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Abstract
Motivated by open problems in applied and computational algebraic topology, we
establish multivariate normal approximation theorems for three random vectors which
arise organically in the study of random clique complexes. These are:

(1) the vector of critical simplex counts attained by a lexicographicalMorsematching,
(2) the vector of simplex counts in the link of a fixed simplex, and
(3) the vector of total simplex counts.

The first of these randomvectors forms a cornerstone ofmodern homology algorithms,
while the second one provides a natural generalisation for the notion of vertex degree,
and the third one may be viewed from the perspective ofU -statistics. To obtain distri-
butional approximations for these random vectors, we extend the notion of dissociated
sums to a multivariate setting and prove a new central limit theorem for such sums
using Stein’s method.
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1 Introduction

Methods from applied and computational algebraic topology have recently found
substantial applications in the analysis of nonlinear and unstructured datasets (Ghrist
2008; Carlsson 2005). The modus operandi of topological data analysis is to first
build a nested family of simplicial complexes around the elements of a dataset, and to
then compute the associated persistent homology barcodes (Edelsbrunner and Harer
2010). Of central interest, when testing hypotheses under this paradigm, is the question
of what homology groups to expect when the input data are randomly generated.
Significant efforts have therefore been devoted to answering this question for various
models of noise, giving rise to the field of stochastic topology (Kahle 2011; Bobrowski
andKahle 2018; Kahle 2009; Adler et al. 2014; Costa and Farber 2016). Our work here
is a contribution to this area at the interface between probability theory and algebraic
topology.

Distributional approximations provide a way of understanding random variables in
caseswhere closed-formdistributions cannot be easily obtained. This paper establishes
the first multivariate normal approximations to three important counting problems in
stochastic topology; as these approximations are based on Stein’s method, explicit
bounds on the approximation errors are provided. Our starting point is the ubiqui-
tous graph model G(n, p); a graph G chosen from this model has as its vertex set
[n] = {1, 2, . . . , n}, and each of its possible

(n
2

)
edges is included independently

with probability p ∈ [0, 1]. A natural higher-order generalisation of G(n, p) is fur-
nished by the random clique complex model X(n, p), whose constituent complexes
L are constructed as follows. One first selects an underlying graph G ∼ G(n, p),
and then deterministically fills out all k-cliques in G with (k − 1)-dimensional sim-
plices for k ≥ 3. Higher connectivity is measured by the Betti numbers βk(L ),
which are ranks of rational homology groups Hk(L ; Q)—in particular, β0(L ) equals
the number of connected components of the underlying random graph G. In Kahle
(2014), Kahle proved the following far-reaching generalisation of the Erdős-Rényi
connectivity result: for each k ≥ 1 and ε > 0,

(1) if

p ≥
[(

k

2
+ 1 + ε

)
· log(n)

n

]1/(k+1)

,

then βk(L ) = 0 with high probability; and moreover,
(2) if

[
k + 1 + ε

n

]1/k
≤ p ≤

[(
k

2
+ 1 − ε

)
· log(n)

n

]1/(k+1)

,

then βk(L ) �= 0 with high probability.

Unlike Kahle’s result, we study X(n, p) in the regime where p is a constant. In
that case, we may have βk(X(n, p)) �= 0 for multiple values of k that depend on n.
Hence, studying the multivariate distribution of the Betti numbers is of interest in
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this regime. Since many results about Betti numbers in the univariate case are based
on counting simplices, we hope that understanding the multivariate simplex counts
will facilitate multivariate understanding of the Betti numbers. With this result in
mind, we motivate and describe three random vectors pertaining toL ∼ X(n, p); the
normal approximation of these three random vectors will be our focus in this paper.
All three are denoted T = (T1, . . . , Td) for an integer d > 0. For the purposes of this
introduction, we add a superscript (1), (2) or (3) to indicate the particular vector.

Random vector 1: critical simplex counts

The computation of Betti numbers βk(L ) begins with the chain complex

· · · dk+1
Chk

dk
Chk−1

dk−1 · · · d2 Ch1
d1 Ch0.

Here Chk is a vector space whose dimension equals the number of k-simplices in
L , while dk : Chk → Chk−1 is an incidence matrix encoding which (k−1)-simplices
lie in the boundary of a given k-simplex. These matrices satisfy the property that every
successive composite dk+1◦dk equals zero, andβk(L ) is the dimension of the quotient
vector space ker dk/img dk+1. In order to calculate βk(L ), one is required to put the
matrices {dk : Chk → Chk−1} in reduced echelon form, which is a straightforward
task in principle. Unfortunately, Gaussian elimination on an m × m matrix incurs an
O(m3) cost,which becomes prohibitivewhen facing simplicial complexes built around
large data sets (Otter 2017). The standard remedy is to construct a much smaller chain
complexwhich has the same homology groups, and by far themost fruitful mechanism
for achieving such homology-preserving reductions is discrete Morse theory (Forman
2002; Mischaikow and Nanda 2013; Henselman-Petrusek and Ghrist 2016; Lampret
2019).

The key structure here is that of an acyclic partial matching, which pairs together
certain adjacent simplices of L ; and the homology groups of L may be recovered
from a chain complex whose vector spaces are spanned by unpaired, or critical, sim-
plices. One naturally seeks an optimal acyclic partial matching on L which admits
the fewest possible critical simplices. Unfortunately, the optimal matching problem is
computationally intractable to solve (Joswig and Pfetsch 2006) even approximately
(Bauer and Rathod 2019) for large L . Our first random vector T (1) is obtained by
letting T (1)

k equal the number of critical k-simplices for a specific type of acyclic par-
tial matching on L , called the lexicographical matching. Knowledge of this random
vector serves to simultaneously quantify the benefit of using discrete Morse theoretic
reductions on random simplicial complexes and to provide a robust null model by
which to measure their efficacy on general (i.e., not necessarily random) simplicial
complexes. This is the first time the asymptotic distribution of this random vector is
studied.
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Random vector 2: link simplex counts

The link of a simplex t in L , denoted lk(t), consists of all simplices s for which
the union s ∪ t is also a simplex in L and the intersection s ∩ t is empty. The link
of t forms a simplicial complex in its own right; and if we restrict attention to the
underlying random graph G, then the link of a vertex is precisely the collection of its
neighbours. Therefore, the Betti numbers βk(lk(t)) generalise the degree distribution
for vertices of random graphs in two different ways—one can study neighbourhoods of
higher-dimensional simplices by increasing the dimension of t , and one can examine
higher-order connectivity properties by increasing the homological dimension k. The
second random vector T (2) of interest to us here is obtained by letting T (2)

k equal the
number of k-simplices that would lie in the link of a fixed simplex t inL , if t indeed
was a simplex in the random complex. As far as we are aware, ours is the first work that
studies this random vector. A different conditional distribution, which follows directly
from results on subgraph counts inG(n, p), has been studied before, see Remark 5.1.

There are compelling reasons to better understand the combinatorics and topology
of such links from a probabilistic viewpoint. For instance, the fact that the link of a k-
simplex in a triangulated n-manifold is always a triangulated sphere of dimension (n−
k − 1) has been exploited to produce canonical stratifications of simplicial complexes
into homology manifolds (Asai and Shah 2022; Nanda 2020). Knowledge of simplex
counts (andhence,Betti numbers) of linkswould therefore forman essential first step in
any systematic study involving canonical stratifications of random clique complexes.

Random vector 3: total simplex counts

The strategy employed in Kahle’s proof of the second assertion above involves first
checking that the expected number of k-simplices inL ∼ X(n, p) is much larger than
the expected number of simplices of dimensions k ± 1 whenever p lies in the range
indicated by (2). Therefore, one may combine theMorse inequalities with the linearity
of expectation in order to guarantee that the expected βk(L ) is nonzero—see Kahle
(2014, Section 4) for details. To facilitate more refined analysis and estimates of this
sort, the third random vector T (3) we study in this paper is obtained by letting T (3)

k
equal the total number of k-dimensional simplices in L .

Since T (3)
k is precisely the number of (k + 1)-cliques in G ∼ G(n, p), this random

vector falls within the purview of generalised U-statistics. We extend results from
Janson andNowicki (1991) to shownot only distributional convergence asymptotically
but a stronger result, detailing explicit non-asymptotic bounds on the approximation.
Several interesting problems can be seen as special cases—these include classical
U -statistics (Lee 1990; Korolyuk and Borovskich 2013), monochromatic subgraph
counts of inhomogeneous random graphs with independent random vertex colours,
and the number of overlapping patterns in a sequence of independent Bernoulli trials.
To the best of our knowledge, this is the first multivariate normal approximation result
with explicit bounds where the sizes of the subgraphs are permitted to increase with
n.
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Main results

The central contributions of this work are multivariate normal approximations for all
three random vectors T described above. The approximation error is quantified for
finite n in terms of both smooth test functions as well as convex set indicator test
functions. As long as the bound with respect to either test function class vanishes
asymptotically, it implies asymptotic convergence in distribution. However, the con-
vexset indicator test function result is stronger and can be more useful in statistical
applications: for example, when estimating confidence regions, which are usually
taken to be convex sets.

We state a simplified version of our normal approximation results here and note that
the full statements and proofs have been recorded as Theorems 4.5, 5.3, and Corollary
6.1. Note that the quantities below B5.3 and B6.1 are explicit, allowing to vary the
parameters p and d.

To state the results, for a positive integer d we define a class of test functions
h : Rd → R, as follows. We say h ∈ Hd iff h is three times partially differentiable
with third partial derivatives being Lipschitz and bounded. Moreover we denote by
K the class of convex sets in Rd .

Theorem 1.1 Let W (i) be an appropriately scaled and centered version of random
vector T (i) for i = 1, 2, 3 as described above. Let Z ∼ MVN(0, Idd×d) and �i be
the covariance matrix of W (i) for each i . Let h ∈ Hd .

(1) There is a constant B1.1.1 > 0 independent of n and a natural number N1.1.1
such that for any n ≥ N1.1.1 we have

∣
∣∣∣Eh(W (1)) − Eh(�

1
2
1 Z)

∣
∣∣∣ ≤ B1.1.1 sup

i, j,k∈[d]

∥
∥∥∥

∂3h

∂xi∂x j∂xk

∥
∥∥∥∞

n−1.

Also, there is a constant B1.1.2 > 0 independent of n and a natural number N1.1.2
such that for any n ≥ N1.1.2 we have

sup
A∈K

|P(W (1) ∈ A) − P(�
1
2
1 Z ∈ A)| ≤ B1.1.2n

− 1
4 .

(2) There is a quantity B5.3 independent of n and defined explicitly such that

∣∣∣∣Eh(W (2)) − Eh(�
1
2
2 Z)

∣∣∣∣ ≤ |h|3 B5.3(n − |t |)− 1
2 ;

and

sup
A∈K

|P(W (2) ∈ A) − P(�
1
2
2 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

5.3(n − |t |)− 1
8 .
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(3) There is a quantity B6.1 independent of n and defined explicitly such that

∣∣∣
∣Eh(W (3)) − Eh(�

1
2
3 Z)

∣∣∣
∣ ≤ |h|3 B6.1n−1;

and

sup
A∈K

|P(W (3) ∈ A) − P(�
1
2
3 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

6.1n
− 1

4 .

En route to proving Theorem 1.1, we also establish the following properties, which
are of direct interest in computational topology. Here we assume that p ∈ (0, 1) and
k ∈ {1, 2, . . .} are constants.
(1) The expected number of critical k-simplices is one order of n smaller that the

expected total number of k-simplices; see Lemma 4.2.
(2) The variance of the number of critical k-simplices is at least of the order n2k , as

shown in Lemma 4.3. An upper bound of the same order can be proved similarly.
The variance of the total number of k-simplices is also of the same order.

(3) Knowing the expected value and the variance one can prove concentration results
using different concentration inequalities, for example, Chebyshev’s inequality.
This would show that not only the expected value of the number of critical sim-
plices is smaller compared to all simplices but also that large deviations from the
mean are unlikely, hence implying that the substantial improvement of one order
of n is not only expected but also likely.

(4) For counting critical simplices to high accuracy in probability, it is not necessary to
check every simplex. Certain simplices have a very small chance of being critical,
and can be safely ignored. The probability of this omission causing an error is
vanishingly small asymptotically; see Proposition 4.4.

