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Incidence relations among the cells of a regular CW complex produce a poset-
enriched category of entrance paths whose classifying space is homotopy-equivalent 
to that complex. We show here that each acyclic partial matching (in the sense of 
discrete Morse theory) of the cells corresponds precisely to a homotopy-preserving 
localization of the associated entrance path category. Restricting attention further 
to the full localized subcategory spanned by critical cells, we obtain the discrete 
flow category whose classifying space is also shown to lie in the homotopy class of 
the original CW complex. This flow category forms a combinatorial and computable 
counterpart to the one described by Cohen, Jones and Segal in the context of smooth 
Morse theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

To the reader who desires a quick summary of this work, we recommend a brief glance at Fig. 1. Illustrated 
there is a regular CW complex X along with a simple operation which removes two cells x and y, where y
is a face of x (written x > y).

Essentially, one drags y across x onto the other cells in the boundary of x. If y happens to be a free face
of x (that is, if x is the unique cell of X containing the closure of y in its boundary), then our operation is an 
elementary collapse in the sense of simple homotopy theory [41]. In this special case, it is well-known that 
one can excise both x and y from X while preserving both homotopy type and regularity [8,18]. However, 
it is clear from our figure that if y is not a free face of x, then we must concoct a mechanism to glue other 
co-faces of y (such as x0) to the remaining faces of x in order to preserve homotopy type once x and y
have been removed. Our focus here is on providing an explicit and computable method to perform such 
attachments.

We immediately sacrifice regularity when pursuing these non-elementary collapses, and therefore must 
pay careful attention to how the remaining cells are attached. For instance, consider Fig. 1 again and 
note that X remains regular even if the vertices z0 and z1 are identified. However, our final complex in 
this case is not regular precisely because the cell x0 becomes attached to this identified vertex z0 ∼ z1 in 
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Fig. 1. Collapse of a cell pair (x, y) in the CW complex X.

two essentially distinct ways.1 In order to keep track of such alterations in attaching maps when several 
collapses are performed, we turn to the entrance paths [40] of X. An entrance path from one cell to another is 
simply a descending sequence of intermediate faces connecting source to target — for instance, (x > z) and 
(x > y > z) are both entrance paths of X from x to z. The entrance path category of X is a poset-enriched 
category whose objects are the cells of X, and whose morphisms are entrance paths partially ordered by 
inclusion, e.g., (x > z) ⇒ (x > y > z). Finite regular CW complexes are homotopy equivalent to the 
classifying spaces of their entrance path categories.2

We show here that collapsing the cell pair x and y in X as described above corresponds to the localization, 
or formal inversion, of the morphism (x > y) in the entrance path category of X. The classifying space of 
the localized category so obtained is homotopy-equivalent to that of the un-localized one (and hence to X). 
Moreover, one can safely remove both x and y from the localized category while preserving its homotopy 
type.

Motivation and related work. The central purpose of our work is to construct a Morse theory tailored to 
a class of poset-enriched categories broad enough to contain entrance path categories of all finite regular 
CW complexes. Aside from the natural desire to simplify computation of cellular homotopy (and weaker 
algebraic-topological invariants) by eliminating superfluous cells as described above, we are also motivated 
by at least two largely disjoint streams of existing results in Morse theory [29].

Forman’s discrete Morse theory [14] has been successfully used to perform (co)homology computations not 
only in algebraic topology [11,30,31], but also in commutative algebra [21], topological combinatorics [37], 
algebraic combinatorics [35] and even geometric group theory [4]. The central idea involves the imposition of 
a partial matching μ on adjacent cell pairs of a regular CW complex X subject to a global acyclicity condi-
tion — the unmatched cells play the role of critical points whereas the matched cells generate combinatorial 
gradient-like flow paths. Although it is established that X is homotopy-equivalent to a CW complex whose 
cells correspond (in both number and dimension) to the critical cells of μ, there is no explicit description of 
how these critical cells are attached to each other. A second goal of this paper is to better understand the 
attaching maps in discrete Morse theory.

On the other hand, the relationship between Morse theory and classifying spaces in the smooth category 
has been described by Cohen, Jones and Segal in [9]. From a compact Riemannian manifold X equipped 
with a (smooth) Morse function f : X → R, their work constructs a topologically enriched flow category
Cf whose

• objects correspond to the critical points of f ,
• morphisms are moduli spaces of broken gradient flow lines, and
• classifying space is homotopy-equivalent to X.

Our third goal, then, is to produce a combinatorial and computable analogue of the flow category from 
Cohen–Jones–Segal’s Morse theory by replacing Riemannian manifolds and smooth Morse functions by 
regular CW complexes and acyclic partial matchings.

1 On the other hand, the attachment of x0 to z remains unaltered across the collapse.
2 See Proposition 3.3.



JID:JPAA AID:5884 /FLA [m3L; v1.235; Prn:30/04/2018; 13:23] P.3 (1-30)
V. Nanda / Journal of Pure and Applied Algebra ••• (••••) •••–••• 3
While it is tempting to attempt a direct translation of existing smooth arguments to the discrete setting, 
a fundamental obstacle drives the search for new techniques: in the smooth case, every flow line starting from 
an arbitrary non-critical point on the manifold terminates at a unique critical point of the Morse function. 
In sharp contrast, it is an unavoidable consequence of discretization that combinatorial gradient flow paths 
can split and merge rather viciously. Thus, even a non-critical cell typically admits several gradient paths 
to many different critical cells, and hence analogues of the smooth techniques are unavailable in this case.

Main results and outline. Here is (the simplest version of) our main result.

Theorem 1.1. Given a finite regular CW complex X equipped with an acyclic partial matching μ, let Σ =
{(x• > y•)} denote the collection of all entrance paths which correspond to the μ-pairings μ(y•) = x•. Then, 
there exists a poset-enriched category FloΣ[X] whose objects are the critical cells of μ, whose morphisms 
consist of the entrance paths of X localized about Σ, and whose classifying space is homotopy-equivalent to X.

We call FloΣ[X] the discrete flow category associated to the acyclic matching μ in order to emphasize 
the analogy with the flow category of Cohen, Jones and Segal from [9]. Our strategy is as follows: we 
examine functors from the entrance path category Ent[X] and the flow category FloΣ[X] into the localization 
LocΣEnt[X] of Ent[X] about Σ:

Ent[X]
LΣ LocΣEnt[X] FloΣ[X]J

and show that both LΣ (the canonical localization functor) and J (the inclusion of a full subcategory) induce 
homotopy-equivalences of classifying spaces. The central tool in both cases is Quillen’s Theorem A [34]
adapted to the 2-categorical setting [5].

A version of the discrete flow category FloΣ[X] has been constructed in [32], where its classifying space 
was shown to be homotopy-equivalent to (a μ-dependent regular subdivision of) X via a collapsing functor. 
There are several differences between our model of FloΣ[X] and the one in [32]. Most significantly, the 
relationship of the flow category to the entrance path category remains unexplored in [32]. Our definition 
here has the advantage of being in a position to easily produce new, general flavors of discrete Morse theory 
by accessing the universal property of localization. On the other hand, we are unable to obtain a direct map 
Ent[X] → FloΣ[X] analogous to the collapsing functor.

A smooth Morse function on a compact manifold is said to be Morse–Smale [3, Ch. 4] whenever all stable 
and unstable manifolds intersect transversely.3 In addition to being a generic property of smooth Morse 
functions, such transversality greatly simplifies several standard arguments; there have, therefore, been 
intricate efforts to similarly define and exploit transversality for piecewise-linear [1,2] and topological [24, 
Ch. III.1] manifolds. The flow category provides a natural definition of transversality in the context of 
acyclic partial matchings on regular CW complexes. Namely, a pairing Σ is Morse–Smale if the following 
condition holds across all pairs of critical cells c and c′: either the poset FloΣ[X](c, c′) of morphisms from c
to c′ in the flow category is empty, or its classifying space is a manifold of dimension (dim c − dim c′ − 1). 
We intend to carefully explore cellular Morse–Smale transversality in detail elsewhere.

The rest of this paper is organized as follows. Section 2 contains background material regarding poset-
enriched categories and discrete Morse theory. Section 3 describes the entrance path category associated to 
each regular CW complex and catalogs some of its relevant properties. In Section 4 we show that the local-
ization functor LΣ induces a homotopy-equivalence of classifying spaces by appealing to the 2-categorical 
Theorem A. Section 5 introduces the discrete flow category and establishes that its inclusion J into the 

3 In other words, if the unstable manifold W− of an index-p critical point intersects the stable manifold W+ of an index-q critical 
point, then their intersection W− ∩ W+ is a manifold of dimension (p − q − 1). See [33, Thm. 2.27] for details.
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localized entrance path category also induces a homotopy-equivalence. In Section 6 we explicitly compute 
the discrete flow category in three different cases. In Section 7 we record the general result (Theorem 7.1) 
which implies Theorem 1.1 and describe how one may use it to construct discrete Morse theories in broader 
contexts.

2. Homotopy and localization for p-categories

We will work exclusively with small categories enriched over posets, which are called p-categories through-
out this paper. For a general treatment of enriched categories, see [23].

A p-category C consists of a set C0 of objects, and between each pair x and y of such objects there is 
a (possibly empty) poset C(x, y) of morphisms subject to standard axioms, as described below. We write 
f : x → y to indicate that f is an element of C(x, y) and f ⇒ g to indicate that f is less than g as an 
element of C(x, y). Moreover, one requires

• for each object x ∈ C0 the existence of a distinguished identity 1x in C(x, x), and
• across each triple x, y, z of objects the presence of a composition

◦xyz : C(x, y) ×C(y, z) → C(x, z)

which is associative, respects identities, and preserves the partial orders induced by ⇒ on its domain 
and codomain.

