of the total
variance. This is stated and proven in Theorem B’. This method introduces
additional complexity because the threshold parameter must also fall within a
certain range.

Structure of the paper. We prove the building blocks of the paper in Sections 2 to 4,
and then derive the main Theorem 5.3 and its corollaries Theorem A and B in Section 5.
More specifically,

e Section 2: We modify the matrix Hoeffding’s inequality to show that Local PCA

correctly estimates covariance matrix of the underlying distribution (Proposition
2.8).



e Section 3:. We show that given two compactly supported probability measures
1, vvalued in RP, there is a Lipschitz relation of the form || Z[u]-Z[v]|| < C W (u,v)
where Z[u] is the covariance matrix of y (Proposition 3.3).

e Section 4:. We show that if a well-behaved measure on a manifold is restricted
to a tiny ball, then its Wasserstein distance to the uniform measure over the unit
tangential disk is small (Proposition 4.4).

Concentration Lipschitz on Flattening a

Inequality Covariance Measure
(Section 2) (Section 3) (Section 4)

\L/

Main
Theorem
Davis-Kahan (Section 5) Hoffman-Wielandt

—— —u—

Theorem A Theorem B

(Tangent Space) (Dimension)

FiGure 3. Summary of the relations between the main results.

We summarize the notations and conventions of this article in the Appendix (page 33).

Related work. Probabilistic bounds on tangent space estimation using Local PCA
have been studied in considerable detail, for example in [2, 26, 13, 23]. To the best of our
knowledge, our work is the first in which probabilistic guarantees for tangent spaces and
dimension estimation were produced with all relevant constants in the probabilistic bounds
computed explicitly, while allowing for noise and non-uniformity. A major advantage offered
by the constants we computed is its interpretability; see Equation (1.2). In [13] and [26],
the underlying probability measure is assumed to be uniform, and only estimation at a
single point is considered (instead of simultaneous estimation at multiple points). In [2]
and [23], various constants have not been computed explicitly.

Our concentration inequality for covariance matrices (Proposition 2.6 in this paper)
is directly derived from the matrix Hoeffding inequality, which appears in [25]. A more
sophisticated approach, such as the one from [14], may be used to generalize our results.

Similar methods for analyzing (non-local, non-manifold) PCA are also studied in [15, 21].
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A cubic bound of the form |[Z[u] - Z[v]|| < Cr’, where , v are probability measures
supported on a ball of radius 7 in RP, is derived for uniform measures in [4]. We also
obtain a similar inequality (in Proposition 3.3 and Corollary 4.5 below). The key difference
in the two derivations is that our approach uses the Wasserstein distance rather than the
total variation distance from [4], to quantify similarity of measures. Our inequality has
the advantage of allowing non-uniformity and of having explicit constants.

We use a transportation plan in Proposition 4.4 to quantify how much a measure
supported near a manifold locally deviates from the uniform measure on a tangential
disk. This transportation plan is executed with the same idea as the proof of Proposition
3.1 in [24]. However, their transportation plan doesn’t involve noise and applies to
different types of local covariance matrices.

More recently, the authors of [3] have used local polynomial regression to estimate
manifolds and their tangent spaces from uniform point samples lying on tubular neigh-
bourhoods. Compared to this work, our results have the advantage of not requiring the
noise to be uniformly distributed. On the other hand, our result only estimates tangent
spaces, and does not produce any polynomial approximations which may be used to
estimate higher-order information (such as curvature).

In [5], an intrinsic dimension estimator that doesn’t use Local PCA is introduced. We
note that the number of points we require to ensure a 1 — 6 probability of dimension
estimation has the rate of m ~ log(1/6), which improves the rate m ~ log(1/6)* in [5].

Finally, we note that local PCA has been extensively used in contexts independent of
the manifold hypothesis [10, 12, 27, 19]. As far as we are aware, in all cases the theoretical
analysis is either heuristic or makes strong assumptions on the underlying distribution
(e.g., by requiring that the data be Gaussian).

Acknowledgements. We are grateful to Eddie Aamari, Yariv Aizenbud, Barak Sober and Hemant Tyagi
for valuable discussions. UL is supported by the Korea Foundation for Advanced Studies. VN is supported
by the EPSRC Grant EP/R018472/1. HO is supported by the EPSRC grant “Datasig” [EP/S026347/1], The
Alan Turing Institute, and the Oxford-Man Institute.

2. Local estimation of covariance matrices

The main result of this section is Proposition 2.8, where we establish bounds for local
covariance estimation. Our main tool is the matrix Hoeffding inequality [25, Theorem 1.3]°.
Here onwards, we will use [|A]| to denote the operator norm of a given matrix 4, i.e.,

IA[] := sup [|Ax]l.
llxl|=1

30ur version of the matrix Hoeffding inequality follows from the one in [25] by noting that for any
matrix A, the operator norm ||A|| equals max(Amax(A), Amax(—A)) where Amax denotes the largest eigenvalue.
And moreover, ||A|| < a implies that a2 - Id — A? is positive definite.
8



TueorEM 2.1 (Matrix Hoeftding). Let Y, ...Y,, be independent Hermitian random D X D
matrices so that for each iin {1,..., m} we have both EY; = 0 and ||Y|| < a; almost surely for some
real number a; > 0. Then writing Y = Y.} Y, for every € > 0 we have

—e2
Pr(IIYII > e) <2D-exp (@),

where 0> = Y| oy

This inequality can be used to establish concentration of vectors under Hermitian
dilation, which takes a rectangular matrix A and produces a Hermitian matrix Ay = [ qar ]
Then [|Axll* = ||AZ]l = [IAlI>, and one obtains the following consequence.

CorOLLARY 2.2. Let X, ... X,, be independent random vectors in R satisfying EX; = 0, and
IXill < a; almost surely for some real number «;. Writing Y = Y.\ Xy, for every € > 0 we have
—e2
Pr([IYl>€)<2(D+1)- exp(@)
m 2

where 0 = Y1 a2

Throughout the remainder of this section, we fix a Borel probability measure y on RP.

DerintTion 2.3. Given a Borel set U C IRP, the normalised restriction of y to U is defined
as follows: for each Borel set V c RP,
puunv)
(V) 1= =
Hu u(U)
We impose the convention that il = 0 whenever u(U) = 0, and note that py; constitues a
Borel probability measure on RP whenever u(U) > 0.

DerINITION 2.4. Let x = (xq,...x,) C RP and let U C RP be a Borel set. Then we define:

1
6x L E(éxl +-e+ 6xm)

m
Nx,ll = § lxiell
i=1

b —— {N,l(,u Z:’il 1xi€U : 6xi lf NU,X >0
x|u -—

otherwise

where 0, is the Dirac delta measure at x and 1. is the indicator function.

In elementary terms, Oy averages the Dirac delta measures at all those points x; in x
which lie within U.



DerintTION 2.5. Given X ~ u, the covariance matrix (or simply the covariance) of i is the
D x D matrix defined by:

Z[p] = E[(X - EX)(X - EX)"]

If X = (Xj,...X,) is y-iid. sample, the covariance of the measure 6x evaluates as
follows:

m

Sl = - Y (X~ X)X - X)T

i=1
where X = 1 ¥, X; is the sample mean. We recall that the expected values of

N e o 0T and LY (x _EX)T
. ;(x X)X - X)" and m;(x EX)(X; — EX)

are both equal to X[u] whereas the expected value of L[6x] is Z=L¥[u]. Nevertheless, the

following result shows that we can use X[0x] to estimate X[u].
ProrosiTION 2.6 (Concentration inequalities for covariance). Let u be a Borel probability
measure on RP and let X = (Xy,...Xy) be an i.id. sample drawn from p. Suppose that the

support of u is contained in a ball of radius r. Then for each € > 0,
2
€

3 m
Pr (i€ - Zllll > €) < 2D - exp (_SW

), and

2
Pr(||£ - Z[u]ll > €) < (4D +2) - exp (—1;”5;4)

where, denoting X = 1 ¥, X;,

o 1y .
ZO—E;‘(Xi—IEX)(Xi—]EX) , and
o 1y _ .
£=—) (Xi-)X-X)

Il
—_

1

Proor. We may assume that r = 1 without loss of generality, since for general » we
know that 7*% is the covariance of - X for all X ~ u. Thus, we have || X — EX]|| < 2
by the triangle inequality and the constraint on the support of p. The bound for ¥ is
obtained directly by applying the matrix Hoeffding inequality from Theorem 2 as follows.
Writing Z[u] = I, set Y; = L((X; — EX)(X; — EX)" — £). Then ||Vl < (4 + 4)/m and
0% =m-(8/m)* = 64/m.