The main ingredient in establishing such results is often an abstract approximation
theorem that can be applied to the random variables of interest.While there is no short-
age of multivariate normal approximation theorems (Fang 2016; Raiíc 2004; Meckes
2009; Chen 2011), the existing ones are not sufficiently fine-grained for proving mul-
tivariate normal approximations to the random vectors studied here. We therefore
return to the pioneering work of Barbour et al. (1989), who proved a univariate cen-
tral limit theorem (CLT) for a decomposable sum of random variables using Stein’s
method, treating the case of dissociated sums as a special case. Our approximation
result (Theorem 3.2) forms an extension of their ideas to the multivariate setting.

Related work

There are different versions of distributional approximation results for subgraph counts
inG(n, p) that can be interpreted as simplex counts in X(n, p). For example, a multi-
variate central limit theorem for centered subgraph counts in the more general setting
of a random graph associated to a graphon can be found in Kaur and Röollin (2021).
That proof is based on Stein’s method via a Stein coupling. Translating this result for
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uncentered subgraph countswould yield an approximation by a function of amultivari-
ate normal. In Reinert and Röllin (2010), an exchangeable pair coupling led to Reinert
and Rollin (2010, Proposition 2) which can be specialised to joint counts of edges and
triangles; our approximation significantly generalises this result beyond the casewhere
k ∈ {1, 2}. Several univariate normal approximation theorems for subgraph counts are
available; recent developments in this area include Privault and Serafin (2020), which
uses Malliavin calculus together with Stein’s method, and Eichelsbacher and Rednoß
(2023), which uses the Stein-Tikhomirov method. Stein’s method is used in Kahle and
Meckes (2013) to show a CLT for the Betti numbers of X(n, p) in a sparse regime;
in Owada et al. (2021) limit theorems for Betti numbers and Euler characteristic are
proven in a dynamical random simplicial complex model, also using Stein’s method.

Theorem 3.2 is not the first generalisation of the results in Barbour et al. (1989) to
a multivariate setting, see for example (Fang 2016; Raiíc 2004). The key advantage of
our approach is that it allows for bounds which are non-uniform in each component
of the vector W . This is useful when, for example, the number of summands in each
component are of different order or when the sizes of dependency neighbourhoods in
each component are of different order. The applications considered here are precisely
of this type, where the non-uniformity of the bounds is crucial. Moreover, we do
not require the covariance matrix � to be invertible, and can therefore accommodate
degenerate multivariate normal distributions.

Organisation

In Sect. 2 we recall concepts from the theory of simplicial complexes, which we later
use. In Sect. 3 we state the theorems that serve as main tools in proving the CLTs. In
order to maintain focus on the main results, we defer the proofs of this section until the
end of the paper. In Sect. 4 we prove an approximation theorem for critical simplex
counts of lexicographical matchings. Two technical computations required in this
section have been consigned to the Appendix. In Sect. 5 we prove an approximation
theorem for count variables of simplices that are in the link of a fixed simplex. In
Sect. 6 we study simplex counts in the random clique complex and prove a CLT for
this random variable. This CLT is a corollary of a multivariate normal approximation
of generalised U -statistics, which might be of independent interest. Finally, in Sect. 7
we prove our main tools: the abstract approximation theorem (Theorem 3.2) as well
as the approximation theorem for U -statistics (Theorem 3.9). We first use smooth
test functions and then extend the results to convex set indicators using a smoothing
technique from Gan et al. (2017).

Notation

Throughout this paper we use the following notation. Given positive integers n,m we
write [m, n] for the set {m,m + 1, . . . , n} and [n] for the set [1, n]. Given a set X
we write |X | for its cardinality, P(X) for its powerset, and given a positive integer
k we write Ck = { t ∈ P([n]) | |t | = k } for the collection of subsets of [n] which
are of size k. For a function f : Rd → R we write ∂i j f = ∂2 f

∂xi ∂x j
and ∂i jk f =
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∂3 f
∂xi ∂x j ∂xk

. Also, we write | f |k = supi1,i2,...,ik∈[d]
∥
∥∂i1i2...ik f

∥
∥∞ for any integer k ≥

1, as long as the quantities exist. Here || · ||∞ denotes the supremum norm while
|| · ||2 denotes the Euclidean norm. The notation ∇ denotes the gradient operator
in Rd . The notation Idd×d denotes the d × d identity matrix. The vertex set of all
graphs and simplicial complexes is assumed to be [n]. We also use Bachmann-Landau
asymptotic notation: we say f (n) = O(g(n)) iff lim supn→∞

| f (n)|
g(n)

< ∞ and f (n) =
�(g(n)) iff lim infn→∞ f (n)

g(n)
> 0. The notation that f (n) = ω(g(n)) indicates that

limn→∞ f (n)
g(n)

= ∞.

2 Simplicial complex preliminaries

2.1 First definitions

Firstly, we recall the notion of a simplicial complex (Spanier 1966, Ch 3.1); these
provide higher-dimensional generalisations of a graph and constitute data structures
of interest across algebraic topology in general as well as applied and computational
topology in particular.

A simplicial complex L on a vertex set V is a set of nonempty subsets of V (i.e.
∅ /∈ L ⊆ P(V )) such that the following properties are satisfied:

(1) for each v ∈ V the singleton {v} lies inL , and
(2) if t ∈ L and s ⊂ t then s ∈ L .

The dimension of a simplicial complex L is maxs∈L |s| − 1. Elements of a sim-
plicial complex are called simplices. If s is a simplex, then its dimension is |s| − 1.
A simplex of dimension k can be called a k-simplex. Note that the notion of one-
dimensional simplicial complex is equivalent to the notion of a graph, with the vertex
set V and edges as subsets.

Given a graph G = (V , E) the clique complexX of G is a simplicial complex on
V such that

t ∈ X ⇐⇒ ∀u, v ∈ t, {u, v} ∈ E .

Recall that G(n, p) is a random graph on n vertices where each pair of vertices is
connected with probability p, independently of any other pair. The X(n, p) random
simplicial complex is the clique complex of the G(n, p) random graph, which is a
random model studied in stochastic topology (Kahle 2009, 2014). Note that t ∈ X if
and only if the vertices of t span a clique in G. Thus, elements in X(n, p) are cliques
in G(n, p).

2.2 Links

The link of a simplex t in a simplicial complex L is the subcomplex

lk(t) = { s ∈ L | s ∪ t ∈ L and t ∩ s = ∅ } .
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Fig. 1 Left: the link (highlighted in blue) of the vertex 1 (highlighted in red). Right: the link (highlighted
in blue) of the edge {1, 2} (highlighted in red). The two-dimensional simplices are shaded in grey

Example 2.1 If we look at a graph as a one dimensional simplicial complex, then the
vertices are sets of the form {i} and edges are sets of the form {i, j}. For a vertex
t = {v}, the edges of the form s = {v, u} will not be in the link of t because t ∩ s = ∅

is not satisfied. If we pick s = {i, j} and v /∈ s, then s ∪ t ∈ L is not satisfied. So
there will be no edges in the link. However, if s = {u} and u is a neighbour of v,
then s ∪ t ∈ L and s ∩ t = ∅. Hence the link of a vertex will be precisely the other
vertices that the vertex is connected to; the notion of the link generalises the idea of a
neighbourhood in a graph.

Example 2.2 Now consider the simplicial complex depicted in Fig. 1: it has 8 vertices,
12 edges and 3 two-dimensional simplices that are shaded in grey. On the left hand side
of the figure we see highlighted in blue the link of the vertex 1, which is highlighted in
red. So lk({1}) = {{2}, {3}, {5}, {6}, {8}, {2, 3}, {2, 8}, {5, 6}}. On the right hand side
of the figure we see highlighted in blue the link of the edge {1, 2}, which is highlighted
in red. That is, lk({1, 2}) = {{3}, {8}}.

2.3 Discrete Morse theory

A partial matching on a simplicial complex L is a collection

� = { (s, t) | s ⊆ t ∈ L and |t | − |s| = 1 }

such that every simplex appears in at most one pair of �. A �-path (of length k ≥ 1)
is a sequence of distinct simplices of L of the following form:

(s1 ⊆ t1 ⊇ s2 ⊆ t2 ⊇ . . . ⊇ sk ⊆ tk)

such that (si , ti ) ∈ � and |ti |− |si+1| = 1 for all i ∈ [k]. A�-path is called a gradient
path if k = 1 or s1 is not a subset of tk . A partial matching � on L is called acyclic
iff every �-path is a gradient path. Given a partial matching � on L , we say that a
simplex t ∈ L is critical iff t does not appear in any pair of �.

For a one-dimensional simplicial complex, viewed as a graph, a partial matching
� is comprised of elements (v; {u, v}) with v a vertex and {u, v} an edge. A �−path
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T. Temčinas et al.

Fig. 2 Lexicographical
matching given by the red
arrows. Critical simplices are
highlighted in blue

is then a sequence of distinct vertices and edges

v1, {v1, v2}, v2, {v2, v3}, . . . , vk, {vk, vk+1}

where each consecutive pair of the form (vi , {vi , vi+1}) is constrained to lie in �.
We refer the interested reader to Forman (2002) for an introduction to discrete

Morse theory and toMischaikow and Nanda (2013) for seeing how it is used to reduce
computations in the persistent homology algorithm. In this work we aim to understand
howmuch improvement one would likely get on a random input when using a specific
type of acyclic partial matching, defined below.

Definition 2.3 LetL be a simplicial complex and assume that the vertices are ordered
by [n] = {1, . . . , n}. For each simplex s ∈ L define

IL (s) := { j ∈ [n] | j < min(s) and s ∪ { j} ∈ L }.

Now consider the pairings

s ↔ s ∪ {i},

where i = min IL (s) is the smallest element in the set IL (s), defined whenever
IL (s) �= ∅. We call this the lexicographical matching.

Due to the min IL (s) construction in the lexicographical matching, the indices
are decreasing along any path and hence it will be a gradient path, showing that the
lexicographical matching is indeed an acyclic partial matching onL .

Example 2.4 Consider the simplicial complexL depicted in Fig. 2. The complex has
5 vertices, 6 edges and one two-dimensional simplex that is shaded in grey. The red
arrows show the lexicographicalmatching on this simplicial complex: there is an arrow
from a simplex s to t iff the pair (s, t) is part of the matching. More explicitly, the
lexicographical matching on L is

� = {({2}, {1, 2}), ({3}, {2, 3}), ({4}, {1, 4}), ({5}, {3, 5}), ({4, 5}, {3, 4, 5})}.

Note that {3, 4} cannot be matched because the set IL ({3, 4}) is empty. Also, in
any lexicographical matching {1} is always critical as there are no vertices with a
smaller label and hence the set IL ({1}) is empty. So under this matching there are two
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critical simplices: {1} and {3, 4}, highlighted in blue in the figure. Hence, if we were
computing the homology of this complex, considering only two simplices would be
sufficient instead of all 12 which are in L—a significant improvement.

3 Probabilistic tools

In this section we introduce the approximation theorems that are used to study the
random variables of interest. In order not to obscure our main results, the proofs are
deferred to Sect. 7.

3.1 CLT for dissociated sums

Let n and d be positive integers. For each i ∈ [d] =: {1, 2, . . . , d}, we fix an index set
Ii ⊂ [n]× {i} and consider the union of disjoint sets I :=⋃i∈[d] Ii . Associate to each
such s = (k, i) ∈ I a real centered random variable Xs and form for each i ∈ [d] the
sum

Wi :=
∑

s∈Ii
Xs .

Consider the resulting random vector W = (W1, . . . ,Wd) ∈ Rd . The following
notion is a natural multivariate generalisation of the dissociated sum from McGinley
and Sibson (1975); see also Barbour et al. (1989).

Definition 3.1 We call W a vector of dissociated sums if for each s ∈ I and j ∈ [d]
there exists a dependency neighbourhood D j (s) ⊂ I j satisfying three criteria:

(1) the difference
(
Wj −∑u∈D j (s) Xu

)
is independent of Xs ;

(2) for each t ∈ I, the quantity
(
Wj −∑u∈D j (s) Xu −∑v∈D j (t)\D j (s) Xv

)
is

independent of the pair (Xs, Xt ); and finally,
(3) Xs and Xt are independent if t /∈⋃ j D j (s).

LetW be a vector of dissociated sums as defined above. For each s ∈ I, by construc-
tion, the sets D j (s), j ∈ [d] are disjoint (although for s �= t , the sets D j (s) and D j (t)
may not be disjoint). We write D(s) = ⋃

j∈[d] D j (s) for the disjoint union of these
dependency neighbourhoods.With this preamble in place,we state the abstract approx-
imation theorem that is the main ingredient in the proofs of our normal approximation
results.