When all morphism-sets of C are given the trivial partial order, one recovers ordinary 1-categories; and since 
every poset is a 1-category (with at most one morphism between any pair of objects), every p-category is 
automatically a 2-category (see [23]). Thus, p-categories lie properly between 1-categories and 2-categories.

A p-functor from C to another p-category D, written F : C → D, assigns an object Fx of D0 to 
each object x of C0; and each poset C(x, y) is mapped monotonically to the corresponding D(Fx, F y). 
We require all p-functors in sight to preserve identities (this property is often called normality [5]); and 
given a pair of composable morphisms f and g in C, we require F (f ◦ g) ⇒ F (f) ◦F (g) to hold in D. Such 
functors are called oplax in most references, and if the relation above is always an equality then the functor 
in question is strict. Since every strict p-functor is automatically oplax, we will describe and use results for 
oplax functors even though most functors which appear in our main arguments are strict.

Composition of p-functors is defined in the usual manner. An oplax p-natural transformation η : F ⇒ G

between (strict or oplax) p-functors F , G : C → D assigns to each object x of C a morphism ηx : Fx → Gx

in D so that the following order relation holds for each f : x → y in C:

Fx

F f

ηx

Gx

Gf

F y
ηy

Gy

If the order relation depicted above is an equality for every f , then η is called strict.
Given a p-category C, the full subcategory C ′ spanned by a subset C′

0 ⊂ C0 has

• C′
0 as its set of objects, and

• C′(x, y) = C(x, y) as the poset of morphisms from x to y,
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with composition being inherited verbatim from C. There is an obvious (strict) inclusion p-functor C′ ↪→ C

in this case.

Definition 2.1. A morphism f : x → y in a p-category C is called an atom if

(1) f ⇒ f ′ holds for any f ′ ∈ C(x, y),
(2) x = y implies that f is the identity morphism 1x, and
(3) solutions to g ◦h ⇒ f for morphisms g : x → z and h : z → y only exist

• when z = x, in which case (g, h) = (1x, f), or
• when z = y, in which case (g, h) = (f, 1y).

In other words, atoms are simultaneously minimal and weakly indecomposable morphisms.

2.1. Nerves, fibers and homotopy

Small 1-categories have a homotopy theory arising from the nerve construction: to each category one 
canonically associates a simplicial set [16,28] whose vertices are the objects and whose n-simplices correspond 
to sequences of (n +1) composable morphisms. The following notion (adapted from [5]) provides one model 
for extending the classifying space construction to p-categories. Although there are at least ten reasonable 
models for nerves of bicategories (which subsume p-categories), the main result of [6] confirms that all are 
equivalent up to homotopy.

Definition 2.2. The (oplax) geometric nerve ΔC of a p-category C is that simplicial set whose vertices 
are the objects C0, and whose n-simplices spanning objects x0, . . . , xn consist of morphisms fij : xi → xj

satisfying fik ⇒ fij ◦ fjk for all 0 ≤ i ≤ j ≤ k ≤ n, with the understanding that fii = 1xi
for all i. The 

geometric realization |ΔC| of the nerve is called the classifying space of C.

Each edge of ΔC across vertices x, y ∈ C0 corresponds to a morphism f : x → y. And there is a unique 
2-simplex across edge f : x → y, edge g : y → z and edge h : x → z if and only if the relation h ⇒ f ◦ g
holds in C(x, z). A simplex of dimension exceeding two exists in ΔC if and only if all of its 2-dimensional 
faces are present. Thus, the geometric nerve is co-skeletal beyond dimension 2.

It is readily confirmed that any strict or oplax p-functor F : C → D prescribes a simplicial map ΔF :
ΔC → ΔD of geometric nerves, and it is standard to ask when this map induces a homotopy-equivalence 
of classifying spaces. The 1-categorical version of the following result is an immediate consequence of [36, 
Prop. 2.1], while the avatar presented below follows from a bicategorical generalization [7, Lem. 2.6]. Here 
IC : C → C is the identity p-functor.

Theorem 2.3. Let F : C → D and G : D → C be oplax p-functors. If there exist oplax natural transforma-
tions η : IC ⇒ FG and ν : GF ⇒ ID, then ΔF and ΔG are homotopy-inverses.

It is often useful to identify when certain p-categories have contractible classifying spaces (i.e., those 
possessing the homotopy type of a point) — recall, for instance, that 1-categories with initial or terminal 
objects are contractible.4 The following definition provides up-to-homotopy analogues of such objects in 
p-categories.

4 An initial object in a 1-category is any object which admits precisely one morphism to every object in that category (including 
itself) while a terminal object is one which admits only one morphism from every object. In the special case where our category 
is a poset, initial and terminal objects correspond to minimal and maximal elements respectively.
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Definition 2.4. An object z of a p-category C is called homotopy-maximal if each poset C(w, z) for w ∈ C0
has a maximal element fw, with fz = 1z. Similarly, the object w is homotopy-minimal if for each object 
z ∈ C0 the poset C(w, z) has a minimal element fz, with fw = 1w.

We will appeal to the following result with considerable frequency.

Lemma 2.5. Any p-category C containing a homotopy-maximal or homotopy-minimal object has a con-
tractible classifying space.

Proof. Let z be a homotopy-maximal object of C, so for each w ∈ C0 there is a maximum element 
fw : w → z in C(w, z) (with fz = 1z). Let • be the trivial p-category consisting of the single object and only 
the identity morphism. Consider two p-functors which relate C and • — there is a p-functor • ↪→ C given 
by sending the unique object of • to z, and there is an obvious surjection C � •. Composing the inclusion 
with the surjection in one direction immediately produces the identity p-functor on •. Composing in the 
opposite direction yields a strict p-functor C → C which sends every object to z and every morphism to 1z. 
We claim that this p-functor admits an oplax p-natural transformation from the identity functor on C: send 
each w ∈ C0 to fw : w → z, and each morphism g : w → w′ in C to the order relation g ◦ fw′ ⇒ fw which 
results from the fact that fw is maximal in C(w, z). In short, we have the following diagram:

w

g

fw
z

1z

w′
fw′

z

Theorem 2.3 now yields a homotopy-equivalence of C with •, and hence establishes that the classifying 
space |ΔC| is contractible. A very similar argument (involving hitherto-unmentioned lax p-functors and 
natural transformations) furnishes contractibility in the presence of a homotopy-minimal object. �

When seeking to establish that a p-functor F : C → D induces homotopy-equivalence in the absence of 
a p-functor going back from D to C, one typically resorts to a contractible fiber argument.

Definition 2.6. Given an oplax p-functor F : C → D and an object z ∈ D, the fiber of F over z, denoted 
F //z, is a p-category whose

(1) objects are pairs (w, g) where w ∈ C0 and g ∈ D(Fw, z), and
(2) morphisms from (w, g) to (w′, g′) are given by h ∈ C(w, w′) satisfying Fh ◦ g′ ⇒ g,

where the partial order on morphisms is contravariant to the one inherited from C — namely, h ⇒ h′ in 
F //z if h′ ⇒ h in C.

The rules for composition of morphisms of fiber categories are inherited from C and D in a reasonably 
straightforward manner, so we refer the curious reader to [5] for details and instead illustrate a morphism 
h : (w, g) → (w′, g′) in F //z:

Fw
⇐=

Fh

g

Fw′

g′

z
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The following result follows directly from [5, Thm. 2] and generalizes Quillen’s Theorem A [34] to p-
categories. In particular, it provides sufficient conditions which guarantee that a p-functor induces homotopy-
equivalence of classifying spaces.

Theorem 2.7 (Theorem A for p-categories). Let F : C → D be a (strict or oplax) p-functor. If the clas-
sifying space |Δ(F //z)| of the fiber over each z ∈ D0 is contractible, then ΔF : ΔC → ΔD induces a 
homotopy-equivalence.

2.2. Localization

Given a (small, ordinary) category C and a collection Σ of its morphisms that contains all identities and 
is closed under composition, one can define the localization of C about Σ — this is the minimal category 
C[Σ−1] containing C where members of Σ have been formally inverted [12,13,17]. The localization comes 
with a functor L : C → C[Σ−1] characterized by the following universal property: every morphism in Σ is 
sent to an isomorphism by L, and every other functor F : C → D which sends Σ-elements to isomorphisms 
in D admits a Kan extension F ′ across L. In other words, the triangle below commutes:

C
F

L

D

C[Σ−1]
F ′

Here we describe localization for p-categories about a special class of morphisms. Call a collection Σ of 
morphisms in a p-category directed if it only contains atoms, and if for each f : x → y in Σ, we have both 
x 
= y and the absence of morphisms from y to x in Σ.

Definition 2.8. Let C be a p-category and Σ a directed collection of its morphisms so that the union Σ+

of Σ with all identities is closed under composition. The localization of C about Σ, written LocΣC, is a 
p-category given by the following data.