Since £ = £ + (X — EX)(X — EX)", we have

Pr(||£ - X|| = £) = Pr(|&y — (X = EX)(X - EX)" — Z|| > 0).
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Therefore, for any parameter « in [0, 1], we obtain
Pr([I£ -2l > £) < Pr(|£o - =il = at) + Pr (X - EXIP = (1 - a)t)
o S 1
< Pr(If - T > at) + Pr(llX ~EX| 2 5(1 - a)t)

(1 — a)*mt?
128

2,42

SZD-eXp(—a

=1 )+2(D+1)-exp(—

In the last inequality, we used the bound for ¥, as well as Corollary 2.2, with 0% = 4.
Choosing a = 2/3 to make the exponents equal, we obtain the second bound. O

LetX = (Xy,...X,;) bea u-ii.d. sample. We will consider estimating X[ u|y] with Z[0xu]
in the special case where the Borel set U is entirely contained within an open ball of some
tixed radius r > 0.

ProposttioN 2.7. Let X = (X, ... X,,) be an i.i.d. sample drawn from u and let U C RP be
a Borel set which is contained in a ball of radius r. Denote by Ly, the covariance Y[0xy], and
similarly write Xy = L[uly]. Then for any error level € > 0, we have that S estimates L.:
Pr(|fy - Sull <€) 21-5,
where
6:= (4D +2)(1 — u(W)(A =&)Y  with & = exp(—€*/1152r%).
(Note that 6 — 0as m — 0.)

Proor. The proof follows from conditioning the membership of elements of X to U.
Denoting by S; the event (X; € U < i € I) and writing u := u(U), we have

Pr(Ify—Zull 2 €)= Y Pr(lfu - Zull > elS) - Pr(S).
Ic{1,..m}
Writing [I| for the cardinality of each I, we have
Pr(|£y - Zull > €) = Z (1 = u)" M Pr (|£y - Zull 2 €lS))

Ic{1,..m}

Z (m)uk(l — )"k Pr (”ﬁu - Xyl = €|S{1,...k}>

k

k=0
< ; (’Z)uk(l —u)"*. (4D + 2)&*

=@4D+2)-(1—-u(l-&)m

Here Proposition 2.6 was applied in the only inequality above. Note that the possibility
8 is correctly accounted for since we have included k = 0 when indexing the sum in the
second line above. O
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If we apply the previous proposition to the special case where U is the open ball B,(X)
of radius r around X ~ u, then we arrive at the main result of this section.

ProPOSITION 2.8. Assume that p is supported on a compact subset K ¢ RP, and let X =
(Xy,...X) be a p-iid. sample. Given a radius v > 0, consider for 1 < i < m the covariances
5= Y[oxu,] and L; = Z[ply,], where X; = {Xjlj # i} and U; = B.(X;). Let € and 5 be positive
real numbers and let k be a positive integer. If the sample size m satisfies:

mZy-log(@)+l

then we have:
Pr (| - il < e foralli <k) 2 1-0.
Here y = —1/log(1 — y1y2), where

. = - _62
y1:=infu(B,(x) and  y; =1 eXp(1152r4)'

Furthermore, inf,ex u(8B,(x)) > 0 holds and thus y > 0.
Proor. For each i, let U, be the ball B,(x;) and define the set E; C (RP)" as:
Ei:={x=(xr, %) | [|Elu] - Zlulu ]| > €}
where x; = {x;|j # i}. By the union bound, symmetry, and Proposition 2.7, we then have:

p(Er U -+ U E) < p(Eq) + -+ + p(Ex)
=k- fyk_l({(xz,---xm)l(x1,x2,---xm) € E1})d u(x1)

<k [@D+ 21 -1~ 9" duto

where u, = p(B,(x)), & = exp(—€?/1152r*), and p*! is the product measure on (RP)*!
induced by u.

Since 0 < £ < 1and 0 < u, < 1 for any x in the support K of u, we have that
0 <uy(1-¢)<1aswell. Letting uy := inf,ex 1y, we have:

(2.1) f (4D + 2)k(1 — u, (1 — &))" d pu(x) < (4D + 2)k(1 — up(1 — &))"
The condition on m now follows by forcing the right hand side of (2.1) to be < 6:
(4D + 2)k(1 — up(1 = &))" 1 < 6
By taking logarithm and rearranging terms, we get:
log ((@R+2k
1> 8( 5 ) g((4D+2)k)

Z Tlogl-w-) 718\ 5
12




as desired.

To establish that 1, > 0, consider the covering of K by balls of radius r/2. Since K is
compact, it admits a subcover {B,,,(x) | x € J}, with | a finite set. Thus, every x € K
admits a y € | satisfying x € B,,5(y). The triangle inequality guarantees a containment
B,2(y) € B,(x), from which we obtain u(8,2(y)) < u(8,(x)) and hence

inf u(8B,2(y)) < inf u(B,(x)).
yeJ xeK

Since the left hand side is an infimum over a finite set of strictly positive numbers, it is
also strictly positive and we have 1, > 0 as desired. m|

3. Lipschitz property of covariance matrix

Our goal in this section is to outline sufficient conditions under which the assignment
u +— X[u] becomes a Lipschitz function with respect to the Wasserstein distance [28]
on its domain, defined as follows. Let (M, dy) be a Polish metric space equipped with
probability measures ¢ and v. For each p > 1, the p-Wasserstein distance between y and v
equals

1/p
W (u,v) := (yeil_{}i,v) fM . dm(x, )y dy(x, y))

where I'I(u, v) is the set of measures on M X M with marginals equal to u and v. Note that
whenever 1 <p < g, we have W, (i, v) < W,(u, v) by the power mean inequality.

Throughout this section, we use the notation X ~ y and Y ~ v, whenever probability
distributions u, v are defined.

Lemma 3.1. Given Borel probability measures y, v valued in R, define i = Law(X — EX)
and similarly ¥. Then for eachp > 1,

(1) [EX — EY]| < W,(u,v) where X ~ pand Y ~ v.
(2) Wp(fi, 7) <2-W,(u,v)

Proor. Defining x; := EX and y, := EY, we have

fR D fR = v
[, a=-narwy

| R

< inf f = ylldy(x, )
RPxRP

o — yoll = ‘

= inf
yell(y,v)

,forany y € IT(u, v)

- yell(p,v)
= Wl ([JI V)

13



Noting that Wy(u, v) < W,(u,v) for any p > 1, we get the first claim. For the second claim,

W,(8, 7 = inf fR =)= (= ol d e )

yell(pv)

— _ P
Cop. it f (le y||+2|Ixo yoll) dy(x,v)
RPXRP

yell(y,v)

<P inf f e = ylI" + Ixo = woll” 1)
- yell(y,v) RPxRRD 2 iy

= 21 (W, (1, v + lIxo — yollP)
S 2p * Wp(#/ V)p

where the first inequality is the power mean inequality, and the second inequality follows
from the first claim. |

LemMma 3.2. For probability measures i, v defined on R and supports contained the interval
[-R, +R], we have the 2R-Lipschitz relation for all p > 1:

E[X?] - E[Y?] < 2R - W, (i, v)

Proor. Since W, is increasing in p, it suffices to prove the assertion for p = 1.
B - B0 = [ [ 02 - duw dny)
R JR
= f (x* — y*)dy(x,y), for any y € IT(y, )
RxR

<2R- inf f lx —yldy(x, y)
RxIR

yell(y,v)
=2R- Wl (Hl V)
where the only inequality above follows from the fact that the derivative of f(x) = x? is

bounded by 2R if x € [-R, +R]. O

ProrosttioN 3.3. Suppose y, v are probability measures on RP such that each measure comes
with a ball of radius r that contains the support of the measure. Then for p > 1, we have the
following Lipschitz property:

Il - SV < 47 W, (@, 7) < 87 - W(u, )
where [i = Law(X — EX).