Theorem 3.2 Let h ∈ Hd . Consider a standard d-dimensional Gaussian vector Z ∼
MVN(0, Idd×d). Assume that for all s ∈ I, we have E {Xs} = 0 and E

∣∣X3
s

∣∣ <

∞. Then, for any vector of dissociated sums W ∈ Rd with a positive semi-definite
covariance matrix �,

∣∣∣Eh(W ) − Eh(�
1
2 Z)

∣∣∣ ≤ B3.2 |h|3 ,
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where B3.2 = B3.2.1 + B3.2.2 is the sum given by

B3.2.1 := 1

3

∑

s∈I

∑

t,u∈D(s)

(
1

2
E |Xs Xt Xu | + E |Xs Xt | E |Xu |

)

B3.2.2 := 1

3

∑

s∈I

∑

t∈D(s)

∑

v∈D(t)\D(s)

(E |Xs Xt Xv| + E |Xs Xt | E |Xv|) .

The theorem above together with a smoothing technique will be used to prove the
following approximation theorem in terms of convex set indicators.

Theorem 3.3 Consider a standard d-dimensional Gaussian vector Z ∼
MVN(0, Idd×d). For any centered vector of dissociated sums W ∈ Rd with a positive
semi-definite covariance matrix � and finite third absolute moments we have

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

3.2,

where the quantity B3.2 as in Theorem 3.2.

The next result provides a simplification of Theorems 3.2 and 3.3 under the
assumption that one uses bounds that are uniform in s, t, u ∈ I. Its proof fol-
lows immediately from writing the sum over

∑
s∈I
∑

t,u∈D(s) as the sum over∑
i∈[d]

∑
j∈[d]

∑
k∈[d]

∑
s∈Ii

∑
t∈D j (s)

∑
u∈Dk (s).

Corollary 3.4 We have the following two bounds:

(1) Under the assumptions of Theorem 3.2,

∣∣∣Eh(W ) − Eh(�
1
2 Z)

∣∣∣ ≤ B3.4 |h|3 .

(2) Assuming the hypotheses of Theorem 3.3,

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

3.4.

Here B3.4 is a sum over (i, j, k) ∈ [d]3 of the form

B3.4 := 1

3

∑

(i, j,k)

|Ii | αi j

(
3αik

2
+ 2α jk

)
βi jk;

and αi j is the largest value attained by
∣∣D j (s)

∣∣ over s ∈ Ii , and

βi jk = max
s,t,u

(
E |Xs Xt Xu | , E |Xs Xt | E |Xu |

)

as (s, t, u) range over Ii × I j × Ik .
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In most of our applications, the variables Xs are centered and rescaled Bernoulli
random variables. Hence, the following lemma is useful.

Lemma 3.5 Let ξ1, ξ2, ξ3 be Bernoulli random variables with expected values
μ1, μ2, μ3 respectively. Let c1, c2, c3 > 0 be any constants. Consider variables
Xi := ci (ξi − μi ) for i = 1, 2, 3. Then we have

E |X1X2X3| ≤ c1c2c3 {μ1μ2(1 − μ1)(1 − μ2)} 1
2 ;

E |X1X2| E |X3| ≤ c1c2c3 {μ1μ2(1 − μ1)(1 − μ2)} 1
2 .

Proof Note that X3 can take two values: −c3μ3 or c3(1 − μ3). As 0 ≤ μ3 ≤ 1, we
have

E |X1X2| E |X3| ≤ c3E |X1X2| ;

E |X1X2X3| ≤ c3E |X1X2| .

Applying theCauchy-Schwarz inequality anddirect calculation of the secondmoments
gives

E |X1X2| ≤
{
E

{
X2
1

}
E

{
X2
2

}} 1
2 = c1c2 {μ1μ2(1 − μ1)(1 − μ2)} 1

2 ,

which finishes the proof. ��

3.2 CLT for U-statistics

Here we consider generalised U -statistics, which were first introduced in Janson and
Nowicki (1991). The result we derive could be of independent interest but, most
importantly, the approximation theorem for simplex counts follows as a consequence.
Let {ξi }1≤i≤n be a sequence of of independent random variables taking values in a
measurable subset X ⊆ U and let {Yi, j }1≤i< j≤n be an array of of independent
random variables taking values in a measurable subset Y ⊆ U which is independent
of {ξi }1≤i≤n . We use the convention that Yi, j = Y j,i for any i < j . For example, one
can think of Xi as a random label of a vertex i in a random graph where Yi, j is the
indicator for the edge connecting i and j . Given a subset s ⊆ [n] of size m, write
s = {s1, s2, . . . , sm} such that s1 < s2 < . . . < sm and set Xs = (ξs1 , ξs2 , . . . , ξsm )

and Ys = (Ys1,s2 ,Ys1,s3 , . . . Ysm−1,sm ). Recall that Ck denotes the set of subsets of [n]
which are of size k.

Definition 3.6 Given 1 ≤ k ≤ n and a measurable function f : X k × Y (k2) → R

define the associated generalised U -statistic by

Sn,k( f ) =
∑

s∈Ck

f (Xs,Ys).
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Let {ki }i∈[d] be a collection of positive integers, each being at most n, and for each

i ∈ [d] let fi : X ki × Y (
ki
2 ) → R be a measurable function. We are interested

in the joint distribution of the variables Sn,k1( f1), Sn,k2( f2), . . . Sn,kd ( fd), which are
assumed to have finite mean and variance.

Fix i ∈ [d]. For s ∈ Ii := Cki × {i} define Xs = σ−1
i ( fi (Xs,Ys) − μs), where

μs = E { fi (Xs,Ys)} and σ 2
i = Var(Sn,ki ( fi )). Now let Wi =∑s∈Ii Xs be a random

variable and writeW = (W1,W2, . . .Wd) ∈ Rd . By construction,Wi has mean 0 and
variance 1.

Assumption 3.7 We assume that

(1) For any i ∈ [d] there is some αi > 0 such that for all
s, t ∈ Ii , the variables fi (Xs,Ys), fi (Xt ,Yt ) are either independent or
Cov( fi (Xs,Ys), fi (Xt ,Yt )) > αi .

(2) There is β ≥ 0 such that for any i, j, l ∈ [d] and any s ∈ Ii , t ∈ I j , u ∈ Il we
have

E
∣∣{ fi (Xs,Ys) − μs}

{
f j (Xt ,Yt ) − μt

} { fl(Xu,Yu) − μu}
∣∣ ≤ β

as well as

E
∣∣{ fi (Xs,Ys) − μs}

{
f j (Xt ,Yt ) − μt

}∣∣E | fl(Xu,Yu) − μu | ≤ β.

The first assumption is not necessary but very convenient and we use it to derive
a lower bound for the variance σ 2

i . A normal approximation theorem can be proven
in our framework when the assumption does not hold and a sufficiently large lower
bound for the variance is acquired in a different way. Similarly, we use the second
assumption to get a convenient bound on mixed moments. In order to maintain the
generality and simplicity of the proofs, we work under Assumption 3.7.

We also consider the important special case that the functions in Definition 3.6
only depend on the second component, so that the sequence {ξi }i∈[n] can be ignored.
Hence, we add an additional assumption.

Assumption 3.8 We assume that the functions fi only depend on the variables
{
Yi, j
}

for 1 ≤ i < j ≤ n. That is, we can write fi : Y (
ki
2 ) → R.

Such functions appear naturally, for example, when counting subgraphs in an inho-
mogeneous Bernoulli random graph. An example of such generalised U -statistic is
simplex counts in X(n, p) and is worked out in Sect. 6. We recall, for the purposes of
the following result, that n is the number of variables in the sequence {ξi }1≤i≤n and(n
2

)
is the number of variables in the sequence {Yi, j }1≤i< j≤n from Definition 3.6.

Theorem 3.9 Let Z ∼ MVN(0, Idd×d) and let h ∈ Hd . Assume W with covariance
matrix � satisfies Assumption 3.7. Then

∣∣∣Eh(W ) − Eh(�
1
2 Z)

∣∣∣ ≤ |h|3 B3.9n−γ ;
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and

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

3.9n
− γ

4 .

Here,

B3.9 = 2δβ

3

d∑

i, j,l=1

k
min(ki ,k j )+1
i

ki !√αiα jαl

(
kmin(ki ,kl )+1
i + k

min(k j ,kl )+1
j

)
Ki K j Kl

and

Ki = (2k2i − ki )
− ki

2 + 1
2 .

If only Assumption 3.7 is satisfied, then γ = 1
2 and δ = 1. If additionally Assumption

3.8 is also satisfied, then γ = 1 and δ = 4.

4 Critical simplex counts for lexicographical Morsematchings

Now we attend to our motivating problem, critical simplex counts. Consider the ran-
dom simplicial complex X(n, p). In this section we study the joint distribution of
critical simplices in different dimensions with respect to the lexicographical matching
on X(n, p). We start with the following lemma, which is an immediate consequence
of Definition 2.3, allowing us to write down the variables of interest in terms of the
edge indicators.

Lemma 4.1 LetL be a simplicial complex endowed with the lexicographical acyclic
partial matching, and consider a simplex t ∈ L with minimal vertex i ∈ [n]. Then, t
is matched with

(1) one of its co-faces if and only if there exists some j < i for which t ∪ { j} ∈ L ;
and,

(2) one of its faces if and only for all j < i we have (t \ {i}) ∪ { j} /∈ L .

For any pair of integers 1 ≤ i < j ≤ n let Yi, j := 1 ({i, j} ∈ X(n, p)) be the
edge indicator. Fix s ∈ Ck . Define the variables X+

s = 1 (s matches with its coface
given it is a simplex) and X−

s = 1 (s matches with its face given it is a simplex).
The events that the two variables indicate are disjoint. By Lemma 4.1 we can see

that X+
s = 1 −∏min(s)−1

a=1

(
1 −∏b∈s Ya,b

)
and X−

s = ∏min(s)−1
a=1

(
1 −∏b∈s− Ya,b

)
,

where s− := s\{min(s)}. Hence,

1 (s is a critical simplex) = 1 (s ∈ X(n, p)) (1 − (X+
s + X−

s ))

=
∏

i �= j∈s
Yi, j

⎡

⎣
min(s)−1∏

a=1

(

1 −
∏

b∈s
Ya,b

)

−
min(s)−1∏

a=1

⎛

⎝1 −
∏

b∈s−
Ya,b

⎞

⎠

⎤

⎦ .
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Thus, the random variable of interest, counting the number of (k − 1)-simplices
that are critical under the lexicographical matching, is

Tk =
∑

s∈Ck

∏

i �= j∈s
Yi, j

⎡

⎣
min(s)−1∏

a=1

(

1 −
∏

b∈s
Ya,b

)

−
min(s)−1∏

a=1

⎛

⎝1 −
∏

b∈s−
Ya,b

⎞

⎠

⎤

⎦ . (4.1)

Note that this random variable does not fit into the framework of generalised U -
statistics because the summands in Tk depend not only on the variables that are indexed
by the subset s. Therefore, Theorem 3.9 cannot be applied here.

4.1 Mean and variance

Lemma 4.2 For any 1 ≤ k ≤ n − 1 we have:

p(
k+1
2 )+k

(
n − 2

k

)
(1 − p) ≤ E{Tk+1} ≤ p(

k+1
2 )−k−1

(
n − 1

k

)
(1 − p).

Proof

E {Tk+1} =
n−k∑

l=1

∑

s∈Ck+1
min(s)=l

E

⎧
⎨

⎩

∏

i �= j∈s
Yi, j

⎡

⎣
l−1∏

a=1

(

1 −
∏

b∈s
Ya,b

)

−
l−1∏

a=1

⎛

⎝1 −
∏

b∈s−
Ya,b

⎞

⎠

⎤

⎦

⎫
⎬

⎭

= p(
k+1
2 )

n−k∑

l=1

∑

s∈Ck+1
min(s)=l

{
(1 − pk+1)l−1 − (1 − pk)l−1

}

= p(
k+1
2 )

n−k−1∑

l=0

(
n − l − 1

k

){
(1 − pk+1)l − (1 − pk)l

}

≤ p(
k+1
2 )
(
n − 1

k

) ∞∑

l=0

{
(1 − pk+1)l − (1 − pk)l

}

= p(
k+1
2 )−k−1

(
n − 1

k

)
(1 − p).