(1) The set LocΣC0 of objects is precisely the same as C0.
(2) Given objects w, z ∈ C0, every morphism γ : w → z in LocΣC is an equivalence classes of finite but 

arbitrarily long Σ-zigzags in C of the form

w
g0

y0 x0
f0 g1

y1 · · ·
f1

xk

fk gk+1
z

where the left-pointing f• are to be chosen from Σ+, the right-pointing g• are arbitrary, and the 
equivalence is generated by the following relations. Two zigzags are related
• horizontally if they differ by intermediate identity maps, or
• vertically if they form the rows of a commuting diagram in C:

w
g0

y0

u0

x0
f0 g1

v0

· · · xk

gk+1fk

vk

z

w
g′
0

y′0 x′
1

f ′
0 g′

1

· · · x′
k

f ′
k g′

k+1

z

where all vertical morphisms u• and v• also lie in Σ+.
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(3) The partial order on morphisms in LocΣC is obtained by replacing all equalities by order relations in 
the commuting diagram of (2):

w
g0

y0

u0

x0
f0 g1

v0

· · · xk

gk+1fk

vk

z

w
g′
0

y′0 x′
1

f ′
0 g′

1

· · · x′
k

f ′
k g′

k+1

z

Thus, γ′ ⇒ γ in LocΣC(w, z) if and only if there exist Σ-zigzags representing γ and γ′ which fit into 
the top and bottom rows (respectively) of a diagram like the one above. Again, the vertical morphisms 
u• and v• must lie in Σ+.

(4) Composition of morphisms in LocΣC is given by concatenating representative Σ-zigzags, with the 
understanding that the last right-pointing map of the first morphism is to be composed in C with the 
first right-pointing map of the second morphism.

One can check (using the directedness of Σ) that ⇒ is indeed a partial order, and that the composition 
◦ is well-defined and order-preserving. While the construction above may be slightly more involved than 
ordinary 1-categorical localization (from [17, Ch. 1]), it is less intricate than the hammock localization of 
1-categories from [12] and the localization of enriched categories in general (as in [42]). In any event, the 
reader can find three examples of localization in Section 6.

Remark 2.9. If a right-pointing map in some Σ-zigzag factors as g ◦ f where f : x → y lies in Σ, and if 
it is followed by a left-pointing f , then one can simplify to a shorter Σ-zigzag which represents the same 
morphism in LocΣC as follows:

(
· · · g◦f−→ y

f← x
h→ · · ·

)
∼

(
· · · g→ x

1← x
h→ · · ·

)
∼

(
· · · g◦h−→ · · ·

)
.

Here the first equivalence follows from vertical relation and the second from horizontal relation as described 
in the preceding definition. In this sense, a left-pointing f ∈ Σ cancels the preceding right-pointing f .

The associated localization p-functor LΣ : C → LocΣC is strict, and essentially given by inclusion — 
each object is mapped identically to itself, and each morphism is sent to its own equivalence class of zigzags. 
Any other (strict) p-functor C → D which sends the morphisms in Σ to isomorphisms in D admits a Kan 
extension across LΣ.

2.3. Discrete Morse theory

Discrete Morse theory is a combinatorial adaptation of Morse theory [14,25]. The underlying engine which 
powers the main results is the notion of simple homotopy equivalence [8]. Let X be a finite regular CW 
complex. We write y � x to indicate that the cell y is a co-dimension 1 face of the cell x (that is, x > y and 
dim x − dim y = 1).

Definition 2.10. An acyclic partial matching on X consists of a partition of the cells into three disjoint sets 
D, U and M along with a bijection μ : D → U so that the following conditions hold.

(1) Incidence: d � μ(d) for each d ∈ D, and
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Fig. 2. An acyclic partial matching μ on a small simplicial complex. Matched pairs are shown via arrows d → μ(d), while critical 
cells are boxed.

(2) Acyclicity: the transitive closure of the binary relation

d ≺μ d′ if and only if d � μ(d′)

is a partial order on D.

The unpaired cells which lie in M are called critical cells of μ in analogy with smooth Morse theory.

Fig. 2 illustrates a simple acyclic partial matching μ on a finite simplicial complex which lies in the 
homotopy class of a circle. One may extend ≺μ to a partial order on D ∪ M as follows: each m ∈ M is 
strictly smaller than every m′ ∈ M or d ∈ D in its co-boundary and strictly larger than every m′ in its 
boundary. Moreover, we declare m ≺μ d for d ∈ D whenever m is a face of μ(d). Recall that a linear 
extension of ≺μ is a well-ordering of the cells in M ∪D which is monotone with respect to ≺μ. Given any 
such extension {e1, . . . , eJ} of ≺μ consisting of cells from M ∪ D, let Xj for j ≤ J be the reduced CW 
subcomplex of X defined as follows. It contains all the cells of X except the union of ei (and μ-paired cells 
in U , if any) across all i > j. The following results of Forman [14, Thm. 3.3 and 3.4] mimic the traditional 
smooth Morse lemmas [29, Thm. 3.1 and 3.2].

Lemma 2.11. Let μ : D → U be an acyclic partial matching on X with critical cells M . Let {e1, e2, · · · , eJ}
be any ordering of M ∪ D which forms a linear extension of ≺μ, and let Xj be the corresponding reduced 
CW complexes.

A. If {ei, ei+1, . . . , ej} contains no critical cells, then Xj simple-homotopy collapses onto Xi via the removal 
of pairs (μ(ek), ek) in descending order for k between i and j.

B. If {ei, ei+1, . . . , ej} contains exactly one critical cell (of dimension n), then Xj is homotopy-equivalent 
to Xi with a single n-dimensional disk attached along its boundary.

As mentioned in the Introduction, it is important to note that there is no explicit description of how 
the critical cells are attached along their boundaries — the proof of Lemma B follows from an inductive 
argument which relies on the finiteness of X, and in particular it is straightforward to construct simple 
examples where the attaching maps are not regular. Even so, the following main theorem of discrete Morse 
theory is an immediate consequence of Lemmas A and B.

Theorem 2.12. Let μ : D → U be an acyclic partial matching on X with critical cells M . Then, 
X is homotopy-equivalent to a CW complex whose n-dimensional cells correspond bijectively with the 
n-dimensional cells in M .

Turning once again to Fig. 2, we note that one possible linearization of ≺μ is given by the sequence 
(w, x, y, xy, z, yz). In the interval between w and z, the simple homotopy type coincides with that of a 
point; in fact, a sequence of collapses to w is given by following the arrows. Attaching the critical cell yz via 
its boundary changes the homotopy type to that of a circle (and hence recovers the homotopy class of our 
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original simplicial complex) — the attaching map is not regular, since both ends of the edge yz are mapped 
to the vertex w via the paths

yz � y � wy � w and yz � z � xz � x � wx � w.

Unlike in the case of smooth Morse theory, there is no unique path from a non-critical cell to a critical cell. 
In particular, there are two distinct gradient paths from xy to w.

3. Cellular categories and Morse systems

Given cells x and y of a finite regular CW complex X, we write x > y to denote the strict face relation 
indicating that the closure of y is contained in the boundary of x. Recall that the face poset Fac[X] consists 
of cells as objects, identity morphisms, and a unique morphism x → y whenever x > y. The nerve of this 
face poset is the first barycentric subdivision of X, so in particular X is homotopy-equivalent [27, Thm. 1.7]
(and indeed, homeomorphic) to |ΔFac[X]|.

3.1. Entrance path categories

The following p-category [40] is a thicker version of Fac[X] — the partial order on its morphisms is 
designed to catalog how one cell lies in the boundary of another.

Definition 3.1. The entrance path category Ent[X] of (a regular CW complex) X is the p-category given by 
the following data.

(1) The objects Ent[X]0 are the cells of X.
(2) For each x, y in Ent[X]0, the set Ent[X](x, y) of morphisms has as its objects the entrance paths, which 

are strictly descending sequences f = (x = x0 > · · · > xk = y) of cells from x to y.
(3) Given f and f ′ in Ent[X](x, y), we have the order relation f ⇒ f ′ in Ent[X](x, y) if and only f is a 

(not necessarily contiguous) subsequence of f ′.
(4) If g ∈ Ent[X](y, z) is the entrance path (y = y0 > · · · > y� = z), then its composite with f : x → y

from (2) is given by concatenation, i.e.,

f ◦ g = (x = x0 > · · · > xk = y = y0 > · · · > y� = z) ∈ Ent[X](x, z).

It is easy to check that this composition is order-preserving and that the unique element (x) of 
Ent[X](x, x) functions as the identity.

Example 3.2. Let S be the minimal regular CW decomposition of the 2-sphere as shown in Fig. 3. The 
elements of Ent[S]0 are the cells {w, x, y, z, t, b}. The poset of morphisms Ent[S](t, x) consists only of the 
sequence (t > x), whereas Ent[S](t, w) is the poset

(t > x > w) ⇐ (t > w) ⇒ (t > z > w).

The composite of (t > x) in Ent[S](t, x) and (x > w) in Ent[S](x, w) equals (t > x > w), which is an object 
of Ent[S](t, w).
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Fig. 3. A minimal regular CW decomposition of the 2-sphere.

Proposition 3.3. If X is a finite regular CW complex, then there is a homotopy-equivalence

X ∼ |ΔEnt[X]|,

between X and the classifying space of its entrance path category.