Proor. We assume that r = 1, since the case for general r follows by scaling: r affects
the covariance matrix on the order of 7> and the Wasserstein distance on the order of .

Also, the second inequality follows from the first by Lemma 3.1, so it suffices to show the
tirst inequality. Since we are then working with fi and # and since covariance matrix is

14



invariant under translation, we may rewrite y = fi and v = ¥ and assume that p, v have
Zero means.

We may assume that both supp ¢ and supp v are contained within 8,(0) by the triangle
inequality; there is a ball 8, (x) of radius 1 containing supp w, so that by triangle inequality,
supp 1 € Bi(x) € B,(0).

Perform diagonalization as follows:

S:=X[u] -Z[v] = UAUT

where U = [uy,...up] is orthogonal and A is a diagonal matrix with entries A; > --- >

Ap = 0. Then the operator norm of S is A;, which can be written as:
ISl = Ay = (U"SU)1,a
= ]E[UTXXTU]Ll - ]E[UTYYTU]Ll
=EU X); - EU"Y)
where A, ; refers to the (1, 1)th entry of a matrix A and w, refers to the 1st entry of a vector
w. We furthermore get:

EUTX)? - EUTY)? < 4W, (U )1, (UTv),)
<4W, (U Ty, Uv)
= 4W1([J/ V)

where Uy = Law(U"X) and (U"u); denotes the marginal of U™ u at its 1st coordinate.
The first inequality is Lemma 3.2 with 2R = 4. The second inequality is a general fact
that applies to the Wasserstein distances between marginals. The last equality follows
from the fact that the Wasserstein distance is invariant with respect to isometry applied
simultaneously to the two measures.

Multiplying by the Lipschitz constant 2 for the non-centered measures, we get the
Lipschitz constant 8. The inequality for other p follows since W, is increasing in p. m]

4. Wasserstein bound for Flattening a Measure on Manifold

In this section, we quantify the extent to which a probability distribution valued
near a manifold approximates the uniform distribution over a tangential disk, using the
Wasserstein distance. We first define the measure of interest using a probability density
function, Hausdorff measure, and a noise term.
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DeriniTion 4.1. Given a metric space and a positive integer d, denote by H“ the d-
dimensional Hausdorff measure [22] on the metric space:

d — 1 d
HU) = I;fgﬂé(u),

] /2
where H; (U) = 2d dlam(C - Z diam(C; ) and wy : I‘(% ey

Ucuc; =1

Given a Borel set U C RP with a finite, nonzero real d-dimensional Hausdorff measure
H?(U) € (0, ), denote by Unif(U) the uniform probability measure over U with respect

to H? for each V,
HYUNYV)
HAU)

Recall that in RP, the Hausdorff measure H" agrees with the Lebesgue measure.

Unif(U)(V) =

DEerINITION 4.2. Suppose M is a d-dimensional smooth compact manifold with a smooth
embedding into RP and ¢ : M — R* is a continuous function satisfying fM pdH? =1. Let
Lio be the Borel probability measure given by defining for each open U C RP the following:

to(U) = ¢pd H*

unM
Lets > 0 be a constant, X ~ g and let Y be a random variable valued in RP with bounded
norm ||Y]| <'s. Here X and Y are not assumed to be independent. Define

p = Law(X +Y)
Then P(V], s) is defined as the set of all such pairs (uo, ), given M and s.
The following are notions from differential geometry relevant to us.

DerintTioN 4.3. For each compact Riemannian manifold M c RP,

(1) the metric dy is defined as follows: and points x,y € M, define the metric dy
by letting dj(x, y) be the infimum of lengths of all piecewise regular’ curves that
connect x and y. Equivalently, du(x,y) is the length of the shortest geodesic
connecting x and y.”

(2) The reach T of M is the supremum of t > 0 satisfying the following: If x € RP satis-
fies dro(x, M) < t, then there is a unique point x; € M such that dgo(x,x,) =
dgo(x,M). Here, dgo(x,y) = |lx — y|| is the Euclidean distance on RP, and
dRD(x, M) = infyeM dIRD(X, y)

%A regular curve is a continuously differentiable curve with nonvanishing velocity.
5This follows from the Hopf-Rinow Theorem; see Corollary 6.21 and 6.22 in [16].
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(3) For each point x € M, we denote by B, C T,M the open ball of radius r around
0 € T,M, while the notation B,(x) C RP is reserved for the (usual) open ball of
radius r around x € RP.

(4) Given x € M, the exponential map exp, sends each v € T:M to the endpoint of the
unique geodesic on M starting at x with the initial velocity of v.

The following is the main result of this section.

ProrosiTioN 4.4. Let (uo, 1) € P(M,s) where M C RP is a compact smoothly embedded
d-dimensional manifold with reach T and s > 0. Let x € supp u, let x, be any point in B,(x) "M,
and let r be a number satisfying 2s < r < (V2 — 1)t — 2s. Then there exists a function Q so that
the following holds for any p > 1:

W,(v,7) < t- Q(z, i)
(s
where v := g (v, and ¥ := Unif(B,(x,) N Ty, M)

Furthermore, we may take:

1

1.18@max 2.18
—(P(ZP + (P + 20)2)(1 - Qd) + Tp((Pmax - gomin) + 13893

D
where QPmax, Pmin are extrema of @ taken over B,o5(x,) and

Q(p,0) =30+ (p + 20)% +

ex @r_s -2
Holexpy, B-2:) and Q) := P20

O =D(xy,r=25) = B (p +20) + (p + 20)?

Proor. We consider the following multi-step transportation plan (see Figure 4), from

Vo = v, going through vy, v,,v3,v4 which we define below and finally reaching vs := 7.
Informally, these steps can be summarized as

(1) Perform a naive denoising on v, to get 1

(2) Apply inverse exponential map to get v,

(3) Fold in the portion of v, on the outer rim to the inside to get v3

(4) Flatten out the nonuniformity and get v,.

(5) Rescale radius uniformly to get vs.

17



.

inise exly \F\olil In Uniformi;ey ﬁale

Ficure 4. An overview of the transportation plan in the proof of Proposition
4.4. The last four sub-diagrams take place on the tangent space. Nonuniform
shadings in the 3rd, 4th sub-diagrams indicate nonuniform probability dis-
tribution.

Step 1. Suppose that X ~ pp and (X +Y) ~ p. We define v; := Law(X | X + Y € B,(x))
and define the transportation plan vy; by vg; := Law((X + ¥, X) | X + Y € B,(x)), whose
marginals are vy and v;. Thus for each open U C RP, we have

) =Pr(XelU|X+Y € B,(x))

(4.1)

:[J(Br(x)) Pr(X e Uand X + Y € B,(x))

where u(8,(x)) = Pr(X+Y € 8B,(x)), which follows by the definition of . The transportation
cost is bounded as W, (vo, V1) < E(x4yx) (X +Y) — X]|| < s. Note that by the assumption
x € supp u, we have u(8,(x)) > 0 and thus we are not conditioning on the null event.

By Equation (4.1), v; is well understood in regions where the condition X + Y € B,(x)
either always or never holds. If X € 8B,_;(x), then since ||Y]| < s, the triangle inequality
implies X + Y € B,(x). Similarly if X ¢ B,,5(x), then X + Y ¢ B,(x). By also noting
that ||x — x,|| < s, the triangle inequality once again implies B, (x,) € B,-5(x) and

B,15(x) € B,ips(xy). Applying Equation (4.1), we get the following;:

po(U)
n(U) < 1B, () for any U
o)
) = —,U(Br(x)) for U C B, »s(x,)
4.2) nU) =0 for U C B, os(x,)¢

where A¢ denotes the complement of a set A. Note that 11($5,(x)) is a constant, since we
fixed x.
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FIGURE 5. Measure u and its restriction pig v, where x € RP and x, € M.