Moreover,

E {Tk+1} = p(
k+1
2 )

n−k−1∑

l=0

(
n − l − 1

k

){
(1 − pk+1)l − (1 − pk)l

}

≥ p(
k+1
2 )
(
n − 2

k

){
(1 − pk+1)1 − (1 − pk)1

}

= p(
k+1
2 )+k

(
n − 2

k

)
(1 − p).

��
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In this example, bounding the variance is not immediate. The proof of the following
Lemma 4.3 are long (and not particularly insightful) calculations, which are deferred
to the Appendix. In Lemma 4.3 the constant could have been made explicit at the
expense of a lengthy calculation while an explicit expression for the variance is given
in Lemma A.1.

Lemma 4.3 For a fixed integer 1 ≤ k ≤ n − 1 and p ∈ (0, 1) there is a constant
Cp,k > 0 independent of n and a natural number Np,k such that for any n ≥ Np,k:

Var(Tk+1) ≥ Cp,kn
2k .

Just knowing the expectation and the variance can already give us some infor-
mation about the variable. For example, we obtain the following proposition. This
proposition shows that considering only a subset of the simplices already gives a good
approximation for the critical simplex counts.

Proposition 4.4 Fix k ∈ [n]. Let K ≤ n − k and set the random variable:

T K
k+1 :=

∑

s∈Ck+1
min(s)≤K

∏

i �= j∈s
Yi, j

⎡

⎣
min(s)−1∏

a=1

(

1 −
∏

b∈s
Ya,b

)

−
min(s)−1∏

a=1

⎛

⎝1 −
∏

b∈s−
Ya,b

⎞

⎠

⎤

⎦ .

If K = K (n) = ω(ln1+ε(n)) for any ε > 0, then the variable Tk+1−T K
k+1 vanishes

with high probability, provided that p and k stay constant.

Proof A similar calculation to that for Lemma 4.2 shows that:

E

{
Tk+1 − T K

k+1

}
=

n−k∑

i=K+1

(
n − i

k

)
p(

k+1
2 )
{
(1 − pk+1)i−1 − (1 − pk)i−1

}

≤
(
n

k

)
p(

k+1
2 )(1 − pk+1)K

∞∑

i=0

(1 − pk+1)i

≤ p(
k+1
2 )−k−1 n

k

k! (1 − pk+1)K .

Using Markov’s inequality, we get:

P(Tk+1 − T K
k+1 ≥ 1) ≤ p(

k+1
2 )−k−1 n

k

k! (1 − pk+1)K ,

which asymptotically vanishes as long as K = ω(ln1+ε(n)). ��
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4.2 Approximation theorem

For i ∈ [d], recall a random variable counting i-simplices in X(n, p) that are critical
under the lexicographical matching, as given in (4.1). We write for the i-th index set
Ii := Ci+1 × {i}. For s = (φ, i) ∈ Ii we write

μs = p(
i+1
2 )
(
(1 − pi+1)min(φ)−1 − (1 − pi )min(φ)−1

)

and σi = √Var(Ti+1). Let

Xs = σ−1
i

⎧
⎨

⎩

∏

i �= j∈φ

Yi, j

⎡

⎣
min(φ)−1∏

a=1

⎛

⎝1 −
∏

b∈φ

Ya,b

⎞

⎠−
min(φ)−1∏

a=1

⎛

⎝1 −
∏

b∈φ−
Ya,b

⎞

⎠

⎤

⎦− μs

⎫
⎬

⎭
.

LetWi =∑s∈Ii Xs andW = (W1,W2, . . . ,Wd) ∈ Rd . For bounds that asymptot-
ically go to zero for this example, we use Theorems 3.2 and 3.3 directly: the uniform
bounds from Corollary 3.4 are not fine enough here. We note that here, due to the
requirement of criticality, two summands Xs and Xu become dependent as soon as
the corresponding subsets share a vertex. This is in contrast to simplex counts, which
required an overlap of at least two vertices.

Theorem 4.5 Let Z ∼ MVN(0, Idd×d) and � be the covariance matrix of W .

(1) Let h ∈ Hd . Then there is a constant B4.5.1 > 0 independent of n and a natural
number N4.5.1 such that for any n ≥ N4.5.1 we have

∣
∣∣Eh(W ) − Eh(�

1
2 Z)

∣
∣∣ ≤ B4.5.1 |h|3 n−1.

(2) There is a constant B4.5.2 > 0 independent of n and a natural number N4.5.2
such that for any n ≥ N4.5.2 we have

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ B4.5.2n

− 1
4 .

Proof It is clear that W satisfies the conditions of Theorems 3.2 and 3.3 for any
s = (φ, i) ∈ Ii setting

D j (s) = { (ψ, j) ∈ I j | |φ ∩ ψ | ≥ 1
}
.

WeapplyTheorems3.2 and3.3. For the bounds on the quantity B3.2 fromTheorems
3.2 and 3.3 we use Lemma 3.5 and Lemma 4.3. We writeC for an unspecified positive
constant that does not depend on n. Also, we assume here that n is large enough for the

bound in Lemma 4.3 to apply. Let μ(i, a) = p(
i+1
2 )
(
(1 − pi+1)a−1 − (1 − pi )a−1

)
.
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Then we have:

B3.2 ≤ 1

3

d∑

i, j,k=1

n−i∑

a=1

∑

φ∈Ci+1
min(φ)=a

n− j∑

b=1

∑

(ψ, j)∈D j ((φ,i))
min(ψ)=b

{ ∑

r∈Dk ((φ,i))

3

2
(σiσ jσk)

−1 {μ(i, a)μ( j, b)(1 − μ(i, a))(1 − μ( j, b))} 1
2

+
∑

r∈Dk ((ψ, j))

(σiσ jσk)
−1 {μ(i, a)μ( j, b)(1 − μ(i, a))(1 − μ( j, b))} 1

2

}

≤
d∑

i, j,k=1

n−i∑

a=1

n− j∑

b=1

Cni+ j−1nkn−i− j−k

×
{
(1 − pi+1)a−1(1 − p j+1)b−1 + (1 − pi )a−1(1 − p j )b−1

} 1
2

≤ Cn−1
d∑

i, j,k=1

∞∑

a=1

∞∑

b=1

[ {
(1 − pi+1)a−1(1 − p j+1)b−1

} 1
2

+
{
(1 − pi )a−1(1 − p j )b−1

} 1
2
]

≤ Cn−1d3
{

1

(1 −√1 − pd+1)2
+ 1

(1 −√1 − pd)2

}

≤ Cn−1.

��
Remark 4.6 The relevance of understanding the number of critical simplices in the
context of applied and computational topology is as follows.We assume that p ∈ (0, 1)
and k ∈ {1, 2, . . .} are constants.
(1) As seen in Lemma 4.2, the expected number of critical k-simplices under the

lexicographical matching is one power of n smaller than the total number of
k-simplices in X(n, p).

(2) From Proposition 4.4, it is with high probability that in X(n, p) all k-simplices
s ∈ X(n, p) with min(s) = ω(ln1+ε(n)) for any fixed ε > 0 are not critical.

5 Simplex counts in links

Consider the random simplicial complex X(n, p). For 1 ≤ i < j ≤ n define the edge
indicator Yi, j := 1 ({i, j} ∈ X(n, p)). In this section we study the count of (k − 1)-
simplices that would be in the link of a fixed subset t ⊆ [n] if the subset spanned
a simplex in X(n, p). Given that t is a simplex, the variable counts the number of
(k − 1)-simplices in lk(t). Thus, the random variable of interest is
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T t
k =

∑

s∈Ck

⎧
⎨

⎩
1 (t ∩ s = ∅)

∏

i �= j∈s
Yi, j

∏

i∈s, j∈t
Yi, j

⎫
⎬

⎭
. (5.1)

Note that the product
∏

i∈s, j∈t Yi, j ensures that t ∪ s is a simplex if t spans a simplex.

Remark 5.1 The random variable T t
k does not fit into the framework of generalised

U -statistics, because the summands depend not only on the variables that are indexed
by the subset s and we do not sum over all subsets s but rather only the ones that do
not intersect t . Hence, Theorem 3.9 does not apply here.

Moreover, note that given the number of vertices of the link of a simplex t , the
conditional distribution of the link of t is again X(n, p)[n′][p], where n′ is a random
variable equal to the number of vertices in the link. If we are interested in such a
conditional distribution, the results proved later in Sect. 6 apply. However, in this
section we study the number of simplices in the link of t given that t is a simplex
rather than given the number of vertices of the link of t . Such a random variable
behaves differently from the simplex counts in X(n, p). For example, the summands
of T t

k have a different dependence structure compared to the summands of Tk (see
Eq.6.1 below). As a result, the approximation bounds are of different order.

It is natural to ask whether the results obtained in this section follow from those of
Sect. 6 below. This might well be the case, but the answer is not straightforward. One
could derive an approximation for the number of simplices in lk(t) given the number of
vertices in the link; the variable T t

k could then be approximated by a mixture, induced
by the distribution of the number of vertices in the link (which is binomial). However,
applying this approach naïvely yields bounds that do not converge to zero. While it
is certainly possible that a different approach would succeed, we prefer to prove the
approximation directly.

5.1 Mean and variance

It is easy to see that for any positive integer k and t ⊆ [n],

E{T t
k+1} =

(
n − |t |
k + 1

)
p(

k+1
2 )+|t |(k+1) =:

(
n − |t |
k + 1

)
μt
k+1

since there are
(n−|t |
k+1

)
choices for s ∈ Ck+1 such that s ∩ t = ∅. Next we derive a

lower bound on the variance.

Lemma 5.2 For any fixed 1 ≤ k ≤ n − 1 and t ⊆ [n] we have:

Var(T t
k+1) ≥ (k + 1)

(
n − |t |
2k + 1

)(
2k + 1

k

)
(μt

k+1)
2
{
p−|t | − 1

}
.

Proof First let us calculate Cov(T t
k+1, T

t
l+1). For fixed subsets s ∈ Ck+1 and u ∈

Cl+1 if |s ∩ u| = 0, then the corresponding variables
∏

i �= j∈s Yi, j
∏

i∈s, j∈t Yi, j and∏
i �= j∈u Yi, j

∏
i∈u, j∈t Yi, j are independent and so have zero covariance.
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For 1 ≤ m ≤ l+1, the number of pairs of subsets s ∈ Ck+1 and u ∈ Cl+1 such that
s ∩ t = ∅ = u ∩ t and |s ∩ u| = m is

(n−|t |
k+1

)(k+1
m

)(n−|t |−k−1
l+1−m

)
. Since each summand

is non-negative, we lower bound by the m = 1 summand and get (with
(1
2

) := 0)

Cov(T t
k+1, T

t
l+1)

=
l+1∑

m=1

(
n − |t |
k + 1

)(
k + 1

m

)(
n − |t | − k − 1

l + 1 − m

){
μt
k+1μ

t
l+1 p

−(m2) p−|t |m − μt
k+1μ

t
l+1

}

≥
(
n − |t |
k + 1

)
(k + 1)

(
n − |t | − k − 1

l

)
μt
k+1μ

t
l+1

{
p−|t | − 1

}

= (k + 1)

(
n − |t |

l + k + 1

)(
l + k + 1

l

)
μt
k+1μ

t
l+1

{
p−|t | − 1

}
.

Taking l = k completes the proof. ��

5.2 Approximation theorem

For a multivariate normal approximation of counts given in Equation (5.1), we write

σi =
√
Var(T t

i+1) and Ct
i+1 = { φ ∈ Ci+1 | φ ∩ t = ∅ }, as well as Ii := Ct

i+1 × {i}.
For s = (φ, i) ∈ Ii define

Xs = σ−1
i (

∏

i �= j∈φ

Yi, j
∏

a∈φ,b∈t
Ya,b − μt

i+1).

It is clear that E {Xs} = 0. Let Wt
i = ∑

s∈Ii Xs and Wt = (Wt
1,W

t
2, . . . ,W

t
d) ∈ Rd .

Then we have the following approximation theorem.

Theorem 5.3 Let Z ∼ MVN(0, Idd×d) and � be the covariance matrix of W t .

(1) Let h ∈ Hd . Then

∣∣∣Eh(Wt ) − Eh(�
1
2 Z)

∣∣∣ ≤ |h|3 B5.3(n − |t |)− 1
2 .

(2) Moreover,

sup
A∈K

|P(Wt ∈ A) − P(�
1
2 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

5.3(n − |t |)− 1
8 .

Here

B5.3 = 7

6
(2d + 1)5d+ 17

2 (p−|t | − 1)−
3
2 p−(d+1)(d+2|t |).