Proof. The result is a standard application of Theorem 2.3 — we show that Ent[X] is homotopy-equivalent 
to the face poset Fac[X] and hence to the first barycentric subdivision of X. Note that Fac[X] includes via 
an oplax functor into Ent[X] since the object-sets coincide and the face relation x > y, whenever it holds, 
constitutes the minimal entrance path in the poset Ent[X](x, y). Consider the p-functor P : Ent[X] →
Fac[X] which fixes all the objects and sends each entrance path (x > · · · > y) to this minimal path (x > y). 
On one hand, including Fac[X] into Ent[X] and then mapping back to Fac[X] via P yields the identity 
p-functor on Fac[X]. On the other hand, for each pair of cells x and y in X with x > y and any entrance 
path (x > · · · > y), we have:

x

(x>y)

(x)
x

(x>···>y)

y
(y)

y

Thus, P followed by the inclusion of Fac[X] into Ent[X] admits an oplax natural transformation to the 
identity p-functor on Ent[X] and so by Theorem 2.3 there is a homotopy-equivalence of classifying spaces 
|ΔEnt[X]| ∼ |ΔFac[X]| as desired. �
3.2. Morse systems on cellular categories

Our goal in this section is to generalize entrance path categories and axiomatize the desirable properties of 
acyclic partial matchings on regular CW complexes. The following definition highlights a class of p-categories 
which is simultaneously broad enough to include all entrance path categories and narrow enough to admit 
a discrete Morse theory.

Definition 3.4. A p-category E is called cellular if for each x, y ∈ E0, the poset E(x, y) is either empty or 
it contains an atom (in the sense of Definition 2.1).

It is straightforward to check that the entrance path category of any regular CW complex is cellular, 
since the minimal entrance path between any pair of adjacent cells x ≥ y is the atom of Ent[X](x, y).

Next, we turn to the analogue of Morse functions in our setting. By Definition 2.10, every acyclic partial 
matching μ on a regular CW complex X corresponds to a selection of morphisms f• ∈ Ent[X](x•, y•) which 
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happen to be atoms of their respective posets, whose sources and targets are all distinct, and which satisfy 
the global acyclicity assumption imposed by the partial order arising from ≺μ.

Definition 3.5. A Morse system Σ on a cellular category E is a collection

{f• : x• → y•}

of morphisms subject to the following axioms.

(1) Exhaustion: if f : x → y lies in Σ, then it is the atom of E(x, y) where x 
= y; no other morphism in 
Σ has, as either source or target, any object w ∈ E0 satisfying E(x, w) 
= ∅ 
= E(w, y). (In particular, 
neither x nor y is admissible as the source or target of any morphism in Σ different from f .)

(2) Order: the transitive closure of the binary relation � defined on Σ by

(f0 : x0 → y0) � (f1 : x1 → y1) whenever E(x0, y1) is nonempty

defines a partial order on Σ.
(3) Lifting: given f0 
= f1 in Σ, each square of the form below splits via a horizontal morphism:

x0
gf0

x0
gf0

y0

g′

=⇒ x1

f1

implies y0

g′

=⇒

=⇒
x1

f1

y1 y1

(4) Switching: given f0 
= f1 in Σ, if E(x0, x1) and E(y0, y1) are both nonempty and if their respective 
atoms h and � form the sides of the square below:

x0
hf0

y0

�

⇒ ⇐ x1

f1

y1

(for some dashed vertical morphism v : x0 → y1), then E(y0, x1) is nonempty, and its atom q satisfies 
f0 ◦ q ◦ f1 ⇒ v.

The novelty here lies almost entirely in the lifting and switching axioms, and the former may be more 
explicitly stated as follows: given distinct fj : xj → yj in Σ, if there exist g : x0 → x1 and g′ : y0 → y1 in E
satisfying f0 ◦ g′ ⇒ g ◦ f1, then there also exists some p : y0 → x1 simultaneously satisfying f0 ◦ p ⇒ g and 
g′ ⇒ p ◦ f1.

Proposition 3.6. Let X be a regular CW complex equipped with an acyclic partial matching μ, and let Σ =
{(x• > y•)} denote the collection of entrance paths of X which correspond to the matchings μ(y•) = x•. 
Then, Σ is a Morse system on the entrance path category Ent[X].

Proof. We only verify the lifting and switching axioms here, leaving the remaining verifications as simple 
exercises. In both arguments, we assume that μ(yj) = xj for j ∈ {0, 1} with y1 and x1 being proper faces of 
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y0 and x0 respectively. Let g = (x0 > · · · > x1) and g′ = (y0 > · · · > y1) be arbitrary entrance paths which 
satisfy

(x0 > y0) ◦ g′ ⇒ g ◦ (x1 > y1).

By Definition 3.1, the path g must contain y0 as an intermediate cell. Thus, we have

g = (x0 > · · · > y0 > · · · > x1).

The desired lift p = (y0 > · · · > x1) may now be obtained by discarding all the cells in g which precede y0. 
Turning now to the switching axiom, note that any entrance path v = (x0 > · · · > y1) which satisfies

(x0 > y0 > y1) ⇒ v ⇐ (x0 > x1 > y1)

must contain both y0 and x1 as intermediate cells. Furthermore, y0 must precede x1 in v — otherwise, 
writing fj : xj → yj for the morphisms corresponding to the distinct entrance paths (xj > yj), we violate 
the acyclicity of μ since f0 � f1 � f0. Therefore,

v = (x0 > · · · > y0 > · · · > x1 > · · · > y1).

In particular, this forces x1 to be a face of y0 and the minimal entrance path q = (y0 > x1) clearly satisfies

f0 ◦ q ◦ f1 = (x0 > y0 > x1 > y1) ⇒ v,

as desired. �
4. Localizations about Morse systems

Every Morse system on a cellular category is directed in the sense of Definition 2.8, so we may localize 
about it. We will devote this section to proving the following result, which establishes one half of our main 
Theorem 1.1.

Theorem 4.1. If E is a cellular category equipped with a Morse system Σ, then the (strict) localization 
p-functor LΣ : E → LocΣE induces a homotopy-equivalence of classifying spaces.

Throughout this section, we adopt the notation above: E will be a cellular category, and Σ will be 
a Morse system defined on E. The underlying binary relation on Σ which generates a partial order via 
the order axiom of Definition 3.5 is written � as usual. We will always write constituent morphisms of 
Σ as f• : x• → y• where the indexing •’s are allowed to vary as needed. Let LΣ : E → LocΣE be the 
canonical localization functor and fix an arbitrary object z ∈ E0 — we will show that the fiber LΣ//z has a 
contractible classifying space, as the proof of Theorem 4.1 then follows from Theorem 2.7. While our fiber 
does not generally admit a homotopy maximal or minimal object in the sense of Definition 2.4, it may be 
mapped onto a contractible poset via a homotopy-equivalence. We begin by describing this target poset.

4.1. Essential chains

Recall from Definition 2.6 that an object of LΣ//z is a pair (w, γ) consisting of an object w ∈ E0 and a 
morphism γ : w → z in LocΣE. And from Definition 2.8, it immediately follows (by removing all superfluous 
left-pointing identity maps) that any such γ may be represented by a Σ-zigzag in E which terminates at z:
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w
g0

y0 x0
f0 g1

y1 · · ·
f1

xk

fk gk+1
z.

Here the left-pointing arrows y• ← x• must be chosen from Σ, and by the exhaustion requirement of 
Definition 3.5 none of the forward-pointing arrows (except possibly the extreme g0 and gk+1) are allowed 
to be identity maps. Moreover, the existence of g• : x• → y•+1 forces our left-pointing morphisms to satisfy

f0 � f1 � · · · � fk and E(xk, z) 
= ∅,

by the order axiom from Definition 3.5. Thus, each Σ-zigzag in E furnishes a finite descending chain of 
elements in Σ whose last element connects to z. The following definition puts such descending chains in 
their proper context.

Definition 4.2. Let Σz be the poset of Σ-chains to 1z, which has as its elements all strictly descending chains 
σ = (f0 � · · · � fk � 1z) in Σ, where the last � (in a mild abuse of notation) merely indicates that the 
source of fk : xk → yk is required to satisfy E(xk, z) 
= ∅. The partial order is given by inclusion: σ ↪→ τ

whenever τ contains σ as a (not necessarily contiguous) subsequence.

A trivial application of Lemma 2.5 reveals that Σz has a contractible classifying space: the empty chain 
(1z) clearly includes into all the others and hence serves as a minimal object. Our goal is to construct a 
strict p-functor LΣ//z → Σz which induces a homotopy-equivalence of classifying spaces, and hence yields 
the desired contractibility of LΣ//z. Unfortunately, the naïve assignment of descending chains to Σ-zigzags 
described above is not well-defined, since distinct zigzags which represent the same morphism in LocΣE

might have different Σ-chains. Recall, for instance, the horizontal and vertical reductions of Remark 2.9
which allowed us to identify

(
· · · g◦f−→ y

f← x
h→ · · ·

)
∼

(
· · · g◦h−→ · · ·

)
.

It is clear that the zigzag on the left is assigned a Σ-chain containing f while the zigzag on the right is not. 
The following definition is designed to rectify this defect.

Definition 4.3. Given a Σ-zigzag ζ:

w
g0

y0 x0
f0 g1

y1 · · ·
f1

xk

fk gk+1
z

and an index j ∈ {0, . . . , k}, we call fj

(1) left-redundant in ζ if h ◦ fj ⇒ gj for some h : xj−1 → xj ,
(2) right-redundant in ζ if fj ◦ � ⇒ gj+1 for some � : yj → yj+1, and
(3) essential in ζ if it is neither left nor right-redundant.

(It is convenient here to adopt the convention x−1 = w and yk+1 = z in order to avoid separately mentioning 
these extreme cases.) Without loss of generality, the h and � above may be chosen to be the atoms of 
E(xj−1, xj) and E(yj−1, yj) respectively.