Step 2. We define v, by pushing v; forward along the inverse of the exponential map
exp, but we must do it where the exponential is invertible. The injecvitity radius is
defined as the largest radius ¢ so that for any z € M, exp, is a diffeomorphism (and thus
invertible) when restricted to the ball of radius ¢ centered at 0 € T,M. It is known that the
injectivity radius is at least 7 - 7 (Proposition Al of [1]). Meanwhile, Lemma 6.10 implies
the following inclusions, which tell us our domains of interest:

rm) c Br—2s(xJ_) nM
4.3) Bras(x) "M Cexp, (B,..)

exp, (103

where 103, is the open ball of radius r in T, M centered at 0, and the radii 7i,, 7out are defined
as:
Tin :=1—25

(4.4) Tout = (r +25) + (r + 25)*/1

Now r + 25 < (\/5 — 1)t implies 7oy < 77, and thus the exponential map is invertible on

B,.125(x1) N M. Therefore, noting Equation (4.2), we may define v, as follows:
v := (FY).v1, where F = exp, |z, t

Or equivalently,
va(U) = vi(exp, (UN B,,,)
Note that the support of v, is contained in F!(B,2(x, ) by the definition of v, and Equation
(4.2). We also have F71(B,,x(x,)) C B by Equation (4.3).
The transportation plan is the application of Lemma 6.3 to the pushforward along

Tout

exp,!. In performing the transportation, we regard the tangent space as embedded:
T, M C RP so that the transportation happens in the ambient space RP. By the last result
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mentioned in Lemma 6.9, the transportation cost then is bounded as:

7+ 2s)?
Wp(vy,12) < ( )
Thus by Equations (4.2) and (4.3),
to(exp, U) )
Vv u S—l forugBr@ut
=B w
Holexp, U) .
vo(U) = - for U C B,
=B w
(4.5) v(U) =0 for U C (B, )

Meanwhile, we can evaluate po(U) when U C B, . explicitly using the area formula from

Tout

geometric measure theory®, which is a generalization of chain rule:

Ho(exp, (1)) = f pdH" = fu plexp,, y)Jexp, (y)dy

exp,, ()
Here, ] f denotes the Jacobian of a function f and dy is the d-dimensional Lebesgue
measure. Thus,

(U) = s | plexp,, Dlexp,, (1) dy for U &,
(l) = s | plexpy, Wlexp, (1) dy forlcs,
(4.6) v(U) =0 for U C (B,,)

Step 3. We saw that v, can be written in terms of p, inside radius rj, and vanishes
outside radius 7. The annular region between the two radii is harder to understand
since it is where curvature and noise interact, as indicated by Equation (4.1). In Step 3
we remove this annular region, so that we only need to deal with v, restricted to 203%. We
decompose v, as v, = vizn + v‘z’ut, where we define for each Borel set U C T, M the following:

viINU) == (U N B,,)

V() = va(U N By, — By)
Define

V3= (fvizn)_l v
where f Vit := vi(Ty, M) is the total mass of vi', which is a constant. The transportation
plan is to: (a) transport v3"* to the Dirac delta distribution centered at 0 € T,M and (b)
transport this Dirac delta distribution back to ( f vout/ f vy, Note that f veut/ f Vit is
just a normalization constant and that f Vit + f V9" = 1. By Lemma 6.4, the transportation
%See for example [7] for a standard reference in geometric measure theory
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cost W, (v,,v3) is bounded by (rout + 7in) f V¥, since the first part of this transportation
moves by distance at most 7., the second part moves by at most ri,, and the total mass to
move is f vout,
Equation (4.6) carries over since v; and vizn are proportional; for each open U C Ty, M,
1
(B, (x)) [ vy
Step 4. We flatten out the non-uniformity in v3. As in Equation (4.7) above, v3 is given
by the probability density function (y) := p(exp, y)Jexp, (y)timesa constant. Defining

(4.7) v3(U) = fu 5 plexp, y)Jexp, (y)dy

vy = Unif(8,, ), we can directly apply Lemma 6.5:
war
W, (v3,vy) < W (Ymax = Umin) * 2in

where the factor w4 is needed to rescale the Lebesgue measure d y in Equation (4.7) into
dy y=dy/ (wdr ") so that fB dy y = 1, so that Lemma 6.5 can be applied. In the above,
extrema of i are taken over B, . Writing ) := ¢ o exp, and @ := Jexp, so that
P = pWyYP?, the variation Ymax — Ymin can be controlled with the triangle inequality as
follows:

1 2 1 (2
w}max - lprninl S |1P§n21x §11)ax - ljbf'n)lngbm)lnl
1 2 1 1 2 1 2
< |l;b§n)ax En)ax - l;bin)ml;bmax winzn Enzalx - ¢£nzn¢( ) |

1 1 2 2 )
= [P = OO [+ 190 | [l — v |

7,2 2

< ((Pmax (Pmm)( 272 ) + (Pmm n

Here the extrema of ¢ are taken over the geodesic ball exp, (8,.). In the last inequality
above we used Corollary 6.12, which tells us that:

llyII?

2
(4.8) 1——<|] ()|<1+|Iyll

772
We furthermore note that, by Equation 4.6,
2

. I
WS (x)) [vy' = L plexp, Y] expr(y)dwadrfn( 6;“2)%111

so that _
w(B,(x) [vy 1
min = war 1- 12 /672
Thus the transportation cost is bounded as:
wart, r 2r2 /377
WP (VS; V4) (W (q)max + W) - 21in
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We note at this point that the extrema of ¢ may be taken over 8B,,,,(x,) instead, since
Brias(xy) 2 exp,, (ZOBrm). This relaxation is done for a compatibility with another extrema
of ¢ taken later.

Step 5. Here we simply rescale B. to B, radially, which multiplies the associated
probability density function by a constant factor (Lemma 6.8), so that we get another
uniform distribution. By Lemma 6.3, the transportation cost is bounded by r — ri, = 2s.

The Total Bound. Collecting the bounds’, we get:

WP(VOI 1/5)
<W,(vo, v1) + Wy(v1,v2) + Wy (v2,v3) + Wi (v3,v4) + Wy (vy, vs)

(r + 25)2
T Tin + 7"out) out

war ( A 2r2 /372 ) )
PN R max +— : 1n+
@) for 7 L+202) 1-726r2) "7 7

Using Equations (4.5), (4.6) and (4.8), we obtain the following bounds:

(4.9)

2

uB,0) [ V8 = polexp, B1) < (1 + ),

2
d
)w (rout r‘m)

80 [ 5 < putenp, B =) <
where @y is the maximum of ¢ taken over B,,25(x )8 Combining these, we get:

[ BN [ gL+ 72 /2P)eu(rhy 1)

— = — < - =d'(Q7-1)
[vir w(Bu(x)) [vin Ho(exp, B,
with Q = [ g = Pmel* Tou 20Ny
Yout ‘UQ(eprl Brin)

Here the upper bound for u(8,(x)) [v)* was used only to show @ > 1. We can bound
Jv9* using the above, as follows:

out _ fVizn B 1 - ’ d
fvz = +—fv°“t S(1+—qy(g—d_1)) <O'(1-0F)

where the first inequality holds by plugging in the upper bound for [v§™/ [V}, and the
second inequality holds since @ > 1. Plugging these into Equation (4.9), we get that

"We use a slight abuse of notation and identify v; with t.v; for k = 2,...5, where ¢ : T, M < RP is the
inclusion of tangent space. This is not a problem, since generally W, (1.1, t.p2) < Wp(u1, p2) holds for any
measures (i1, tip on Ty, M.

81t suffices to take maximum of ¢ over B,,2(x) in bounding u(B,(x)) f Vo, since v, is supported on

expy ! (Brias(%)).
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W, (vo, vs5) is no larger than

+2s)? T wal'
42 | (i + ron) (1 — Q) wty Ol

20 tolexp,, By,)
ward r 2r2 /377 )
@) for (fmax = pmin) {1+ 35 )+ 72 2 6r2)
By the assumption r + 2s < (V2 — 1)1, we have both 7y, < (V2 —1)7 and rowe < (2 — V2)7.