Proof It is clear that Wt satisfies the conditions of Corollary 3.4 with the dependency
neighbourhood D j (s) = { (ψ, j) ∈ I j | |φ ∩ ψ | ≥ 1

}
for any s = (φ, i) ∈ Ii . So we

aim to bound the quantity B3.4 from the corollary.
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Given φ ∈ Ct
i+1 and m ≤ min(i + 1, j + 1) there are

(i+1
m

)(n−|t |−i−1
j+1−m

)
subsets

ψ ∈ Ct
j+1 such that |φ ∩ ψ | = m. Therefore, for any i, j ∈ [d] and s ∈ Ii we have

|D j (s)| =
min(i, j)+1∑

m=1

(
i + 1

m

)(
n − |t | − i − 1

j + 1 − m

)

≤ (i + 1)min(i, j)+2(n − |t |) j
≤ (d + 1)d+2(n − |t |) j (5.2)

giving a bound for αi j . For a bound on βi jk , applying Lemma 3.5, for any i, j, k ∈ [d]
and s ∈ Ii , u ∈ I j , v ∈ Ik we get

E |Xs Xu Xv| ≤ (σiσ jσk)
−1
{
μt
i+1μ

t
j+1(1 − μt

i+1)(1 − μt
j+1)

} 1
2 ; (5.3)

E |Xs Xu | E |Xv| ≤ (σiσ jσk)
−1
{
μt
i+1μ

t
j+1(1 − μt

i+1)(1 − μt
j+1)

} 1
2
. (5.4)

Now we apply Corollary 5.2 and get

σ 2
i ≥ (i + 1)

(
n − |t |
2i + 1

)(
2i + 1

i

)
(μt

k+1)
2
{
p−|t | − 1

}

≥ (n − |t |)2i+1

(2d + 1)d+1dd
(μt

k+1)
2
{
p−|t | − 1

}
.

Taking both sides of the inequality to the power of − 1
2 we get for any i ∈ [d]

σ−1
i ≤ (n − |t |)−i− 1

2 (2d + 1)
d+1
2 d

d
2 (μt

k+1)
−1
{
p−|t | − 1

}− 1
2
. (5.5)

Using Eqs. (5.2)–(5.5) to bound B3.4 from Corollary 3.4 we get:

B3.4 ≤ 7

6

d∑

i, j,k=1

(
n − |t |
i + 1

)
(d + 1)2d+4(n − |t |) j+k(σiσ jσk)

−1

{
μt
i+1μ

t
j+1(1 − μt

i+1)(1 − μt
j+1)

} 1
2

≤7

6

d∑

i, j,k=1

(n − |t |)i+ j+k+1(d + 1)2d+4(n − |t |)−i− j−k− 3
2 (2d + 1)

3d+3
2 d

3d
2

(p−|t | − 1)−
3
2 (μt

k+1μ
t
i+1μ

t
j+1)

−1
{
μt
i+1μ

t
j+1(1 − μt

i+1)(1 − μt
j+1)

} 1
2

≤(n − |t |)− 1
2
7

6
(2d + 1)5d+ 11

2 (p−|t | − 1)−
3
2

d∑

i, j,k=1

(
(μt

i+1μ
t
j+1)

−1(μt
k+1)

−2
) 1

2
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≤
{
7

6
(2d + 1)5d+ 17

2 (p−|t | − 1)−
3
2 p−(d+1)(d+2|t |)

}
(n − |t |)− 1

2 .

��
Remark 5.4 Recall that E

{
T t
k+1

} = (n−|t |
k+1

)
p(

k+1
2 )+|t |(k+1). By Stirling’s approxima-

tion, if p ∈ (0, 1) is a constant, then max(k, |t |) = �(ln1+ε(n)) for any positive ε

forces the expectation to go to 0 asymptotically. Hence, by Markov’s inequality, with
high probability there are no k-simplices in the link of t as long as max(k, |t |) is of
order ln1+ε(n) or larger for any ε > 0 for a constant p.

Recall that in Theorem 5.3 we count all simplices up to dimension d in the link of t .
Note that if max(d2, d|t |) = O(ln1−ε(n)) for any ε > 0, then the bounds in Theorem
5.3 tend to 0 as n tends to infinity as long as p ∈ (0, 1) stays constant. In particular,
if d is a constant, Theorem 5.3 gives an approximation for all sizes of t for which the
approximation is needed.

6 Simplex counts in X(n,p)

In this section we apply Theorem 3.9 to approximate simplex counts. Consider
G ∼ G(n, p). For 1 ≤ x < y ≤ n let Yx,y := 1 (x ∼ y) be the edge indicator.
In this section we are interested in the (i +1)-clique count inG(n, p) or, equivalently,
the i-simplex count in X(n, p), given by

Ti+1 =
∑

s∈Ci+1

∏

x �=y∈s
Yx,y . (6.1)

Let Y i+1 = {0, 1}i+1 and let fi : Y i+1 → R be the function

fi (Ys) =
∏

Yx,y∈Ys

Yx,y .

Then the associated generalised U-statistic Sn,i+1( fi ) equals the (i + 1)-clique count
Ti+1, as given by Eq. (6.1). To apply Theorem 3.9 we need to center and rescale our

variables. It is easy to see thatE{ fi (Yφ)} = p(
i+1
2 ) ifφ ∈ Ci+1.We let Ii := Ci+1×{i}

and for s = (φ, i) ∈ Ii we define Xs := σ−1
(
fi (Yφ) − p(

i+1
2 )
)
andWi =∑s∈Ii Xs .

Now the vector of interest isW = (W1,W2, . . . ,Wd) ∈ Rd . This brings us to the next
approximation theorem.

Corollary 6.1 Let Z ∼ MVN(0, Idd×d) and � be the covariance matrix of W .

(1) Let h ∈ Hd . Then

∣
∣∣Eh(W ) − Eh(�

1
2 Z)

∣
∣∣ ≤ |h|3 B6.1n−1.
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(2) Moreover,

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ 2

7
2 3− 3

4 d
3
16 B

1
4

6.1n
− 1

4 .

Here

B6.1 = 16

3
d2d+5 p−3(d+1

2 )+1(1 − p(
d+1
2 ))(p−1 − 1)−

3
2 .

Proof Firstly, observe that for any φ,ψ ∈ Ci+1 for which |φ ∩ψ | ≤ 1 the covariance
vanishes, while if |φ ∩ ψ | ≥ 2 the covariance is non-zero, and we have

Cov( fi (Yφ), fi (Yψ)) = p2(
i+1
2 )−(|φ∩ψ |

2 ) − p2(
i+1
2 ) ≥ p2(

i+1
2 )(p−1 − 1).

For s = (φ, i) ∈ Ii write X̂s = fi (Yφ) − p(
i+1
2 ). Then by Lemma 3.5 we get:

E

∣∣∣X̂s X̂t

∣∣∣E
∣∣∣X̂u

∣∣∣ ≤
{
p(

i+1
2 )+( j+1

2 )(1 − p(
i+1
2 ))(1 − p(

j+1
2 ))
} 1

2 ;

E

∣∣∣X̂s X̂t X̂u

∣∣∣ ≤
{
p(

i+1
2 )+( j+1

2 )(1 − p(
i+1
2 ))(1 − p(

j+1
2 ))
} 1

2
.

Since
{
p(

i+1
2 )+( j+1

2 )(1 − p(
i+1
2 ))(1 − p(

j+1
2 ))
} 1

2 ≤ p(1 − p(
d+1
2 )), we see that

Assumption 3.7 holds. Assumption 3.8 also holds and therefore we can apply Theorem

3.9 with ki = i+1, Ki = (2(i+1)2−2(i+1))− 1
2 (i+1)+1, αi = p2(

i+1
2 )(p−1−1), and

β = p(1 − p(
d+1
2 )). Using the bounds Ki ≤ 1 as well as 2 ≤ k

min(ki ,k j )+1
i ≤ dd+1,

and
√

αi ≥ p(
d+1
2 )
√
p−1 − 1 finishes the proof. ��

Remark 6.2 It is easy to show that with high probability there are no large cliques in
G(n, p) for p < 1 constant. To see this, the expectation of the number of k-cliques is
(n
k

)
p(

k
2). By Stirling’s approximation, k = �(ln1+ε(n)) for any positive ε forces the

expectation to go to 0 asymptotically. Hence, by Markov’s inequality, for any ε > 0,
with high probability there are no cliques of order ln1+ε(n) or larger.

Recall that in Corollary 6.1 the size of the maximal clique we count is d + 1. Note

that if d = O(ln
1
2−ε(n)) for any ε > 0, then the bounds in Corollary 6.1 tend to

0 as n tends to infinity as long as p ∈ (0, 1) stays constant. This value might seem
quite small but in the light of there not being any cliques of order ln1+ε(n) with high
probability, this is meaningfully large.

Remark 6.3 Note that in Corollary 6.1 we use a multivariate normal distribution with
covariance �, which is the covariance of W when n is finite and it differs from the
limiting covariance, as mentioned in Reinert and Röllin (2010). To approximate W
with the limiting distribution, in the spirit of Reinert and Rollin (2010, Proposition 3)
one could proceed in two steps: use the existing theorems to approximateW with �Z
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and then approximate �Z with �L Z where �L is the limiting covariance, which is
non-invertible, as observed in Janson and Nowicki (1991).

Remark 6.4 Corollary 6.1 generalises the result (Reinert and Röllin 2010, Proposition
2) beyond the case when d = 2 and we get a bound of the same order of n. Kaur and
Roollin (2021, Theorem 3.1) considers centered subgraph counts in a random graph
associated to a graphon. If we take the graphon to be constant, the associated random
graph is just G(n, p). Compared to Kaur and Roollin (2021, Theorem 3.1) we place
weaker smoothness conditions on our test functions. However, we make use of the
special structure of cliques whereas Kaur and Roollin (2021, Theorem 3.1) applies
to any centered subgraph counts. Translating Kaur and Roollin (2021, Theorem 3.1)
into a result for uncentered subgraph counts, as we provide here in the special case of
clique counts, is not trivial for general d.

However, it should be possible to extend our results, using the same abstract approx-
imation theorem, beyond the random clique complex to Linial-Meshulam random
complexes (Linial and Meshulam 2006) or even more general multiparameter random
complexes (Costa and Farber 2016). We shall consider this conjecture in future work.

7 A proof of themultivariate CLT for dissociated Sums andU-statistics

7.1 A proof of themultivariate CLT

Throughout this subsection, W ∈ Rd is a vector of dissociated sums in the sense
of Definition 3.1, with covariance matrix whose entries are �i j = Cov(Wi ,Wj ) for
(i, j) ∈ [d]2. For each s ∈ I we denote by D(s) ⊂ I the disjoint union

⋃d
j=1 D j (s).

For each triple (s, t, j) ∈ I2×[d]wewrite the set-differenceD j (t)\D j (s) asD j (t; s),
with D(t; s) ⊂ I denoting the disjoint union of such differences over j ∈ [d].

7.1.1 Smooth test functions

To prove Theorem 3.2 we use Stein’s method for multivariate normal distributions;
for details see for example Chapter 12 in Chen (2011). Our proof of Theorem 3.2 is
based on the Stein characterization of the multivariate normal distribution: Z ∈ Rd is
a multivariate normal MVN(0, �) if and only if the identity

E

{
∇T�∇ f (Z) − ZT∇ f (Z)

}
= 0 (7.1)

holds for all twice continuously differentiable f : Rd → R for which the expectation
exists. In particular, we will use the following result based on Meckes (2009, Lemma
1 and Lemma 2). As Lemma 1 and Lemma 2 in Meckes (2009) are stated there only
for infinitely differentiable test functions, we give the proof here for completeness.

Lemma 7.1 (Lemma 1 and Lemma 2 in Meckes (2009)) Fix n ≥ 2. Let h : Rd → R

be n times continuously differentiable with n-th partial derivatives being Lipschitz and
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Z ∼ MVN(0, Idd×d). Then, if � ∈ Rd×d is symmetric positive semidefinite, there
exists a solution f : Rd → R to the equation

∇T�∇ f (w) − wT∇ f (w) = h(w) − Eh
(
�1/2Z

)
, w ∈ Rd , (7.2)

such that f is n times continuously differentiable and we have for every k = 1, . . . , n:

| f |k ≤ 1

k
|h|k .