Here we illustrate a segment of ζ containing an fj which is both left-redundant (due to the triangle which 
precedes it) and right-redundant (due to the triangle which comes afterwards):
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xj
fj

xj−1

h

gj
yj xj

fj

fj

gj+1
yj+1

yj
�

Remark 4.4. Note that if fj is redundant in ζ, then we must have fj−1 � fj+1 since the poset E(xj−1, yj+1) is 
nonempty — it contains either h ◦ gj+1 or gj ◦ � (or both) depending on whether fj is left or right-redundant 
(or both).

In light of the preceding remark, the collection of essential f•’s in ζ forms an element of Σz, which we 
denote by σζ and call the essential chain of ζ. Note that σζ = (1z) whenever ζ contains no essential f•’s.

4.2. Well-definedness of essential chains

The primary reason for introducing essential chains is the following result.

Proposition 4.5. If ζ and ζ ′ are Σ-zigzags which represent the same morphism γ : w → z in LocΣE, then 
they have the same essential chain, i.e., σζ = σζ′ .

Proof. It suffices to establish that the essential chain of a Σ-zigzag remains unchanged when vertical re-
ductions (in the sense of Remark 2.9) are performed, since horizontal reductions only remove identity maps 
and hence leave the Σ-chain of a zigzag invariant. So without loss of generality, we may assume that ζ and 
ζ ′ form the top and bottom rows of the diagram below:

w
g0

z0 w0
g1 · · · wk

gk+1
z

w
g′
0

z′0 w′
0

g′
1

· · · w′
k

g′
k+1

z

where all leftward and downward-pointing arrows denote morphisms in Σ+ (i.e., either elements of Σ or iden-
tities). We may further simplify the diagram by insisting that — performing horizontal reductions to both 
rows if necessary — each column (except possibly the first and last ones) has at most one horizontal identity 
map. Now by the exhaustion requirement of Definition 3.5, there are only three possible configurations of 
the backward-pointing columns:

x•

f•

x• y• x•
f•

f•

y• x•
f•

y• x•
f•

y• y• y• x•
f•

The desired result now follows from a brief examination of these configurations. As an example, consider the 
first configuration above where f• appears in ζ ′ but not in ζ. We claim that this f• must be left-redundant 
in ζ ′. There are only two possibilities for what could appear on the left:
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x•−1
g•

x•

f•

x•−1
g•

f•−1

x•

f•

x•−1
g′
•

y• y•−1
g′
•

y•

In the first case, we have g• ◦ f• = g′• and so it is immediate from Definition 4.3 that f• is left-redundant 
in ζ ′. In the second case, one applies the lifting axiom from Definition 3.5 and concludes the existence of 
some p : y•−1 → x• satisfying p ◦ f• ⇒ g′•. Again, this forces f• to be left-redundant in ζ ′. Similar arguments 
on the remaining configurations yield the desired conclusion. �

Armed with the preceding proposition, we may unambiguously associate to each object (w, γ) in the 
fiber LΣ//z the element σγ of Σz which equals the essential chain of any zigzag representing the morphism 
γ ∈ LocΣE(w, z).

Definition 4.6. Let N : (LΣ//z)0 → (Σz)0 be the function which sends each object of LΣ//z to its essential 
chain in Σz. That is, N (w, γ) = σγ .

4.3. Contractibility of the fibers

In this subsection we establish two facts — first, that the function N defined above actually prescribes a 
functor from the fiber LΣ//z to the contractible poset Σz of descending chains; and second, that our functor 
N : LΣ//z → Σz induces a homotopy-equivalence on classifying spaces. The following result accomplishes 
the first task.

Proposition 4.7. Let (w, γ) and (w′, γ′) be objects of the fiber LΣ//z. If there exists a morphism h : (w, γ) →
(w′, γ′), then there is an inclusion N(w, γ) ↪→ N(w′, γ′) of the corresponding essential chains in Σz.

Proof. The argument proceeds very similarly to the one employed in the proof of Proposition 4.5. Given a 
morphism h : (w, γ) → (w′, γ′) in LΣ//z, there must exist (suitably reduced) Σ-zigzags representing γ and 
γ′ respectively which form the top and bottom rows of the following diagram:

w
g0

h

z0 w0
g1 · · · wk

gk+1
z

w′
g′
0

z′0 w′
0

g′
1

· · · w′
k

g′
k+1

z

Here all leftward and downward pointing arrows (except h) are chosen from Σ+ as usual, and each column 
(except possibly the first and last ones) contains at most one horizontal identity morphism. The backward-
pointing columns may once again only assume one of three possible configurations:

x•

f•

x• y• x•
f•

f•

y• x•
f•

y• x•
f•

y• y• y• x•
f•
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We now argue by contrapositive and show that if f• is redundant in (or missing altogether from) γ′, then 
it must also be redundant in γ. Note that the first configuration above poses no threat, since f• appears 
in γ′ but not in γ. We analyze the second configuration here and leave the third to the reader. The only 
possibilities for right-pointing columns which could appear after the second configuration are:

x•

f•

g•+1
y•+1 x•

g•+1

f•

x•+1

f•+1

y•
g′
•+1

y•+1 y•
g′
•+1

y•+1

In the first case, f• is right-redundant in γ by definition, whereas in the second case it is right-redundant 
via an application of the lifting axiom. In particular, there is some p : y• → x•+1 with f• ◦ p ⇒ g•+1 (as 
desired). �

The preceding result guarantees that N : LΣ//z → Σz is a functor, so we now examine its fibers to show 
that it induces a homotopy-equivalence. We will proceed by induction over the poset Σz, using the following 
proposition as a base (recall that (1z) is the minimal chain in Σz).

Proposition 4.8. The fiber N//(1z) has a contractible classifying space.

Proof. We will show that the object (z, 1z) is homotopy-maximal in N//(1z) and obtain the desired con-
tractibility by Lemma 2.5. Meditating on the following diagram of LocΣE:

w
⇐=

γ

z

1z

z

we must show that the subposet Qγ ⊂ E(w, z) defined by

Qγ = {g ∈ E(w, z) | g ⇒ γ in LocΣE}

has a minimal element5 (here we have identified g with its image LΣg). It suffices to show that Qγ is 
nonempty, since the atom of E(w, z) would then constitute the desired minimal element. To this end, 
assume that the following Σ-zigzag represents the morphism γ

w
g0

y0 x0
f0 g1

y1 · · ·
f1

xk

fk gk+1
z.

Since N(w, γ) = (1z), all the f•’s appearing above are (left, right or multiply) redundant. By Definition 4.3, 
this zigzag therefore forms the solid, non-horizontal arrows in some diagram of E which resembles the 
following one:

5 Minimal objects in E(w, z) yield maximal objects in LΣ//z, thanks to the contravariance of partial orders mentioned in Defi-
nition 2.6.
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w
h0

x0
h1

⇐=
=⇒

· · ·
hk−1

⇐=
=⇒

xk−1

⇐=
=⇒

hk

xk

⇐=
=⇒

y0
�0

y1
�1

· · ·
�k−1

yk
�k

z

Here each column contains either an h• above or an �• below (and possibly both), depending on whether the 
diagonal f• is left or right-redundant in γ (or both). Moreover, we can assume that all h• and �•’s in sight, 
whenever they exist, are atomic in their respective posets. All directed paths from w to z in our diagram 
prescribe compositions in E — such as the extremal h0 ◦ · · · ◦hk ◦ gk+1 and g0 ◦ �0 ◦ · · · ◦ �k — and yield 
elements of Qγ . The only admissible configuration of h•’s and �•’s where a direct path is not immediately 
available arises when some f•−1 is right (but not left) redundant and the next f• is left (but not right) 
redundant:

x•−2

g•−1

x•−1

g•
=⇒

f•−1

h•
x•

g•+1
⇐=

f•

y•−1
�•−1

y• y•+1

But in this case, the switching axiom of Definition 3.5 applies to the parallelogram above and guarantees 
the existence of the atom q• : y•−1 → x• in E which furnishes a connection from x•−2 to x•, so in general 
one can connect w to z via a directed path even when confronting the unfortunate configuration described 
above. Moreover, since q• is required to satisfy f•−1 ◦ q• ◦ f• ⇒ g•, one can easily check that the directed 
path so obtained also creates an element of Qγ , as desired. �

This next proposition forms the final, inductive step when analyzing the fibers of our functor N : LΣ//z →
Σz. Since the target category Σz is a poset, the fiber N//σ over a descending chain σ = (f0 � · · · � fk � 1z)
is precisely the full subcategory of LΣ//z generated by all objects (w, γ) satisfying N(w, γ) ↪→ σ. Thus, all 
fibers of N encountered henceforth will be treated as full subcategories of LΣ//z, keeping in mind that if 
τ ↪→ σ holds for two descending chains in Σz then N//τ includes into N//σ as a full subcategory.

Proposition 4.9. Let σ = (f0 � · · · � fk � 1z) be a non-trivial descending chain in Σz, and assume that 
the union A =

⋃
τ (N//τ) of N ’s fibers over {τ ∈ Σz | σ 
= τ ↪→ σ} is a contractible subcategory of LΣ//z. 

Then, the fiber N//σ is also contractible.

Proof. Consider the object (y0, γσ) in LΣ//z given by the zigzag

y0
a0=1

y0 x0
f0 a1

y1 · · ·
f1

xk

fk ak+1
z

where the a• : x•−1 → y• are atoms in E(x•−1, y•). Define the full subcategory B of LΣ//z generated by 
the following subset of objects:

B0 =
{
(w, γ) | there exists some h : (w, γ) → (y0, γσ) in LΣ//z

}
.