These inequalities further imply:

7’2 2 2
1+2—<109anc11+2°ut 1.18 and /3

3s +

Plugging these numbers into our bound above for W, (v, vs) yields the desired result. O
We have the following bound, upon further assumptions on the noise radius s and the
probability density ¢:
CoroLLARyY 4.5. In Proposition 4.4, suppose that we additionally assume that there exist a, 8
satisfying:
lp(x) — W)l < a - dm(x, y), forany x,y € M
o < Bp?, with p < 1.2
Then we have the following bound for any p > 1:
W,(v, %) < Qip, p) - Tp
where Q1(p, P) is given by:

Qi(p, ) =3p + 7 +
and p1 =1+ 2pp

(Pmax 60(T

— @+ pip)(1 +4p) +

(1 + ﬁlp)ﬁl + 1. 38p

In particular, for p = 1/2, we have:

Qa2(p) := Qi(p, %) = (25+3.38p+p%) + %(2 +p+20"+p°) + 4.36at (1+2p+2p*+p°)
Proor. We first have:
p+20 < Bip
(4.10) 1-Q7<d(1+4p)p

where the first line is by the definition of $; and the second line is by Lemma 6.6. This
almost derives Q;, except the bound on @max — Pmin. Since geodesic distance is used, the
Lipschitz assumption on ¢ implies:

(Pmax - (Pmin < 2Ofrou’r
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by using radial segments in the ball B, C T,, M. By the definition of 7o, and the bound

Tout —

p + 20 < Bip, we have:

Tout

< (p+20)+ (p+20)* < (1+Bip)pip

=<
and thus:
(4.11) Pmax = Pmin < 2a7(1 + 1p)B1p

Plugging in Equations 4.10 and 4.11 into the expression for Q(p, o) derives the expression
for Q;. Note that the condition § < 1.2 is simply added so that if p < V2 — 1, we get
1—2Bp > 0 and thus p — 28p? = p(1 — 2Bp) > 0, which is necessary for applying Lemma
6.6. The expression for Q; is obtained by direct substitution of g = 1/2. m|

5. Tangent space and dimension estimation

In this section, we combine the Propositions 2.8, 3.3, and 4.4 to prove Theorem 5.3.
This in turn implies both Theorem A and B from the Introduction.

DeriniTION 5.1. Given a d-dimensional subspace IT € R”, denote the D X D orthogonal
projection matrix to I'T by Pry, which is a real symmetric matrix, given concretely as:
Pr = AnAf
where A € RP* is any matrix whose columns form an orthonormal basis of I1.
DeriNiTION5.2. LetX = (X, ... X,) beani.i.d. sample drawn from p, a Borel probability

measure on RP. Given x € RP and r > 0, define:

N d+2
Pl' = 1’2

E[oxu,], where X; = {X} ., U; = B,(X;)

If [T € RP is a d-dimensional subspace, then Lemma 6.1 says that:
(d + 2)X[Unif(ITN B1(0))] = P

Thus an approximation to this covariance matrix in Proposition 4.4 amounts to the ap-
proximation of a projection matrix, and justifies the definition of P;.

Tueorem 5.3. Let (u, to) € P(M, s) where M is a smoothly embedded compact d-dimensional
manifold M € RP with reach T and s > 0 is a real number. Let ¢ be the probability density function
of po which satisfies ||p(x) — e(Y)Il < a - dm(x, y). Let Xy, ... X, be an i.i.d. sample drawn from p
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and let X3, ... X;; be their orthogonal projections to M. Given positive real numbers 6, €,k where
k € Z, suppose 1, m satisfy the following:

r+2s<(V2-1)r
t 1 16(d+2)Qx(r/7)

mZy-log(@)+l

Then with probability at least 1 — O, the following holds for every i < k:
P <

where P; = Pr, , m is the projection to the tangent space Tx: M,

-1 ) . —62
y = —log(l v >0, with y; = xe;lll}gfp”y(ﬂ(x)), Y2 =1-exp (4—608(d " 2)2)
and Qy(r/7) is defined as:
3.54@ maxd .
Q2(p) = (2.5 +3.38p + p?) + +(2 +p+207+p0) + 4 3(16)ar(1 +2p +20% + p°)

to(exp,. B2
wy(r — 2s)?

Proor. Out of total allowed error €, we will allocate one half €/2 to the concentration

where O =

inequality (Proposition 2.8) and the other half €/2 to the curvature (Proposition 4.4).
Throughout the proof, we use the shorthand U; = 8,(X:").

Concentration inequality: By Proposition 2.8, we may use k points for local covariance
estimation by error level r2¢/2(d + 2):

2
[=oxiu] - Elplu]]| < 7 - 5, foralli <k

with probability at least 1 — 6, if m satisfies the inequality in the theorem statement.
Curvature: By combining Corollary 4.5 and Proposition 3.3, the following holds for

2

every x € supp p:
?Q» 8te ?Q, €
—— Pl <8r- < . = L2
‘ d+2 H T ST+ 20, t d+2 2

where Q, = Q»(r/7). In the second inequality, the assumption on 7 in the theorem statement
7’2

was used. Note that /= Px: is the covariance of the uniform measure over the tangential

disk of radius 7, by Lemma 6.1.

Zlplu] =

25



By the triangle inequality, for all i < k we have

2
Hd;zz[éx,w,-] - Pj < d%z (HZ[6X|U,-] - Z[Mu,—]“ + || E[plu] - drjP’H)
<€,
= 2 2 7
as desired. We note lastly that the assumption 2s < r was dropped because it follows from
the other assumptions r + 2s < (V2 -—1)t and V2s/7 < /7. O

We now note that the constant y can be simplified with a slight relaxation:

LemMma 5.4. In the setup of Theorem 5.3, suppose that € < 1. Then y satisfies the following:
2 2
14608(d +2)° 1<v< 1 4609(d +2)
n € n €

Proor. Applying Lemma 6.7, we have:

_ -1 . [ 1 11 ]
" log@ -y e yn 2
Again applying Lemma 6.7, we have:
2

l:—l e[l+1 l+1] whereéz—e
v e letET 4608(d + 2)2
Therefore,
l(l+1)—1§7/§l(1+1)—1
V1 & V1 & 2
Since € < 1, we have &' + 1 < 4609(d + 2)?/€>. Therefore, we get the claim. O

5.1. Proof of Theorem A. Theorem 5.3 was stated using a projection matrix, although
an empirical estimate for the tangent space is given using a set of basis vectors. To directly
estimate error of tangent space estimation, we introduce some additional notions.

DeriniTION 5.5. For a real symmetric matrix A of size DX D, suppose its diagonalization
is given by A = UAUT, with U being an orthogonal matrix and A being a diagonal matrix
whose entries are arranged in the decreasing order. Then for an integer k < D, define the
k-dimensional subspace I1(A, k) C RP as the span of the first k columns of U.

DeriniTION 5.6. Suppose I, IT, € RP are two subspaces of RP and let A;, A, € RP*
be matrices such that columns of A; form an orthonormal basis of I'l;. Leto; > --- > op be
the singular values of A A,. The principal angle between IT; and I, is defined as:

((ITy,T1,) := cos L op
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Or equivalently,’

£(IT,TL) := maxmin £(x
( I 2) xelly yellp (’y)

with £(x, y) = cos™ (x, y)/(llxll - llyll)).

The following special case of the Davis-Kahan theorem (see [29] or [6]) then allows us
to bound the principal angle:

Tueorem 5.7 (Davis-Kahan). Suppose that A is a real symmetric matrix with eigenvalues

A > A% > ---. Then for any other real symmetric matrix B and a positive integer k such that
A? * /\?ﬂ’ A_B
sin £(TI(A, k), T1(B, k)) < 1A= Bl
/\A _ AA
k k+1

We now give the proof of Theorem A, stated in the Introduction.