Proof Let h be as in the assertion. It is shown in Lemma 2.1 in Chatterjee and Meckes
(2008), which is based on a reformulation of Eq. (2.20) in Barbour (1990), that a
solution of (7.2) for h is given by f (x) = fh(x) = ∫ 1

0
1
2t E{h(Zx,t )} dt , with Zx,t =√

t x + √
1 − t�1/2Z . As h has n-th partial derivatives being Lipschitz and hence for

differentiating f we can bring the derivative inside the integral, it is straightforward
to see that the solution f is n times continuously differentiable.

The bound on | f |k is a consequence of

∂k f

∂xi1 · · · ∂xik
(x) =

∫ 1

0
(2t)−1tk/2E

{
∂kh

∂xi1 · · · ∂xik
(
Zx,t

)}
dt

for any i1, i2, . . . , ik ; see, for example, Equation (10) in Meckes (2009). Taking the
sup-norm on both sides and bounding the right hand side of the equation gives

∥∥∥∥
∂k f

∂xi1 · · · ∂xik

∥∥∥∥∞
≤
∥∥∥∥

∂kh

∂xi1 · · · ∂xik

∥∥∥∥∞

∫ 1

0
(2t)−1tk/2dt ≤ 1

k
|h|k .

��

Proof of Theorem 3.2 To prove Theorem 3.2, we replace w by W in Eq. (7.2) and take
the expected value on both sides. As a result, we aim to bound the expression

∣∣
∣E
{
∇T�∇ f (W ) − WT∇ f (W )

}∣∣
∣ =

∣∣∣
∣∣∣
E

⎧
⎨

⎩

d∑

i, j=1

∂i j f (W )�i j −
d∑

i=1

Wi∂i f (W )

⎫
⎬

⎭

∣∣∣
∣∣∣

(7.3)

where f is a solution to the Stein equation (7.2) for the test function h. Since the
variables {Xs | s ∈ I} are centered and as Xt is independent of Xs if t /∈ D(s), for
each (i, j) ∈ [d]2 we have

�i j = Cov(Wi ,Wj ) =
∑

s∈Ii

∑

t∈D j (s)

E {Xs Xt } . (7.4)
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We now use the decomposition of �i j from (7.4) in the expression (7.3). For each
pair (s, j) ∈ I × [d] and t ∈ D(s) we set D j (t; s) = D j (t)\D j (s) and

Us
j :=

∑

u∈D j (s)

Xu; Ws
j := Wj −Us

j , and V s,t
j :=

∑

v∈D j (t;s)
Xv; Ws,t

j := Ws
j − V s,t

j .

(7.5)

By Definition 3.1, Ws
j is independent of Xs , while Ws,t

j is independent of the pair
(Xs, Xt ).

Next we decompose the r.h.s. of (7.3);

∣∣∣∣∣∣
E

⎧
⎨

⎩

d∑

i=1

Wi∂i f (W ) −
d∑

i, j=1

∂i j f (W )�i j

⎫
⎬

⎭

∣∣∣∣∣∣
= |R1 + R2 + R3| ;

with

R1 =
d∑

i=1

E {Wi∂i f (W )} −
∑

s∈I

d∑

j=1

E

{
XsU

s
j ∂|s| j f (Ws)

}
, (7.6)

R2 =
∑

s∈I

d∑

j=1

E

{
XsU

s
j ∂|s| j f (Ws)

}
−
∑

s∈I

∑

t∈D(s)

E {Xs Xt } E∂|s||t | f (Ws,t ), and

(7.7)

R3 =
∑

s∈I

∑

t∈D(s)

E {Xs Xt }
(
E∂|s||t | f (Ws,t ) − E∂|s||t | f (W )

)
. (7.8)

Here we recall that if s = (k, i) then |s| = i ∈ [d]. ��
As with the vector of dissociated sums W ∈ Rd itself, we can assemble these

differences into random vectors. Thus, Ws ∈ Rd is (Ws
1 , . . . ,Ws

d ), and similarly
Ws,t = (Ws,t

1 , . . .Ws,t
d ). In the next three claims, we provide bounds on Ri for i ∈ [3].

Claim 7.2 The absolute value of the expression R1 from (7.6) is bounded above by

|R1| ≤
⎛

⎝1

2

∑

s∈I

∑

t∈D(s)

∑

u∈D(s)

E |Xs Xt Xu |
⎞

⎠ | f |3 .

Proof Note that

R1 =
d∑

i=1

∑

s∈Ii
E {Xs∂i f (W )} −

∑

s∈I

d∑

j=1

E

{
XsU

s
j ∂|s| j f (Ws)

}

=
d∑

i=1

∑

s∈Ii

⎛

⎝E {Xs∂i f (W )} −
d∑

j=1

E

{
XsU

s
j ∂i j f (W

s)
}
⎞

⎠ .
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For each s ∈ Ii , it follows from (7.5) that W = Us + Ws . Using the Lagrange form
of the remainder term in Taylor’s theorem, we obtain

∂i f (W ) = ∂i f (W
s) +

d∑

j=1

∂i j f (W
s)Us

j + 1

2

d∑

j,k=1

∂i jk f (W
s + θsU

s)Us
jU

s
k

for some random θs ∈ (0, 1). Using this Taylor expansion in the expression for R1,
we get the following four-term summand Si,s for each i ∈ [d] and s ∈ Ii :

Si,s = E
{
Xs∂i f (W

s)
}+

d∑

j=1

E

{
Xs∂i j f (W

s)Us
j

}

+ 1

2

d∑

j,k=1

E

{
Xs∂i jk f (W

s + θsU
s)Us

jU
s
k

}
−

d∑

j=1

E

{
Xs∂i j f (W

s)Us
j

}
.

The second and fourth terms cancel each other. Recalling that Xs is centered by
definition and independent of Ws by Definition 3.1, the first term also vanishes and

R1 =
d∑

i=1

∑

s∈Ii
Si,s = 1

2

d∑

i, j,k=1

∑

s∈Ii
E

{
Xs∂i jk f (W

s + θsU
s)Us

jU
s
k

}
.

Recalling that
∥∥∂i jk f

∥∥∞ ≤ | f |3 and that Us
j =∑t∈D j (s) Xt , we have:

|R1| ≤ 1

2

d∑

i, j,k=1

∑

s∈Ii
E

∣∣∣Xs∂i jk f (W
s + θsU

s)Us
jU

s
k

∣∣∣

≤ | f |3
2

d∑

i, j,k=1

∑

s∈Ii
E

∣∣∣∣∣∣
Xs

∑

t∈D j (s)

Xt

∑

u∈Dk (s)

Xu

∣∣∣∣∣∣

≤ | f |3
2

∑

s∈I

∑

t∈D(s)

∑

u∈D(s)

E |Xs Xt Xu | ,

as desired. ��

Claim 7.3 The absolute value of the expression R2 from (7.7) is bounded above by

|R2| ≤
⎛

⎝
∑

s∈I

∑

t∈D(s)

∑

u∈D(t;s)
E |Xs Xt Xu |

⎞

⎠ | f |3 .
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Proof Recalling that Us
j =∑t∈D j (s) Xt and D(s) =⋃d

j=1 D j (s),

R2 =
∑

s∈I

∑

t∈D(s)

{
E
{
Xs Xt∂|s||t | f (Ws)

}− E {Xs Xt } E
{
∂|s||t | f (Ws,t )

}}
.

Fix s ∈ I and t ∈ D j (s). Recall that by (7.5), Ws = Ws,t + V s,t . Using the
Lagrange form of the remainder term in Taylor’s theorem, we obtain:

∂|s||t | f (Ws) = ∂|s||t | f (Ws,t ) +
d∑

k=1

∂|s||t |k f (Ws,t + θs,t V
s,t )V s,t

k

for some random θs,t ∈ (0, 1). Using this Taylor expansion in the expression for R2,
we get the following three-term summand Ss,t for each pair (s, t) ∈ I × D j (s):

Ss,t = E
{
Xs Xt∂|s||t | f (Ws,t )

}+
d∑

k=1

E
{
Xs Xt∂|s||t |k f (Ws,t + θs,t V

s,t )V s,t
k

}

− E {Xs Xt } E
{
∂|s||t | f (Ws,t )

}
.

Recalling that Ws,t is independent of the pair (Xs, Xt ) the first and the last terms
cancel each other and only the sum over k is left:

R2 =
∑

s∈I

∑

t∈D(s)

Ss,t =
∑

s∈I

∑

t∈D(s)

d∑

k=1

E
{
Xs Xt∂|s||t |k f (Ws,t + θs,t V

s,t )V s,t
k

}
.

Recalling that
∥∥∂i jk f

∥∥∞ ≤ | f |3 and that V s,t
k =∑v∈Dk(t;s) Xv we have:

|R2| ≤
∑

s∈I

∑

t∈D(s)

d∑

k=1

∑

v∈Dk(t;s)
E
∣∣Xs Xt Xv∂|s||t |k f (Ws,t + θs,t V

s,t )
∣∣

≤ | f |3
∑

s∈I

∑

t∈D(s)

∑

u∈D(t;s)
E |Xs Xt Xu | ,

as required. ��

Claim 7.4

|R3| ≤
⎛

⎝
∑

s∈I

∑

t∈D(s)

⎧
⎨

⎩

∑

u∈D(s)

E |Xs Xt | E |Xu | +
∑

u∈D(t;s)
E |Xs Xt | E |Xu |

⎫
⎬

⎭

⎞

⎠ | f |3 .
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Proof Fix (s, t) ∈ I × D j (s). Recall that by (7.5), Ws,t = W −Us − V s,t . Using the
Lagrange form of the remainder term in Taylor’s theorem, we obtain

∂|s||t | f (Ws,t ) = ∂|s||t | f (W ) −
d∑

k=1

∂|s||t |k f (W − ρs,t (U
s + V s,t ))(Us

k + V s,t
k )

for some random ρs,t ∈ (0, 1). Recalling that Us
k = ∑

t∈Dk (s) Xt and V s,t
k =∑

u∈D j (t;s) Xu ,

R3 = −
∑

s∈I

∑

t∈D(s)

d∑

k=1

E {Xs Xt } E
{
∂|s||t |k f (W − ρs,t (U

s + V s,t ))(Us
k + V s,t

k )
}

= −
∑

s∈I

∑

t∈D(s)

∑

u∈D(s)

E {Xs Xt } E
{
Xu∂|s||t |k f (W − ρs,t (U

s + V s,t ))
}

−
∑

s∈I

∑

t∈D(s)

∑

u∈D(t;s)
E {Xs Xt } E

{
Xu∂|s||t |k f (W − ρs,t (U

s + V s,t ))
}
.

Recalling that
∥∥∂i jk f

∥∥∞ ≤ | f |3 we bound:

|R3| ≤ | f |3
∑

s∈I

∑

t∈D(s)

∑

u∈D(s)

E |Xs Xt | E |Xu | + | f |3
∑

s∈I

∑

t∈D(s)

∑

u∈D(t;s)
E |Xs Xt | E |Xu | ,

as required. ��
Take any h ∈ Hd . Let f : Rd → R be the associated solution from Lemma 7.1.

Combining Claims 7.1–7.4 and using Lemma 7.1 we have:

∣∣∣Eh(W ) − Eh(�
1
2 Z)

∣∣∣

≤
∣∣∣E
{
∇T�∇ f (W ) − WT∇ f (W )

}∣∣∣ ≤ |R1| + |R2| + |R3|

≤ | f |3
∑

s∈I

∑

t∈D(s)

∑

u∈D(s)

(
1

2
E |Xs Xt Xu | + E |Xs Xt | E |Xu |

)

+ | f |3
∑

s∈I

∑

t∈D(s)

∑

u∈D(t;s)
(E |Xs Xt Xu | + E |Xs Xt | E |Xu |)

≤1

3
|h|3 B3.2.

7.1.2 Non-smooth test functions

Convex set indicator test functions provide a stronger distance between probability
distributions. Also, from a non-asymptotic perspective, the distance might be more
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useful in statistical applications: for example, when estimating confidence regions,
which are often convex sets. Here we follow (Kaur and Röollin 2021, Section 5.3) very
closely to derive a bound on the convex set distance between a vector of dissociated
sums W ∈ Rd with covariance matrix � and a target multivariate normal distribution

�
1
2 Z , where Z ∼ MVN(0, Idd×d). The smoothing technique used here is introduced

in Gan et al. (2017). However, a better (polylogarithmic) dependence on d could
potentially be achieved using a recent result (Gaunt and Li 2023, Proposition 2.6),
at the expense of larger constants. The recursive approach from Schulte and Yukich
(2019), Kasprzak and Peccati (2022) usually yields better dependence on n; however,
this requires the target normal distribution to have an invertible covariance matrix.
Since this property does not always hold in our applications of interest, we do not use
the recursive approach here.