It is easy to check that B is contractible (since (y0, γσ) is homotopy-maximal) and that every object of 
N//σ not in A belongs to B (since any (w, γ) with essential chain equaling σ admits a morphism to (y0, γσ)
by minimality of the a•’s). We therefore have a decomposition
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N//σ = A ∪B,

where A and B are contractible full subcategories of N//σ. It now suffices to show that the intersection 
A∩B is contractible.6 Any (w, γ) in B0 must be expressible as the top row of the following diagram, which 
illustrates a morphism h to (y0, γσ):

w
g0

h

y0 x0
f0 g1 · · · xk

gk+1fk
z

y0 y0 x0
f0 a1

· · · xk ak+1
z

But if (w, γ) is also in A0, then it has an essential chain strictly smaller than σ, so at least one of the fj
must be left or right-redundant in the top row. Thus, A ∩B admits a cover by 2(k + 1) full subcategories 
U±

j (where 0 ≤ j ≤ k) that may be defined via conditions on the g•’s which force the f•’s to be left or 
right-redundant. So for each 0 ≤ j ≤ k,

• U+
j contains zigzags satisfying hj ◦ fj ⇒ gj where hj is atomic in E(xj−1, xj), and

• U−
j contains zigzags satisfying fj ◦ �j+1 ⇒ gj+1 where �j+1 is atomic in E(yj , yj+1).

We allow for the possibility that U+
• or U−

• might be empty if no such h• or �• exist. If U+
j and U−

j+1 are 
both nonempty, then recall that the switching axiom of Definition 3.5 guarantees the presence of an atom 
qj : yj → xj+1.

Next, we show that all non-empty intersections of the U±
j are contractible. Given a subset U of {U±

j }
whose constituent categories intersect non-trivially, one can readily construct the homotopy-maximal ele-
ment residing in that intersection by choosing all the appropriate forward-pointing gj : xj−1 → yj in the 
zigzag representative above. In particular, setting

gj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aj if neither U+
j nor U−

j+1 is in U,

hj ◦ fj if U+
j is in U but U−

j+1 is not,
fj ◦ �j+1 if U+

j is not in U but U−
j+1 is,

fj ◦ qj ◦ fj+1 if both U+
j and U−

j+1 are in U,

creates a zigzag representing the desired homotopy-maximal element in the intersection of all subcategories 
contained in U. It is easy to check that U+

0 is always non-empty (set w = x0 and g0 = f0 = h in the 
zigzag above) and that it always intersects any nonempty subcollection of categories in U (since one can 
simply modify g0 independently of the other gj ’s). We now appeal to a suitable version of the nerve 
theorem7 (see [26, Thm. 15.21 & Rmk. 15.22]): the intersection A ∩ B is covered by at most 2(k + 1)
full subcategories, all of whose nonempty intersections are contractible. Moreover, the nerve of this cover 
contains a distinguished vertex U+

0 lying in every maximal simplex. Thus, the nerve of the cover contracts 
to a single vertex and A ∩B is consequently contractible. �
6 Consult, for instance, [19, Ex. 0.23].
7 The nerve of a locally finite cover of some CW complex by subcomplexes is that abstract simplicial complex whose d-simplices 

correspond to (d + 1)-fold nonempty intersections (i.e., what one obtains by applying Definition 2.2 to the intersection lattice). 
The nerve theorem states that if all such intersections are contractible, then the underlying CW complex is homotopy-equivalent 
to the nerve.
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By Propositions 4.8 and 4.9, the functor N : LΣ//z → Σz has a contractible fiber N//σ over each σ ∈ Σz. 
By Theorem 2.7, N induces a homotopy-equivalence between classifying spaces |Δ(LΣ//z)| and |Δ(Σz)|. 
Since the poset Σz has a minimal element (1z), it is contractible, and hence so is the fiber LΣ//z. Finally, 
since z ∈ E0 was chosen arbitrarily, the functor LΣ : E → LocΣE also induces a homotopy-equivalence of 
classifying spaces by Theorem 2.7, thus concluding the proof of Theorem 4.1.

5. The discrete flow category

As before, we let E be a cellular category equipped with a Morse system Σ whose binary relation is �
and ask the reader to consult Definitions 3.4 and 3.5 for details.

5.1. The subcategory of critical objects

An object m ∈ E0 is called Σ-critical if for each f : x → y in Σ at least one of the posets E(x, m) and 
E(m, y) is empty. It is easily checked (as those familiar with discrete Morse theory might expect) that both 
the source x and target y of every f : x → y in Σ are not Σ-critical.

For every non-critical w in E0 there is in fact a unique f : x → y in Σ whose source and target satisfy 
E(x, w) 
= ∅ 
= E(w, y). To see why this is the case, note that if two different f and f ′ satisfied this 
condition, then we would obtain f � f ′ � f and violate the order axiom of Definition 3.5. We write S(f)
to indicate the set of all objects which are rendered non-critical by a given f ∈ Σ, and call this set the
span of f . Clearly, both x and y lie in the span of f : x → y. In the special case where the Morse system 
Σ is induced by an acyclic partial matching, we have S(f) = {x, y}, since by the incidence requirement of 
Definition 2.10 there are no intermediate cells z satisfying x > z > y.

The following category is built around the critical objects and it plays the role of a Morse complex in 
our setting.

Definition 5.1. The discrete flow category FloΣE of Σ is the full subcategory of the localization LocΣE

generated by the set of Σ-critical objects.

With an eye towards proving the half of Theorem 1.1 not addressed by Theorem 4.1, we would like to 
establish that the inclusion J : FloΣE → LocΣE, a strict p-functor, induces a homotopy-equivalence of 
classifying spaces. But the desired equivalence does not hold for arbitrary cellular categories and Morse 
systems: perhaps the simplest illustrations of this failure are given below.

Example 5.2. Here are two (and a half) instances where the localized entrance path category has a different 
homotopy type from the flow category.

(1) Consider the poset P with four objects x, y, m and m′ where the only non-trivial order relations are 
x > y along with x > m and x > m′. One can easily verify that P is cellular (when treated as a 
p-category with trivial poset structures on its morphism-sets) and has a contractible classifying space, 
since x is a maximal element. Impose the singleton Morse system {(x > y)} on P, and note that the 
associated discrete flow category is not contractible — it has the homotopy type of two points since it 
consists of m and m′ with no morphisms between them.

(2) Our second example involves the acyclic partial matching depicted on the semi-infinite collection of 
cubes below:
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Although this cube complex is contractible, the flow category associated to the overlaid acyclic matching 
is empty since there are no critical cells whatsoever. If the vertices are matched with edges to their left 
rather than the right, like so:

then once again we have a flow category with the incorrect homotopy type — on this occasion, there 
are two objects (generated by the two boxed critical vertices on the left edge of the first cube) and no 
morphisms between them.

A more immediate difficulty encountered here is that studying the fibers J//w of J over objects w of 
LocΣE is likely to be fruitless: a brief examination of the acyclic partial matching from Fig. 2 confirms 
the existence of cells (such as the 2-simplex wxy) which do not admit any morphisms from critical cells in 
the localized entrance path category, and hence have empty over-fibers. On the other hand, it appears as 
though each cell does admit morphisms to some critical cell (as opposed to the second example above). We 
therefore explore fibers dual to the ones described in Definition 2.6.

Definition 5.3. Let w be any object of E (or equivalently, of LocΣE) and recall the inclusion functor 
J : FloΣE → LocΣE. The fiber of J under w is the p-category w//J whose

(1) objects are pairs (m, γ) where m is Σ-critical and γ ∈ LocΣE(w, m),
(2) morphisms from (m, γ) to (m′, γ′) are given by ρ ∈ LocΣE(m, m′) satisfying

w
γ γ′

m
⇐=
ρ

m′

(3) and the poset structure is inherited from LocΣE(m, m′). That is, ρ ⇒ ρ′ holds in the fiber iff it holds 
in LocΣE.

The rules for composing morphisms are also inherited from LocΣE in a straightforward manner dual to 
those from Definition 2.6. The conclusion of Quillen’s result (see Theorem 2.7 above) also holds when all 
under-fibers (rather than over-fibers) are contractible, so it suffices to impose conditions which guarantee 
that w//J is contractible for each object w of E. The next result shows that there is no difficulty at least 
when dealing with fibers under critical objects.

Proposition 5.4. The fiber m//J of J under m is contractible whenever m is Σ-critical.

Proof. Note that the object (m, 1m) in m//J is homotopy-minimal, since for any other object (m′, γ) of 
m//J the collection of admissible ρ : m → m′ from LocΣE in the diagram below

m

1m γ

m
⇐=
ρ

m′

contains γ as a minimal element. An appeal to Lemma 2.5 concludes the argument. �
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5.2. Mild Morse systems

Our next goal is to impose additional hypotheses on Σ (beyond the requirements of Definition 3.5) which 
preclude the undesirable phenomena described in Example 5.2 and hence guarantee that fibers of J under 
non-critical objects are also contractible.

Definition 5.5. The Morse system Σ on the cellular category E is called mild if for each f : x → y in Σ the 
following two conditions hold.

(1) Every strictly descending Σ-chain of the form

f � f0 � f1 � f2 � · · ·

eventually terminates at some locally minimal fk. Here, local minimality means that if f ′ ∈ Σ satisfies 
fk � f ′, then f ′ = fk.