Proof of Theorem A. The setup is that we take € = sin 0 in Theorem 5.3. Then we have
the following for each i < k:

||P; =P < sin©

Since both P; and P; are real symmetric matrices and since eigenvalues of P;are (1,...1,0,...0),
letting A =P;, B = P;, and k = d in the Davis-Kahan theorem gives:

sin £(TI(P;, d), TI(P;, d)) < || P; —P;|| < sin 0

Since P; is the projection matrix to TX’;M, a d-dimensional space, we have I1(P;, d) = TxilM-
Furthermore, I1(P;, d) = II(Z[oxu,], d) = f[g), where U; = B,(X)).
We explain how the Q, in Theorem 5.3 is replaced by ¢; = 3 + (8Pmaxd + 5aT)/Pmin in

Theorem A. (Note that ¢; = 16(d + 2)c}) This is because

r € ) . T €

T S T+ 2 P TS 5@+ 20,
Firstly, we see that Q}(p) > Q2(p), where Q) (p) is obtained by replacing ® by 0.97¢n;, in
the definition of Q»(p). This holds since 0.97@in < ®:

1 72

Q= ——-— ex ex dy > Qmin- (1 — =) = 0.97Qn;

(1),;1(1’ — zs)d j(z;r—zs Q[)( pxl y)] pr_ yay Pmin ( 6T2) @Pmin
9Note that op = minz=1 ||AIA22|| = minHyII=1,y€Hz ||Air]/|| = min”y”:l,yenz(yl,y) where Y1 is the
unit vector in the direction of AjA[y. Noting that (y1,y) = maxXpj=1xer{X,y), we have op =

Minyy|=1,yert, MaXjxj=1,xert, (X, Y)-
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where we used 7 < (V2 - 1)7. Now Q5(p) is an increasing function in p, and by numerical
computation we see that Q) (1/48) < c¢;. Thus whenever p < 1/48,
1 1 1 1
=< — <——x
1 Qy(1/48) T Qi(p) T Qap)

Thus if we assume
r €

T 16+ 2)
then this implies p < 1/48 sincee = sin® <1, ¢} > 1, and 16(d + 2) > 48. Therefore, we get

the assumption:
r €

7 S T6[d+2)0,
We finally apply Lemma 5.4 to simplify y from Theorem 5.3 to get Theorem A.
The condition 7 + 25 < (V2 — 1)1 is dropped from Theorem A because r/T < 1/48 and

V2s/t < r/timplies r + 25 < (V2 - 1)r.

5.2. Proof of Theorem B. For dimension estimation, we claim that we must use the
following estimation error level to ensure that the dimension estimation works correctly:

B Vd+1)(d+4)
2VD(d + 3)

This is basically a consequence of Lemma 6.2. To relate a perturbation of eigenvalues to a

perturbation of covariance matrices, we use the Hoffman-Wielandt theorem [11].

Tueorem 5.8 (Hoffman-Wielandt). For normal matrices A, A’ of dimension D X D, there is
an enumeration of eigenvalues (Ay, ... Ap) of A and (A}, ... A},,) of A" such that

D
Y - AP <A - AR
i=1

where ||Allr := +/Tr(ATA) denotes the Frobenius norm, with Tr(e) denoting the trace. In particular,
if A, A" are real symmetric matrices, then

IALA] = ALA'] < 1A = A'lls
where A[A] € RP is the vector of eigenvalues of A, arranged in the decreasing order.

The special case for real symmetric matrices follows from Lemma 6.13. We now give
the proof of Theorem B, stated in the Introduction.

Proof of Theorem B. Let € = /(d + 1)(d + 4)/2 \/E(d +3). Then ||P;-Pj|| < e implies
V(d+1)(d +4)

A[Pi] - AP < 1| P; —Pille < VDIIP; -P)l| <
IALP.] = ALPAN < IIP; ~Pile < VDIIP; ~Pi < ===
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where the first inequality is the Hoffman-Wielandt Theorem and the second inequality
is a general inequality between the Frobenius and the operator norm of real symmetric
matrices. Here, the constant VD is optimal.' Recall the definitions P; = L2Y[6x8,x,)]
and P; = PTX M- The eigenvalues of the latter are (1,...1,0,...0). Therefore, dividing by
(d +2), the above implies:

1. 1 d+1)d+4)
r—z/\Z[éxm(xo] BTG O)H = 2(d+2)(d +3)

where there are d of onesin 1, ...1 above. Then by Lemma 6.2, we have

b
d+2

5.3. Dimension estimation using tail sum: Theorem B’. We prove one more result

1,...1,0,...0)

Il
QU

) 1>
argmin, ﬁ/\Z[éxm(xi)l -

on dimension estimation, using the tail sum of eigenvalues. Given a tolerance parameter
0 <7’ £1and a real symmetric matrix A with eigenvalues A; > --- > Ap > 0, we consider
the estimator measuring the longest possible tail sum:

deil(4, n'):= mm{ ‘ Z AP < i/\?}
i=1

i>k
For instance, for (17')* = 0.05, we are looking for how many principal components explain
95% of the variance. Observe that the tolerance parameter 1" shouldn’t be zero in order to
ignore a certain degree of noise. This is explained in Proposition 6.14 in Section 6.3. We
combine this with Theorem 5.3 as follows:

TueoreMm B’ (Dimension estimation using tail sum). Let (y, uo) € P(M,s), where M is
a smoothly embedded compact d-dimensional manifold M C R with reach 7 and s > 0.
Let ¢ be the probability density function of yy which satisfies [lp(x) — ()|l < & - dp(x, ).
Let X = (Xj,...X,,) be an i.i.d. sample drawn from u. Let 17, " be numbers that satisfy:

d
T~ d+20d+1)
, _(@d+222d+12 @d+2PQd+1)7 1
e( PR T Ad v )2 (d+2 ”»

Given a real 6 > 0 and an integer k > 0, suppose that a real 7, m satisfy the following:

d+2
2s r<(+)17

T T \/ﬁcl
(4D (;— 2)k) ‘1

m>cy- log(
0oy example, IIX[A] - X[A’]II = VD||A — A’|| whenever A =a-Ipand A’ = a - Ip for some a,a’ € R.
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Then with probability at least 1 — 6, the following holds for every i < k:

~ 1 A
dut (5P 17 ) =
‘ l(d ol ) a
Also, ¢y, ¢, are defined in Theorem A, with the only difference being that we take
(d+2)n

VD

in the definition of c,.
Proor. Lete = (d +2)n/ VD. Then ||P;-P)|| < e implies
IXTP,] = APl < 11 P; =Pills < VDIIP;~Pi| < (d +2)n

As before, dividing by (d + 2), the above implies:

1- 1
r—zAZ[éxiwr(xi)l 73

where there are d of ones in 1,...1 above. Then by Proposition 6.14, we have

min {k \ Y (A2 <y im?ﬁ} =d

i>k i=1

1,...1,0,...0)| < 7

Note that the appearance of c;, c; and the omission of the condition r + 2s < ( V2 - 1)t are
by the same reason in the proof of Theorem A. O
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6. Appendix

6.1. Notations and conventions. Here are some conventions we use.

e All manifolds are connected.

e All vectors are by default column vectors.

e |[v]l = VoTo denotes the Euclidean norm of a vector v € RP.

e ||A]| denotes the operator norm of a matrix A € R™", seen as a map R" — R™.
lAllr = \/Tr(ATA) denotes its Frobenius norm.

e I; denotes the d X d identity matrix.

e E[X] denotes the expected value of a random variable X.

e X[u] denotes the covariance matrix of a Borel probability measure p over RP.

e B,(x) C RP denotes the open ball of radius r centered at x € RP.

e Given a smoothly embedded manifold M C RP and a point x € M, @r cT.M
denotes the open ball of radius r centered at 0 € T..M, assuming that the choice of
x is clear from the context.

° X[A] € RP denotes the eigenvalues of a real symmetric matrix A of size D X D,
arranged in the decreasing order.

Additionally, the following letters have specific meanings if not stated otherwise:

Notation | Meaning

A compact manifold smoothly embedded in R”
Intrinsic dimension (of M)

Ambient dimension

Reach of M

Main distribution of interest with noise

u before adding noise

Probability density function on M used to define p
Sample size

Local detection radius

Noise radius

Normalized local detection radius p = r/t
Normalized noise radius ¢ = s/t

(p = 20)/((p +20) + (p + 20)?)

Estimation error level

>m Do v 2~ IV EFE AT

Estimation within error € happens with probability > 1 -6
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6.2. Technical lemmas. We prove technical lemmas not proven in the main body of
the paper.
The following is Lemma 13 from [4].