Proof of Theorem 3.3 Fix A ∈ K , ε > 0 and define

Aε =
{
y ∈ Rd : d(y, A) < ε

}
, and A−ε =

{
y ∈ Rd : B(y; ε) ⊆ A

}

where d(y, A) = inf x∈A ‖x − y‖2 and B(y; ε) = { z ∈ Rd | ‖y − z‖2 ≤ ε
}
.

Let Hε,A := {
hε,A : Rd → [0, 1]; A ∈ K

}
be a class of functions such that

hε,A(x) = 1 for x ∈ A and 0 for x /∈ Aε . Then, by Bentkus (2003, Lemma 2.1)
as well as inequalities (1.2) and (1.4) from Bentkus (2003), for any ε > 0 we have

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ 4d

1
4 ε + sup

A∈K

∣∣∣Ehε,A(W ) − Ehε,A(�
1
2 Z)

∣∣∣ .

Let f : Rd → R be a bounded Lebesgue measurable function, and for δ > 0 let

(Sδ f ) (x) = 1

(2δ)d

∫ x1+δ

x1−δ

· · ·
∫ xd+δ

xd−δ

f (z)dzd . . . dz1.

Set δ = ε

16
√
d
and hε,A = S4δ IAε/4 , where IAε/4 is the indicator function of the subset

Aε/4 ⊆ Rd . By Gan et al. (2017, Lemma 3.9) we have that hε,A is bounded and is in
Hd .

Moreover, the following bounds hold:

∥∥hε,A
∥∥∞ ≤ 1,

∣∣hε,A
∣∣
2 ≤ 1

ε2
,
∣∣hε,A

∣∣
3 ≤ 1

ε3
.

Note that hε,A = S4δ IAε/4 ∈ Hε,A and hence (Bentkus 2003, Lemma 2.1) applies.
Using this with Theorem 3.2 we get

sup
A∈K

|P(W ∈ A) − P(�
1
2 Z ∈ A)| ≤ 4d

1
4 ε + sup

A∈K

∣∣
∣Ehε,A(W ) − Ehε,A(�

1
2 Z)

∣∣
∣

≤ 4d
1
4 ε + 1

3ε3
B3.2.
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Since this bound works for every ε > 0, we minimise it by using ε =
(

3B3.2
4d

1
4

) 1
4

.

��

7.2 A proof of the CLT for U-statistics

Proof of Theorem 3.9 Note that if s = (φ, i) ∈ Ii and u = (ψ, j) ∈ I j are chosen
such that φ ∩ ψ = ∅, then the corresponding variables Xs and Xu are independent
since fi (Xs,Ys) and f j (Xu,Yu) do not share any random variables from the sets
{ξi }1≤i≤n and {Yi, j }1≤i< j≤n . Hence, if for any s = (φ, i) ∈ Ii we set D j (s) ={
(ψ, j) ∈ I j | |φ ∩ ψ | ≥ 1

}
, then W satisfies the assumptions of Corollary 3.4. It

remains to bound the quantity B3.4.
First, to find αi j as in Corollary 3.4, given φ ∈ Cki and if ki , k j ≥ m then there

are
(ki
m

)( n−ki
k j−m

)
subsets ψ ∈ Ck j such that |φ ∩ ψ | = m. Therefore, we have for any

i, j ∈ [d] and s ∈ Ii

|D j (s)| =
min(ki ,k j )∑

m=1

(
ki
m

)(
n − ki
k j − m

)
= αi j ≤ k

min(ki ,k j )+1
i (n − ki )

k j−1. (7.9)

Note that

E |Xs Xt Xu |
= (σiσ jσk)

−1E
∣∣{ fi (Xs,Ys) − μs}

{
f j (Xt ,Yt ) − μt

} { fl(Xu,Yu) − μu}
∣∣

as well as

E |Xs Xt | E |Xu |
= (σiσ jσk)

−1E
∣
∣{ fi (Xs,Ys) − μs}

{
f j (Xt ,Yt ) − μt

}∣∣E | fl(Xu,Yu) − μu | .

Using Assumption 3.7, for any i, j, l ∈ [d] and s ∈ Ii , t ∈ I j , u ∈ Il

E |Xs Xt Xu | ≤ (σiσ jσk)
−1β and E |Xs Xt | E |Xu | ≤ (σiσ jσk)

−1β. (7.10)

To take care of the variance terms, we lower bound the variance using Assumption
3.7;

Var(Sn,ki ( fi )) =
∑

s∈Cki

∑

t∈Di (s)

Cov( fi (Xs,Ys), fi (Xt ,Yt ))

=
ki∑

m=1

∑

s∈Cki

∑

t∈Cki|s∩t |=m

Cov( fi (Xs,Ys), fi (Xt ,Yt ))
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≥
(
n

ki

) ki∑

m=1

(
ki
m

)(
n − ki
ki − m

)
αi = αi

ki∑

m=1

(
n

2ki − m

)(
2ki − m

ki

)(
ki
m

)

≥ αi ki

(
n

2ki − 1

)(
2ki − 1

ki

)
≥ αi ki

n2ki−1

(2ki − 1)2ki−1

(2ki − 1)ki

kkii

= αi
n2ki−1

(2k2i − ki )ki−1
.

Here the second-to-last inequality follows by taking only the term for m = 1. Now
we take both sides of the inequality to the power of − 1

2 to get that for any i ∈ [d]

σ−1
i ≤ n−ki+ 1

2 α
− 1

2
i (2k2i − ki )

− ki
2 + 1

2 . (7.11)

Using Eqs. (7.9)–(7.11) to bound the quantity B3.4 from Corollary 3.4 we get

B3.4 ≤ 2

3

d∑

i, j,l=1

(σiσ jσk)
−1β

(
n

ki

)
k
min(ki ,k j )+1
i (n − ki )

k j−1

{
kmin(ki ,kl )+1
i (n − ki )

kl−1 + k
min(k j ,kl )+1
j (n − k j )

kl−1
}

≤2

3

d∑

i, j,l=1

nki+k j+kl−2 k
min(ki ,k j )+1
i

ki !
{
kmin(ki ,kl )+1
i + k

min(k j ,kl )+1
j

}
β

(
n−ki−k j−kl+ 3

2 (αiα jαl)
− 1

2 (2k2i − ki )
− ki

2 + 1
2 (2k2j − k j )

− k j
2 + 1

2 (2k2l − kl)
− kl

2 + 1
2

)

≤
⎧
⎨

⎩
2β

3

d∑

i, j,l=1

k
min(ki ,k j )+1
i

ki !√αiα jαl

(
kmin(ki ,kl )+1
i + k

min(k j ,kl )+1
j

)
Ki K j Kl

⎫
⎬

⎭
n− 1

2 .

Now further assume that Assumption 3.8 hold. The key difference in this case
is that the dependency neighbourhoods become smaller: now the subsets need to
overlap in at least 2 elements for the corresponding summands to share at least one
variable Yi, j and hence become dependent. This makes both the variance and the size
of dependency neighbourhoods smaller. In the context of Theorem 3.2, the trade-off
works out in our favour to give smaller bounds, as follows. For any s = (φ, i) ∈ Ii we
setD j (s) = { (ψ, j) ∈ I j | |φ ∩ ψ | ≥ 2

}
, so thatW , under the additionalAssumption

3.8, satisfies the assumptions of Corollary 3.4.
Now Eq. (7.9) becomes

|D j (s)| ≤ k
min(ki ,k j )+1
i (n − ki )

k j−2.
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Equation (7.11) becomes

σ−1
i ≤ 2n−ki+1α

− 1
2

i (2k2i − 2ki )
− ki

2 +1.

Using the adjusted bounds in Corollary 3.4 gives the result. ��
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Appendix A. Proof of Lemma 4.3

We recall that Tk , counting the number of (k − 1)-simplices that are critical under the
lexicographical matching, is given by

Tk =
∑

s∈Ck

∏

i �= j∈s
Yi, j

⎡

⎣
min(s)−1∏

a=1

(

1 −
∏

b∈s
Ya,b

)

−
min(s)−1∏

a=1

⎛

⎝1 −
∏

b∈s−
Ya,b

⎞

⎠

⎤

⎦ .

Lemma A.1 For any integer 1 ≤ k ≤ n − 1 we have:

Var{Tk+1} = 2p2(
k+1
2 )V1 + 2p2(

k+1
2 )V2 + p2(

k+1
2 )V3 + p(

k+1
2 )V4,

where

V1 =
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k

m − 1

)(
j − i + 1

q − 1

)

{
θ(i, j, q,m, 1)

[
(1 − 2pk+1 + p2k+2−m)i−1 − (1 − pk+1 − pk + p2k+1−m)i−1]

+ θ(i, j, q,m, 0)
[
(1 − 2pk + p2k+1−m)i−1 − (1 − pk+1 − pk + p2k+2−m)i−1]
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− η(i)η( j)
}
;

V2 =
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k

m

)(
j − i + 1

q − 1

)

{
θ(i, j, q,m, 1)

[
(1 − 2pk+1 + p2k+2−m)i−1 − (1 − pk+1 − pk + p2k+2−m)i−1]

+ θ(i, j, q,m, 0)
[
(1 − 2pk + p2k−m)i−1 − (1 − pk+1 − pk + p2k+2−m)i−1]

− η(i)η( j)
}
;

V3 =
n−k∑

i=1

k∑

m=1

(
n − i

2k + 1 − m

)(
2k + 1 − m

k

)(
k

m − 1

)

{
p−(m2)

[
(1 − 2pk+1 + p2k+2−m)i−1+

(1 − 2pk + p2k+1−m)i−1 − 2(1 − pk − pk+1 + p2k+2−m)i−1
]

− η(i)2
}
;

V4 =
n−k∑

i=1

(
n − i

k

){
η(i) − p(

k+1
2 )η(i)2

}
.

Here we have used the following notation:

η(a) := (1 − pk+1)a−1 − (1 − pk)a−1;
θ(i, j, q,m, δ) := p−(m2)(1 − pk+δ) j−i−q(1 − pk+δ−m)q .

Also,
∑n−k

i< j stands for
∑n−k−1

i=1
∑n−k

j=i+1.

Proof of LemmaA.1 For s ∈ Ck+1 recall that s− = s \ {min(s)}. We write:

Y+
s =

min(s)−1∏

i=1

⎛

⎝1 −
∏

j∈s
Yi, j

⎞

⎠ , Y−
s =

min(s)−1∏

i=1

⎛

⎝1 −
∏

j∈s−
Yi, j

⎞

⎠ ,

Zs =
∏

i �= j∈s
Yi, j , Ys = Y+

s − Y−
s .

Then Zs and Ys are independent and Tk+1 =∑s∈Ck+1
ZsYs . Consider the variance:

Var(Tk+1) =
∑

s∈Ck+1

Var(ZsYs) +
∑

s �=t∈Ck+1
min(s) �=min(t)

Cov(ZsYs, ZtYt )

+
∑

s �=t∈Ck+1
min(s)=min(t)

Cov(ZsYs, ZtYt ). (A.1)
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For the first term in (A.1), writing P(ZsYs = 1) = μ(i) := p(
k+1
2 )((1 − pk+1)i−1 −

(1 − pk)i−1) we see:

∑

s∈Ck+1

Var(ZsYs) =
n∑

i=1

∑

s∈Ck+1
min(s)=i

(
E
{
(ZsYs)

2}− E {ZsYs}2
)

=
n−k∑

i=1

(
n − i

k

)
(
P(ZsYs = 1) − P(ZsYs = 1)2

) =
n−k∑

i=1

(
n − i

k

)
{
μ(i) − μ(i)2

} = p(
k+1
2 )V4.

Now consider the covariance terms in (A.1), the expansion of the variance. Note
that for any s, t ∈ Ck+1 if s ∩ t = ∅, then the variables ZsYs and ZtYt can be written
as functions of two disjoint sets of independent edge indicators and hence have zero
covariance.