(2) The full subcategory E|f of E generated by all objects z ∈ E0 simultaneously satisfying E(x, z) 
= ∅

and E(z, y) = ∅ is:
• (finite): it has finitely many objects z,
• (loopfree): if E(z, z′) 
= ∅ then E(z′, z) = ∅ for z 
= z′ in (E|f)0, and
• (contractible): the classifying space |Δ(E|f)| is contractible.

The partial matching from Example 5.2(1) violates the second mildness condition above — writing f
for the matched entrance path (x > y) in the poset P, note that the category P|f is not contractible since 
it consists of two disconnected objects m and m′. Similarly, both acyclic partial matchings depicted in 
Example 5.2(2) violate the first mildness condition due to the infinite descending chain which consists of all 
the 2-dimensional cubes paired with their left edges. The following result confirms that mildness is not an 
unreasonable constraint in the familiar case of acyclic partial matchings on finite regular CW complexes.

Proposition 5.6. Let X be a regular CW complex equipped with an acyclic partial matching μ. If X is finite, 
then, the Morse system Σμ on Ent[X] which consists of all entrance paths {(μ(y•) > y•)} is mild.

Proof. The first mildness condition from Definition 5.5 is implied trivially by the exhaustion and order
axioms of Definition 3.5 and the fact that there are only finitely many cells. Turning to the second mildness 
condition, let f = (x > y) be any element of Σμ. Now, Ent[X]|f is the full subcategory of Ent[X] generated 
by all the faces of x except y. Its finiteness and loopfreeness are straightforward to confirm, so we focus here 
on proving contractibility of the classifying space. Note that Ent[X]|f is nonempty because by regularity x
must have at least one face different from y. Moreover, the subcomplex generated by these non-y faces of x
is homeomorphic to (some finite regular cellulation of) a sphere of dimension (dimx − 1) which is missing 
the interior of a top-dimensional cell y. Thus, this subcomplex — and hence, by Proposition 3.3, its entrance 
path category Ent[X]|f — is contractible, as desired. �
5.3. Contractibility of the under-fibers

This section will conclude with a proof of the following result, which (in conjunction with Theorem 4.1) 
establishes Theorem 1.1.

Theorem 5.7. If Σ is a mild Morse system on the cellular category E, then the inclusion J : FloΣE →
LocΣE induces a homotopy-equivalence of classifying spaces.
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Note from Proposition 5.4 that fibers of J under critical cells are contractible regardless of mildness, 
so we focus on fibers under those objects which lie in the span of some morphism in Σ. We proceed by 
induction over the partial order �, starting with its locally minimal elements and working our way upwards.

Proposition 5.8. If Σ is mild and if f : x → y is locally minimal, then the fiber w//J has a contractible 
classifying space for every w in the span S(f).

Proof. We will construct a strict p-functor G : w//J → E|f with contractible fibers and use the con-
tractibility of its target category (implied by the second mildness assumption from Definition 5.5). To this 
end, we provisionally define G as follows on an object (m, γ) and a morphism ρ : (m, γ) → (m′, γ′) of w//J :

• G(m, γ) = m, and
• G(ρ) = ρ : m → m′.

We now check that m and ρ must comprise an object and morphism in E|f respectively. The existence of 
γ : w → m in LocΣE implies that there is a Σ-zigzag from w to m, say

w y0 x0 y1 · · · xk m.

Since f is locally minimal, all left-pointing y• ← x• above must equal f . Therefore, E(x, m) 
= ∅ and so 
m lies in E|f (note that E(m, y) = ∅ is guaranteed by the criticality of m). Turning to ρ, note that every 
object of E|f is Σ-critical — otherwise, there exists some f ′ : x′ → y′ different from f with E(x, y′) 
= ∅

and hence f � f ′, which violates the local minimality of f . Thus, there are no non-trivial Σ-zigzags between 
m and m′, which means LocΣE(m, m′) = E(m, m′). Thus, ρ lies in E|f(m, m′) as desired. Now, it is easily 
checked that the fiber G//m over any m in E|f has a homotopy-maximal element (m, γm) given by

γm =
{
w → m if E(w,m) is non-empty,
w → y ← x → m otherwise,

where all arrows in sight indicate atoms in the appropriate posets (which must exist by Definition 3.4). By 
Lemma 2.5, the fiber G//m is contractible; thus, by Theorem 2.7 we have a homotopy-equivalence between 
the classifying spaces of w//J and the contractible category E|f , as desired. �

And finally, we have the inductive step which completes our proof of Theorem 5.7.

Proposition 5.9. Assume Σ is mild and contains f : x → y. If the fibers z//J under all objects z in E|f are 
contractible, then so is the fiber w//J for each w in the span S(f).

Proof. It suffices to show that |Δ(x//J)| is contractible, since the fiber w//J under any w ∈ S(f) is 
homotopy-equivalent to E(w, y) × x//J by arguments similar to those from the proof of Proposition 5.8. 
Every object (m, γ) in x//J is represented by a Σ-zigzag

x
g0

y0 x0
f0 g1

y1 · · ·
f1

xk

fk gk+1
m,

and no generality is sacrificed by assuming that f0 (and hence, all subsequent f•’s) are different from f . 
Now, y0 lies in E|f and the morphism γ in LocΣE(x, m) decomposes into an element g0 × (m, λ) in the 
product E(x, y0) ×y0//J , where λ is the following morphism in LocΣE(y0, m) obtained from γ by replacing 
g0 with a forward-pointing identity:
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y0
1

y0 x0
f0 g1

y1 · · ·
f1

xk

fk gk+1
m.

Thus, the category x//J is covered by finitely many categories {V [z]}, one for each object z in E|f , defined 
as images of products:

V [z] = E(x, z) × z//J ,

and the covering maps φz : V [z] → x//J act via composition:

φz(g × (m,λ)) = (m, g ◦λ).

It is straightforward to confirm that the images of these covering maps are contractible subcategories of 
x//J . Note that every object in a non-empty intersection V [z] ∩V [z′] corresponds to a morphism h : z → z′

in the following sense. We have an equality

φz(g × (λ,m)) = φz′(g′ × (λ′,m′))

if and only if m = m′ and there is some h : z → z′ in E|f making the following diagram commute in 
LocΣE:

z

h

λ

x

g

g′

m

z′
λ′

Thus, every non-empty intersection V [z0] ∩ · · · ∩ V [z�] is contractible — it is given by

E(x, z0) ×E(z0, z1) × · · · ×E(z�−1, z�) × z�//J ,

where the last factor is contractible by assumption (on fibers under objects of E|f) and the remaining factors 
are contractible since they contain atoms. Note that there are no other orderings of the z•’s which generate 
objects in the nonempty intersection above since E|f is loopfree by mildness. This cover by V [z]’s of x//J
has a nerve whose vertex set is (E|f)0 with order relation z ≥ z′ whenever E(z, z′) 
= ∅. By (arguments 
similar to the ones used in) the proof of Proposition 3.3, this nerve lies in the homotopy class of Δ(E|f), 
which is contractible by Definition 5.5. �

Turning at last to the proof of Theorem 5.7, let w be an arbitrary object of E (and hence, of LocΣE). 
If w is Σ-critical, then the fiber w//J is contractible by Proposition 5.4. Otherwise, we know that there are 
no infinitely long chains of the form f � f0 � · · · by mildness of Σ and hence one may use an inductive 
argument as follows. If there are no f ′ ∈ Σ different from f satisfying f � f ′, then f is locally minimal 
and Proposition 5.8 guarantees the contractibility of w//J . If we do have such f ′s on the other hand, then 
assume (as an inductive hypothesis) that the fibers under all objects lying in their spans are contractible. 
But each z ∈ (E|f)0 is either critical or lies (uniquely) in the span of some such f ′. In this case, we 
resort to Proposition 5.9 to extract the desired contractibility of w//J . Thus, |Δ(w//J)| is contractible for 
every object w in LocΣE and hence by the under-fiber version of Theorem 2.7 our functor J induces a 
homotopy-equivalence of classifying spaces, as desired.
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6. Three calculations

We describe three computations of the discrete flow category in the most familiar and motivating context 
of acyclic partial matchings on regular CW complexes. The underlying CW complex in all three cases is the 
decomposition of the 2-sphere S from Fig. 3 consisting of two 0-cells w, y, two 1-cells x, z and two 2-cells 
t, b.

6.1. The flow category of an acyclic partial matching

For our first computation, consider the following acyclic partial matching μ on S: set μ(y) = x and 
μ(z) = b and let

Σ = {(x > y), (z > b)}

be the associated Morse system on the entrance path category Ent[S]. Since t and w are the only Σ-critical 
cells, the discrete flow category FloΣEnt[S] has precisely two objects. And since the poset Ent[S](w, •) is 
empty for all cells • different from w, there are no non-trivial Σ-zigzags which start at w, and in particular 
LocΣEnt[S](w, t) is empty. A brief examination of Definition 2.2 now reveals that the classifying space 
|ΔFloΣEnt[S]| is (homeomorphic to) the suspension8 of |ΔFloΣEnt[S](t, w)|.