Lemma 6.1. Given a d-dimensional subspace T1 of RP, the covariance matrix of the uniform
distribution over the disk IT N B4(0) is given by:

1
d+2
where Pry is the D X D projection matrix to I1. Eigenvalues of this matrix are:

1
—(1,...1,0,...0)

d+2 —— N
d D-d

T[Unif(TT N B,(0))] =

Pn

Proor. Denote by 1, p the d-dimensional subspace of R” spanned by the first d canon-
ical basis vectors. The only nontrivial covariance between the marginals of Unif(IT;p N
B1(0)) is:

1 1 1 (! ; by 1
— xdx= f ||x||2dx:—f rz-dr'ldr:f rldr=——
Wa Jjjri<1 wa - d Sy« d Jo 0 d+2

where 1/w, is multiplied so that the distribution is uniform over the unit disk. This yields

Ii O
0 Op_g
Given any d-dimensional subspace IT C RP, consider an orthonormal basis A =

[01,...vp] such that the first d vectors [v4,...v4] span I1. If X ~ Unif(IT N $;(0)), then
A7X ~ Unif(IT;p N B1(0)). Thus the covariance matrix of X is

the calculation for the vector of eigenvalues. Thus,

. 1
Z[Unlf(nd,[) N B](O)] = m

1 [l o 1 1
——A AT = g = P
T30 |0 OD—dl Tl vallvy, .. 0a] = == P

LEMMA 6.2. Suppose

1
=—/(1,...1,0,...0
d+2(\\/_/ \,_./)
d D—d

A(d, D) :

Ifd < d’, then
(d —d)dd +4d +4)
(d + 2)%(d” + 2)?

IA(d, D) = X(d, D)I? =

Also for any k # d, we have:

V@@ +1)d +4)

IAGk, D) =A@, D)l > 1A(d, D) = A(d + 1, D)l = ===
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Proor. The norm of difference is given by direct computation:
11 )2+ d—-d (d-d)dd +4d +4)
d+2 d'+2)  (d+2?  (d+2)>2d +2)?
The partial derivative of the above expression with respect to d and d’ are strictly

1A, D) - A(d, D) =d- (

negative and positive respectively, whenever 0 < d < d’. Thus for each d > 2,

min |X(d, D) — A(d, D)|
d’ #d

= min(||X(d, D) — A(d + 1, D)||, IX(d, D) = A(d — 1, D))

_ ( VA +1)(d+4)  +Jdd+3) )
=min

d+2)d+3) " (d+1)d+2)

AVd+1)(d + 4)

(d+2)d+3)
where we use the fact that (—m is decreasing in d for d > 0 (directly checked by
computing the derivative of its square). m]

Let’s prove simple inequalities associated to optimal transport, constituting the main
tools to obtain the necessary bounds for covariance matrices.

LeEmMma 6.3. Let M be a Polish metric space with metric dy;. Suppose A,B C M are Borel
measurable, with inclusion maps (! : A < M, (® : B < M. Suppose that there is a continuous
bijection f : A — B witha L > 0 with dy(x, f(x)) < L for any x. Let u be a Borel probability
measure on A. Then for any p > 1, the Wasserstein distance between pushforwards of u and f.u
along inclusions are bounded by L:

W, (i, Bfu) <L

Proor. If X ~ Ay, then f(X) ~ (Bf.u. Therefore, by using the coupling (X, f(X)), we
obtain the claim:
Wy, 1 ) < (Ex du(X, fOY)F < L
O
LeEmMA 6.4. Let M be a Polish metric space with metric dy and a finite diameter L :=
sup, e dm(x, y). For a Borel probability measure y on M and a Dirac delta measure O centered

at x € M, we have:
Wy(u, 6x) <L

Proor. Define the transportation plan v on M X M by

pul) ifxeV

0 otherwise
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whose marginals are p and 6. The transportation cost is bounded by L. O

LemmA 6.5. Let M be a Polish metric space with metric dy and a finite diameter L :=
sup, . dm(x, y). Fix a Borel probability measure i on M. Let f be a non-negative continuous
function on M with sup,,, f(x) — infyerm f(x) < C and fM f)du(x) = 1. Let py be the Borel
probability measure on M given by taking f as the probability density function. Then for any
p=>1,

W, (uf, 1) < CL

Proor. For any real number a2, we have a = max(0,a2) — max(0, —a). Applying this to
a = f(x) — 1, we may write:

Hp =y — g

where y}r(U) = f max (0, f(x) —1)d pu(x)
u

w0 = [ max(0,1- ) d o)
u
As such, for any point x € M,
Wilug, 1) = Wyp + u — g, 1) < Wy (g, i)

The inequality holds since generally W, (1 + vy, i +v2) < W, (v1,v2). Since u(M) = ug(M),
we have A := y;(M) = y}j(M) Then

Wi(uF, i) < Wy(up, A~ 6x) + Wy(A - by, p7) < 2AL
The second inequality is by the previous lemma. By definition of Ty

A= y}“(M) <sup f(x) -1

xeM
A= ;M) <1 - inf f(x)
Thus 2A < C, and 2AL < CL. O
LEMMA 6.6. For the following function
1—ax

fl) = (1 +ax)(1 + x + ax?)
the following holds whenever a > 0,k > 1 and x € [0,1/a]:

FOF 21 -k + 2a)x

Proor. Let’s always assume x € [0,1/a] here. By direct evaluation, f'(0) = —(1 + 2a)
and thus the claim is equivalent to f(x)* > 1+ kf’(0)x. Since f(0) = 1, it’s sufficient to
show that (f¥)'(x) > kf’(0) for any x. We have f’ < 0 since f is decreasing, and we can
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also directly check that 0 < f < 1. Thus (f*) = kf*1 f’ > kf’. Thus it suffices to show that
f" > f'(0). By direct computation, we have:
2a —(@®x® +4dax +2a + 1)

fe) (1 + ax)*(1 + x + ax?)?
We want f” > f(0) = —(1 + 2a), which is equivalent to:

20°x% — (@®x* + dax +2a+ 1) + (1 + 2a)(1 + ax)®’(1 + x + ax*)? > 0
which holds since all of the coefficients are positive, upon expanding the brackets. m]

LemMA 6.7. For every t > 0 and s > 1, the following hold:

1 1
e 1€ [5'1]

1
——+s€[,1
log(1—s71) ° [2 |
Furthermore, both functions are increasing.

Proor. The function s(t) = 1/(1 — e”/) is an increasing bijection from (0, c0) to (1, c0)
and we have t = —1/log(1 — s(t)™'). Thus it suffices to prove the properties regarding the
function: , , . ‘i1 ,

e ue" —e* +
f) = —t= -~ =———— wh ==
f® 1—e Ut et —1 u ue* —1) whete =4

Then the claim that this quantity falls in the interval [1/2,1] is equivalent to:

ue' —u <2ue* —2¢"+2,and ue* —e* +1 <ue* —u

or equivalently,

0<(u—-2e"+m+2),and1+u<e"
The second inequality is a standard fact, and plugging it into the first inequality shows it
easily. To show that f(t) is increasing, we evaluate the derivative:

d 1 el/t
B )
dt (1 — e/t ) (eM/t = 1)2t2

The derivative is positive iff:

(el/t _ 1)2
2= el
which follows from the following:
= u/ 2)2k u /2

1
— —1/2 h - —
L k 1 e , wnere u ;
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LemMA 6.8. Let fy : R? — R* be a function such that fo(x) = fo(Ax) for any A > 0, and that
fo is differentiable when restricted to the unit sphere S\, Define the scaling map f(x) = fo(x)x
for x # 0. Then the Jacobian determinant of f is given by:

J f(x) = fo(x)

Proor. We have that aixj( fo(x)x;) = bijp + g—i(jxi where §;; is the Kronecker delta. Then

J f =det(fola + (Vg)x") = fo+ (Vfo) 'x = fo
by the matrix determinant lemma and the fact that the directional derivative of fy(x) along
X is zero. O

The following lemma, which is a simple extension of Proposition 6.3 of [20], controls
the deviation of geodesic from the first order approximation:

LemMmA 6.9. Let M be a smooth compact n-manifold embedded in RP with reach ©. Suppose
that x, y are connected by a (unit speed) geodesic y : [0,7] — M of length 7 with y(0) = x, y(7) = y,
and denote r = ||x — yl||. Then the following inequalities hold:

. r <<
F——<r<7
2T

If r < 0.57, then the following hold:

2r 7
< — —_— — Y, < —
<1-4/1 T,andlly (x+ 7 0)l < o

Ifr < (V2 - 1)7 = 0.4, then the following also hold:

r? r2
F<r+ p and |ly — (x + #p(0))|| < =

=

Proor. Since straight lines are geodesics in R”, we have r < 7. Meanwhile by the

Foonh
f f V(t)dt,dt
0o Jo

When r < 7/2, thisis equivalent to 7 ¢ (7 —7 V1 — 2t7!r, 7+ 7 V1 — 2771r). Since # = 0 when
r =0, by continuity we must have 7 < 7 — 7 V1 — 277 1r.
To get the error bound of first-order approximation, we calculate by basic calculus the

triangle inequality,

P
> —

r=Ily(@) = yO)l = IFyO)ll -

T

following;:
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and thus

Iy () = ((0) + 7y (O))Il =

7 tq 7 t 1 fZ
ff y(t2)d b dt Sff —dt,dt; = —
0 Jo 0o Jo T 2T

where the last inequality holds because for any ¢, |[j(H)|| < 77! (the norm of the second
fundamental form is bounded above by t!. See Proposition 6.1 of [20]).