In order to compute FloΣEnt[S](t, w), we examine all Σ-zigzags from t to w. The easiest ones to describe 
are those with no backward pointing arrows which lie in the (un-localized) poset Ent[S](t, w):

(t > z > w) ⇐ (t > w) ⇒ (t > x > w). (1)

Since Σ contains (x > y), we are allowed to introduce zigzags of the form t → y ← x → w. These correspond 
to the poset product Ent[S](t, y) × Ent[S](x, w):

(t > x > y < x > w) ⇐ (t > y < x > w) ⇒ (t > z > y < x > w). (2)

Since Σ also contains (b > z), we have two new classes of zigzags. The first class is of the form t → z ← b → w, 
and (similar to the previous poset product) it is given by

(t > z < b > x > w) ⇐ (t > z < b > w) ⇒ (t > z < b > z > w), (3)

while the second class involves the longer zigzags t → z ← b → y ← x → w. This is the product of three 
posets:

(t > z) ×
[
(b > x > y) ⇐ (b > y) ⇒ (b > z > y)

]
× (x > w). (4)

In order to assemble these four pieces together, we simply make the identifications suggested by the 
vertical reductions from Remark 2.9 — so x > y < x is just x while z < b > z reduces to z, and so forth. 
For instance, the left side of (1) is identified with the right side of (3), while the right side of (1) coincides 
with the left side of (2). Making all such identifications leaves the following poset:

8 The (two-point) suspension of a topological space X is the quotient of X × [0, 1] by identifications of the form (x, 0) ∼ (x′, 0)
and (x, 1) ∼ (x′, 1) for each x ∈ X.
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(t > z > w) (t > w) (t > x > w)

(t > z < b > w) (t > y < x > w)

(t > z < b > x > w) (t > z < b > y < x > w) (t > z > y < x > w)

The classifying space of the poset above is clearly homeomorphic to the circle, and therefore its suspen-
sion recovers S (up to homeomorphism and hence homotopy type) as desired. Note that we may coarsen 
|ΔFloΣEnt[S]| into a (non-regular) CW complex consisting of a 0-cell w and a 2-cell t, where the entire 
boundary of t, which has the homotopy type of a circle as shown above, is glued onto w.

6.2. The necessity of poset-enrichment

The reader might wonder why we resort to the relatively strenuous process of localizing p-categories. One 
could, for instance, try to construct the discrete flow category by simply localizing about the paired cells 
in the face poset. Our second calculation reveals that this approach fails even when dealing with the Morse 
system Σ = {(x > y), (b > z)} as before, but now on Fac[S] rather than Ent[S].

The calculation proceeds in a similar manner to the preceding one, but we must convert some order 
relations to equalities when constructing FloΣFac[S](t, w). For instance, instead of (1) we have

(t > z > w) = (t > w) = (t > x > w),

and so on. This process should not be too mysterious: we have simply applied the projection functor 
P : Ent[S] → Fac[S] from the proof of Proposition 3.3 to (1)–(4), so that only the strictly alternating 
paths remain. In particular, all entrance sub-paths of the form (p > q > r) are reduced to the extremal face 
relation (p > r). The poset FloΣFac[S](t, w) therefore equals

(t > w)

(t > z < b > w) (t > y < x > w)

(t > z < b > y < x > w)

Since this poset’s classifying space is contractible, so is its suspension |ΔFloΣFac[S]|. Thus, the flow category 
does not recover the homotopy type of S in this case. One reason for this failure is that the switching and
lifting axioms of Definition 3.5 do not hold — we have:

(b > z > y) = (b > y) = (b > x > y),

but z ≯ x. In fact, the localization functor Fac[X] → LocΣFac[X] already fails to induce homotopy-
equivalence.

6.3. The flow category of a generalized acyclic partial matching

Recent work on equivariant discrete Morse theory [15] introduced generalized Morse matchings, which 
relax the incidence requirement of Definition 2.10 — given a pairing μ(a) = b of cells, one only requires 
that a be a face of b with no restrictions on dimension. In this more general context, a critical cell z is 
one which does not satisfy a < z < μ(a) for any pair μ(a) > a. The cluster lemma [20, Lem. 4.1] or [22, 
Lem. 2] implies that given a generalized acyclic matching on a regular CW complex, there exists a traditional 
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acyclic matching (in the sense of Definition 2.10) with the same set of critical cells.9 In our third and final 
calculation, we employ a generalized acyclic matching on S and construct the discrete flow category.

Consider the Morse system Γ = {(b > y)} on Ent[X]. Since both x and z lie in the span of (b > y), only t
and w are critical as before. Thus, one needs to compute FloΓEnt[S](t, w) in order to extract the homotopy 
type of |ΔFloΓEnt[S]|. There are two types of zigzags to consider. First we have the trivial ones from (1), 
and then we have the zigzags of type t → y ← b → w. This second type is given by the poset product

[
(t > x > y) ⇐ (t > y) ⇒ (t > z > y)

]
×
[
(b > x > w) ⇐ (b > w) ⇒ (b > z > w)

]
,

which is slightly more formidable than the ones hitherto encountered:

(t > x > y < b > x > w) (t > y < b > x > w) (t > z > y < b > x > w)

(t > x > y < b > w) (t > y < b > w) (t > z > y < b > w)

(t > x > y < b > z > w) (t > y < b > z > w) (t > z > y < b > z > w)

By the vertical reduction of Remark 2.9, we may identify x > y < b > x with x and similarly z > y < b > z

with z. So the top left corner of the poset above corresponds to the right side of (1) whereas the bottom right 
corner identifies with the left side of (1). Thus, the poset FloΓEnt[S](t, w) may be geometrically realized 
as a filled-in square along with an additional path connecting two vertices across a diagonal:

This poset clearly has the homotopy type of a circle, and so its suspension |ΔFloΓEnt[S]| recovers the 
homotopy type of S.

7. The general main result and an application

Combining Theorems 4.1 and 5.7 yields the following general statement about (mild) Morse systems on 
cellular categories.

Theorem 7.1. Let E be a cellular category equipped with a Morse system Σ, and let FloΣE be the full 
subcategory of the localization LocΣE generated by the Σ-critical objects. Then, the localization p-functor

LΣ : E → LocΣE

induces a homotopy-equivalence. If Σ happens to be mild, then the inclusion functor

J : FloΣE → LocΣE

also induces a homotopy-equivalence, in which case the classifying spaces |ΔE| and |ΔFloΣE| are homotopy-
equivalent.

9 In fact, one can expect several traditional acyclic matchings to yield the same critical cells as a fixed generalized matching, and 
in particular there is no canonical candidate.



JID:JPAA AID:5884 /FLA [m3L; v1.235; Prn:30/04/2018; 13:23] P.28 (1-30)
28 V. Nanda / Journal of Pure and Applied Algebra ••• (••••) •••–•••
Since every acyclic partial matching on a finite regular CW complex X induces a mild Morse system 
on its entrance path category Ent[X] by Propositions 3.6 and 5.6, our main Theorem 1.1 follows as an 
immediate corollary of the preceding result. Two independent avenues for generalizing discrete Morse theory 
are apparent from Theorem 7.1: we could impose Morse systems on cellular categories that are not entrance 
path categories, or we could examine CW complexes with Morse systems that are not induced by acyclic 
partial matchings.

The calculation of the flow category from Section 6.3 has already addressed the second type of general-
ization somewhat, so we will focus here on the first type. In particular, we use Theorem 7.1 along with the 
universal property of localization to conveniently inherit a Morse theory for certain categories of functors 
sourced at Ent[X].

7.1. Application: compressing cellular cosheaves

Let X be a finite regular CW complex, and let Mod(R) be the category of modules over a fixed commu-
tative ring R. Recall that the face poset Fac[X] has as its objects the cells of X with a unique morphism 
x > y whenever y is a face of x. A cellular cosheaf over X taking values in Mod(R) (see [38, Sec. 1.1]
or [10, Sec. 5]) is a functor F : Fac[X] → Mod(R). The F -values on cells are called stalks, the linear maps 
assigned to face relations are called extension maps. One can compute the homology of X with coefficients 
in F — written H•(X; F ) — through a chain complex (C•, d•) of R-modules:

· · · d3−→ C2
d2−→ C1

d1−→ C0
d0−→ 0,

where Cn =
⊕

dim x=n F (x) and the component of dn from x to y is the restriction map F (x > y) multiplied 
with a suitable local orientation taking values in {−1, 0, 1}.

Using the projection P : Ent[X] → Fac[X] from the proof of Proposition 3.3, every cellular cosheaf F
on X induces a functor P ◦F : Ent[X] → Mod(R). Recall, by Proposition 5.6 that every acyclic partial 
matching μ on X induces a mild Morse system Σ on Ent[X]. If all extension maps F (μ(•) > •) assigned 
to matched cells are isomorphisms of R-modules, then P ◦F admits an extension F ′ across LΣ by the 
universal property of localization mentioned in Section 2.2. Theorem 7.1 now guarantees that the following 
diagram homotopy-commutes and that the vertical arrows are homotopy-invertible:

Ent[X]
P ◦F

LΣ

LocΣEnt[X]
F ′

Mod(R)

FloΣEnt[X]

J

Here the dotted arrow is the composite J ◦F ′ — it yields a cosheaf of R-modules on the flow category, 
which in turn produces the Morse chain complex mentioned at the end of Section 2.3 and hence recovers 
the homology H•(X; F ) (see Forman’s work [14, Sec. 8] for the simplest case, which involves the constant 
cosheaf). It is worth noting that the multiplicity of a gradient path in the sense of [14, Def. 8.6] is precisely 
the action of J ◦F ′ on any Σ-zigzag representing that path.

While there exist algebraic [39] and computational [11] techniques to extract the Morse chain complex for 
the purposes of computing H•(X; F ), using the flow category allows us to simultaneously deform the under-
lying base space (while preserving its homotopy type) as we modify the overlaid algebra (while preserving 
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homology). Thus, Theorem 7.1 provides a natural mechanism to safely compress both the base space and 
the cosheaf data.
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