To get simpler bounds, now suppose that 7 < (V2 — 1). We note that x € [0, V2 — 1]
implies'' 1 — V1 - 2x < x + x2. Thus

2

_ r
F<t—1V1-=-2tlr<r+—
T

=2 2 2
W@—W@+W@NS%ﬁééwﬂfs%

O

Lemma 6.10. Let M € RP be a compact smoothly embedded d-dimensional manifold with
reach T. Let x € M and let 0 < r < (V2 — 1)t be a radius parameter. Then

exp,(B,(0)) € B,(x) N M S exp,(B,.2/:(0))

Proor. The first inclusion expx(Zo%r(O)) C B.(x) N M holds because a straight line is a
geodesic in the ambient space IRP. To see the second inclusion, suppose that ||x — y|| = s <
(V2 —1)7. Then Lemma 6.9 tells us that any geodesic connecting (x, 1) has length at most
s+ s?/7. Applyig this to every s < r, we get the inclusion. m|

Sectional curvature may be used to bound the Jacobian of the exponential map, as
follows[17]:

THEOREM 6.11. Let M be a Riemannian manifold with sectional curvature bounded below and
above by x_ and k... Then for x € M and v € T, M, the following holds:

. ( sin /K. |[o| sin \/K_—IIUII)
min(1l, —— _
Vol Vie-lol
for all |[v]| if k+ < 0, and for |[v]| < 1t/ /iy otherwise. The quantity % is taken to be 1 when
x=0.

) < [I(dexp,)oll < max (1,

This implies a weaker bound given in terms of the reach:

CoroLLARY 6.12. Let M C RP be a smoothly embedded compact Riemannian manifold with
reach t. Then for x € M and v € T, M satisfying r := ||v|| < 1z, we have:
sinh V2777 sintlr
—=—— <ll(dexp, sl < —
\/ET—lr T'r

Hsince (x + x2)/(1 = V1 —2x) € [1,1.07] when x € [0, V2 — 1], this relaxation overestimates by at most 7
percent.
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In particular, if r < 27, then

2 2

r r
1- @ < ||(depr)U|| <1+ 2—’_[2

Proor. Norm of the second fundamental form is bounded above by 77! [20], and
thus by the Gauss equation applied to sectional curvature (i.e. K(u,v) = (R(u,v)u,v) =
(I(u, u), I(v, v)) — ||I(u, v)|[* for orthonormal u, v), we may take x_ = —27% and x, = 72 for

the curvature bounds. Thus the radius condition reads r < ntt. Then we have:
) 2

sin K. sint'r r . r
= — =1-—+0(0")21-—
VKT T 6T 6T
sin \k_r  sinh V27 lr 1 72 r?

+0("Y <1+ —forr<2t
272

= + _
\K_r 271y 312

where in the end we used sinhx < x + %3 for x € [0,2V2]"2. O

LemMma 6.13. For a metric space M and its n-fold product space M", the following function is
a metric on M":
do(x, y) == mindp(o - x, T - y) = mindum(x, 0 - y)
0,TES,, 0€Sy,

where S, is the permutation group on n elements and o - (Y1, ... Yn) = (Yo1), - - - Yo(m)) permutes the
coordinates. If M = R, x, y € M, and if entries of x, y are arranged in the decreasing order, then
do(x,y) = llx = yll

Proor. Reflexivity and symmetry of d, hold obviously. To see the triangle inequality,
suppose that x,y,z € MP and define oy, by the relation d.(x, y) = dm(x, o, - y) (similarly
for 0., 0x;). Then

do(x, y) + do(y, 2) =dm(x, 0xy - ¥) + dm(y, 042 - 2)
=dm(x, 0xy * y) + dpm(0xy - Y, 0xy - 0y - 2)
> dM(x/ ny ' Gyz : Z)
>d.(x,2)
This shows that d, is indeed a metric.

Consider M = R. Suppose that x; <--- < x,,, 1 < -+ < y,. Then we claim that for any
g€Ss,,

e =yl < [lx =0 -yl
Suppose z € R" doesn’t necessarily have its entries ordered in a decreasing order. If there
exists a pair i < j with z; > z;, then we have:

llx — 5 - zl| <lx — z]]

2This can be manually checked by computing the first and the second derivative of x + x*/4 — sinh x.
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where 7;; € S, is the transposition that swaps i and j. This is because whenevera < b,a’ <
b’, we have

@—a+b-byP<@-0)>?+0b-a)
By repeatedly applying this sorting process to z = o - y, we get the claim. The sorting
process ends in finite time because one can recursively take the smallest unsorted element
and swap it all the way down, i.e. perform a bubble sort. m]

6.3. Dimension estimation with tail sum. We introduce another intrinsic dimension
estimator based on tail sum. Given a tolerance parameter € € (0,1) and a real symmetric
matrix A with eigenvalues A; > --- > Ap > 0, we consider the estimator measuring the
longest possible tail sum:

d\taﬂ(A, €) := min {k

ZA?Se-ZD:Af}

i>k i=1
or equivalently, d = jtai](A €) is the unique number such that:

(6.1) Z/\2<e Z/\ and Z/\2>e ZAZ

i>d i>d-1
Let’s derive a sufficient condition for dtaﬂ(A €) = d. Suppose that the following holds:
IXTA] - A, D)ll < n
or equivalently,

1 \? 1 \2
(62) (Al_m)J’"'“L(Ad‘m)”ﬁﬂ e+ AR <1

By a Lagrange multipler argument, extrema of Y., A? under the above constraint are
found when the gradient of the left hand side of the above is proportional to (2/\1, ...2Ap).

If we assume that 1) < 555 ] 7y, then the proportionality forces us to have A4, =+ =Ap =0
and also Ay = --- = A;. Therefore,

2 D n 2
€ (i =a) <L =il a)

Observe that:

Y 2 <rand Y 22> ( n)z

i>d i>d-1

Now by applying the above and (6.3), a sufficient condition for (6.1) is given by:

2 2
rEiat =) ez 0)
T <e: d(d 2 d) “d(d >~ >edlata

2
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or equivalently,

d(d + 2)? ) d(d + 2)? ( 1 )2
_— 1’] < e < . —_ 1’2
(d—(d+2)n)? @d+d+2)1n)? \d+2
If we assume that n < m, the lower bound for € is indeed smaller than the upper
bound (this assumption on 1 implies the previous assumption n < ﬁ). Thus, by

lugging in n < —4%—, we get the following sufficient condition for cftaﬂ(A, €)=d:
pluggmg in 1 < a5 & &

- - d
(d +2)*(2d + 1)? (d +2)*(2d + 1)? 1 2
F%E P <e< 4(d + 1)2d '(d+2_’7)

In summary, we have:

ProprosiTION 6.14. Let v = (A4, ..., Ap) with Ay > --- > Ap > 0. If a number 1 satisfies:

d
d+2)2d+1)

o — A(d, D)|| < n <

> 1
where /\(d, D) = m(l, ce 1, O, ce 0)
——— N——

d D—d

and if the tolerance parameter 1’ satisfies:
/ ((d +2)°2d+1)> 5, (d+2)*(2d+1) ( 1 )2)

45 T gdd+ 12 \d+2

min {k

Then

ZA?sn'-ZD“A%}:d
i=1

i>k
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