Fix s, t ∈ Ck+1 and assume |s ∩ t | = m where 1 ≤ m ≤ k. Note that because
m �= k + 1, we have s �= t . There are 2

(k+1
2

)− (m2
)
distinct edges in s and t combined

and hence P(Zs Zt = 1) = p2(
k+1
2 )−(m2). Also, YsYt = Y+

s Y+
t + Y−

s Y−
t − Y+

s Y−
t −

Y−
s Y+

t . For the rest of the proof when calculating probabilities we assume w.l.o.g. that
min(s) ≤ min(t). Then we have for Y+

s Y+
t :

Y+
s Y+

t =
min(t)−1∏

i=1

⎛

⎝1 −
∏

j∈t
Yi, j

⎞

⎠
min(s)−1∏

i=1

⎛

⎝1 −
∏

j∈s
Yi, j

⎞

⎠

=
min(s)−1∏

i=1

⎛

⎝1 −
∏

j∈s
Yi, j

⎞

⎠

⎛

⎝1 −
∏

j∈t
Yi, j

⎞

⎠
min(t)−1∏

i=min(s)
i∈s

⎛

⎝1 −
∏

j∈t
Yi, j

⎞

⎠

min(t)−1∏

i=min(s)
i /∈s

⎛

⎝1 −
∏

j∈t
Yi, j

⎞

⎠ .

Fix i ∈ [min(s) − 1]. Then with ¬ denoting the complement

P

⎡

⎣

⎛

⎝1 −
∏

j∈s
Yi, j

⎞

⎠

⎛

⎝1 −
∏

j∈t
Yi, j

⎞

⎠ = 1

⎤

⎦

= P

⎡

⎣¬
⎛

⎝
∏

j∈s
Yi, j = 1 ∪

∏

j∈t
Yi, j = 1

⎞

⎠

⎤

⎦

= 1 −
⎧
⎨

⎩
P

⎛

⎝
∏

j∈s
Yi, j = 1

⎞

⎠+ P

⎛

⎝
∏

j∈t
Yi, j = 1

⎞

⎠

−P

⎛

⎝
∏

j∈s
Yi, j = 1 ∩

∏

j∈t
Yi, j = 1

⎞

⎠

⎫
⎬

⎭
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= 1 − (2pk+1 − p2k+2−m).

Moreover,
∏min(s)−1

i=1 (1−∏ j∈s Yi, j )(1−∏ j∈t Yi, j ) and
∏min(t)−1

i=min(s)
i /∈s

(1−∏ j∈t Yi, j )

are independent of Zs Zt .
Recall the notation [a, b] = {a, a + 1, . . . , b} for two positive integers a ≤ b.

Setting qs,t := |s ∩ [min(s),min(t) − 1]|,

P
(
Y+
s Y+

t = 1|Zs Zt = 1
)

= P

⎛

⎝
min(s)−1∏

i=1

(1 −
∏

j∈s
Yi, j )(1 −

∏

j∈t
Yi, j ) = 1

⎞

⎠P

⎛

⎜⎜
⎝

min(t)−1∏

i=min(s)
i /∈s

(1 −
∏

j∈t
Yi, j ) = 1

⎞

⎟⎟
⎠

P

⎛

⎜
⎜
⎝

min(t)−1∏

i=min(s)
i∈s

(1 −
∏

j∈t
Yi, j ) = 1

∣∣
∣∣
∏

i �= j∈s
Yi, j

∏

i �= j∈t
Yi, j = 1

⎞

⎟
⎟
⎠

= (1 − 2pk+1 + p2k+2−m)min(s)−1(1 − pk+1)min(t)−min(s)−qs,t (1 − pk+1−m)qs,t .

This strategy of splitting the product Y+
s Y+

t into three products of independent
variables, only one of which is dependent on Zs Zt works exactly in the same way for
the variables Y−

s Y+
t , Y+

s Y−
t , Y−

s Y−
t . We write i = min(s), j = min(t), and q instead

of qs,t . Also, we set

π(i, j, a, b, d1, d2, q) :=(1 − pa − pb + pa+b−d1)i−1(1 − pa) j−i−q(1 − pa−d2)q .

Using the described strategy we get:

P
(
Y−
s Y−

t = 1|Zs Zt = 1
) = π(i, j, k, k, |s− ∩ t−|, |s− ∩ t−|, q)

P
(
Y+
s Y−

t = 1|Zs Zt = 1
) = π(i, j, k, k + 1, |s ∩ t−|, |s ∩ t−|, q)

P
(
Y−
s Y+

t = 1|Zs Zt = 1
) = π(i, j, k + 1, k, |s− ∩ t |,m, q).

Now we are ready to calculate the covariance:

Cov(ZsYs , ZtYt ) = E

{
Zs ZtY

+
s Y+

t

}
+ E

{
Zs ZtY

−
s Y−

t

}
− E

{
Zs ZtY

+
s Y−

t

}

− E

{
Zs ZtY

−
s Y+

t

}
− E {ZsYs} E {ZtYt }

= P(Zs Zt = 1)
{
P
(
Y+
s Y+

t = 1|Zs Zt = 1
)

+ P
(
Y−
s Y−

t = 1|Zs Zt = 1
)

− P
(
Y+
s Y−

t =1|Zs Zt = 1
)
−P

(
Y−
s Y+

t =1|Zs Zt = 1
) }

−P(ZsYs = 1)P(ZtYt = 1)

= p2(
k+1
2 )−(m2)(π(i, j, k + 1, k + 1,m,m, q) + π(i, j, k, k, |s− ∩ t−|, |s− ∩ t−|, q)

− π(i, j, k, k + 1, |s ∩ t−|, |s ∩ t−|, q) − π(i, j, k + 1, k, |s− ∩ t |,m, q)) − μ(i)μ( j).
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Next we consider the two covariance sums in (A.1) separately. First let us assume
that min(s) �= min(t). Given i, j ∈ [n − k], m ∈ [k], and q ∈ [min(k + 1, | j − i |)]
define the set

�k+1(i, j,m, q) = { (s, t) | s } , t ∈ Ck+1,min(s) = i,min(t) = j, |s ∩ t |
= m,max(qs,t , qt,s) = q

as well as

�+
k+1(i, j,m, q) = { (s, t) ∈ �k+1(i, j,m, q) | min(t) ∈ s }

and

�−
k+1(i, j,m, q) = { (s, t) ∈ �k+1(i, j,m, q) | min(t) /∈ s } .

Next we argue that

|�+
k+1(i, j,m, q)| =

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k

m − 1

)(
j − i + 1

q − 1

)
.

To see this, assume i < j . Note that to pick a pair (s, t) ∈ �+
k+1(i, j,m, q) with

min(s) = i and min(t) = j we need to pick the 2k − m vertices in s ∪ t . Firstly, we
pick the vertices that are not included in s ∩ [min(s),min(t) − 1] = s ∩ [i, j − 1].
Since min(s) ∈ s ∩ [min(s),min(t) − 1], this amounts to choosing 2k −m − (q − 1)
vertices out of n − j . Then we decide which of the vertices that we have just picked
will lie in t . This means we further need to choose k out of 2k + 1 − m − q vertices.
Then we choose m − 1 out of k vertices of t to lie in s ∩ t (under the assumption
that we already have min(t) ∈ s). Finally, we choose the set s ∩ [min(s),min(t) − 1],
which amounts to picking q − 1 vertices out of j − i + 1 possible choices. If any of
the binomial coefficients are negative, we set them to 0. The case j < i is analogous.

An analogous argument shows that

|�−
k+1(i, j,m, q)| =

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k

m

)(
j − i + 1

q − 1

)
.

Now using the covariance expression we have just derived, we get

∑

s �=t∈Ck+1
min(s) �=min(t)

Cov(ZsYs, ZtYt )

=
n−k∑

i=1

n−k∑

j=i+1

k∑

m=1

min(k+1, j−i)∑

q=1

∑

(s,t)∈�+
k+1(i, j,m,q)

Cov(ZsYs, ZtYt )

+
n−k∑

i=1

n−k∑

j=i+1

k∑

m=1

min(k+1, j−i)∑

q=1

∑

(s,t)∈�−
k+1(i, j,m,q)

Cov(ZsYs, ZtYt )
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+
n−k∑

j=1

n−k∑

i= j+1

k∑

m=1

min(k+1,i− j)∑

q=1

∑

(s,t)∈�+
k+1( j,i,m,q)

Cov(ZsYs, ZtYt )

+
n−k∑

j=1

n−k∑

i= j+1

k∑

m=1

min(k+1,i− j)∑

q=1

∑

(s,t)∈�−
k+1( j,i,m,q)

Cov(ZsYs, ZtYt )

=
n−k∑

i=1

n−k∑

j=i+1

k∑

m=1

min(k+1, j−i)∑

q=1

|�+
k+1(i, j,m, q)|

×
{
p2(

k+1
2 )−(m2)(π(i, j, k + 1, k + 1,m,m, q)

+ π(i, j, k, k,m − 1,m − 1, q) − π(i, j, k, k + 1,m − 1,m − 1, q)

− π(i, j, k + 1, k,m,m, q)) − μ(i)μ( j)
}

+
n−k∑

i=1

n−k∑

j=i+1

k∑

m=1

min(k+1, j−i)∑

q=1

|�−
k+1(i, j,m, q)|

×
{
p2(

k+1
2 )−(m2)(π(i, j, k + 1, k + 1,m,m, q)

+ π(i, j, k, k,m,m, q) − π(i, j, k, k + 1,m,m, q)

− π(i, j, k + 1, k,m,m, q)) − μ(i)μ( j)
}

+
n−k∑

j=1

n−k∑

i= j+1

k∑

m=1

min(k+1,i− j)∑

q=1

|�+
k+1( j, i,m, q)|

×
{
p2(

k+1
2 )−(m2)(π( j, i, k + 1, k + 1,m,m, q)

+ π( j, i, k, k,m − 1,m − 1, q) − π( j, i, k, k + 1,m − 1,m − 1, q)

− π( j, i, k + 1, k,m,m, q)) − μ(i)μ( j)
}

+
n−k∑

j=1

n−k∑

i= j+1

k∑

m=1

min(k+1,i− j)∑

q=1

|�−
k+1( j, i,m, q)|

×
{
p2(

k+1
2 )−(m2)(π( j, i, k + 1, k + 1,m,m, q)

+ π( j, i, k, k,m,m, q) − π( j, i, k, k + 1,m,m, q)

− π( j, i, k + 1, k,m,m, q)) − μ(i)μ( j)
}

= 2p2(
k+1
2 )V1 + 2p2(

k+1
2 )V2.

Similarly, we calculate the remaining term in the expansion of the variance (A.1).
We notice that if i = j , then q = 0 and we have �k+1(i, i,m, 0) = �+

k+1(i, i,m, 0).
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Hence, |�k+1(i, i,m, 0)| = ( n−i
2k+1−m

)(2k+1−m
k

)( k
m−1

)
, and

∑

s �=t∈Ck+1
min(s)=min(t)

Cov(ZsYs, ZtYt ) =
n−k∑

i=1

k∑

m=1

∑

(s,t)∈�k+1(i,i,m,0)

Cov(ZsYs, ZtYt )

=
n−k∑

i=1

k∑

m=1

(
n − i

2k + 1 − m

)(
2k + 1 − m

k

)(
k

m − 1

)

{
p−(m2)

[
(1 − 2pk+1 + p2k+2−m)i−1 + (1 − 2pk + p2k+1−m)i−1

− 2(1 − pk − pk+1 + p2k+2−m)i−1
]

− ((1 − pk+1)i−1 − (1 − pk)i−1)2
}

= p2(
k+1
2 )V3.

��

Proof of Lemma 4.3 Fix 1 ≤ k ≤ n−1 and p ∈ (0, 1), and consider the variance. From

Lemma A.1 we have Var{Tk+1} = 2p2(
k+1
2 )V1 + 2p2(

k+1
2 )V2 + p2(

k+1
2 )V3 + p(

k+1
2 )V4.

First we lower bound V1 and V2 by just the negative part of the sum:

V1 ≥ −
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k

m − 1

)(
j − i + 1

q − 1

)

{
(1 − pk+1)i+ j−2 + (1 − pk)i+ j−2

+ p−(m2)(1 − pk+1) j−i−q (1 − pk+1−m)q (1 − pk+1 − pk + p2k+1−m)i−1

+ p−(m2)(1 − pk) j−i−q (1 − pk−m)q (1 − pk+1 − pk + p2k+2−m)i−1
}
;

V2 ≥ −
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k

m

)(
j − i + 1

q − 1

)

{
(1 − pk+1)i+ j−2 + (1 − pk)i+ j−2

+ p−(m2)(1 − pk+1) j−i−q (1 − pk+1−m)q (1 − pk+1 − pk + p2k+2−m)i−1

+ p−(m2)(1 − pk) j−i−q (1 − pk−m)q (1 − pk+1 − pk + p2k+2−m)i−1
}
.

Now using that
( k
m

)+ ( k
m−1

) = (k+1
m

)
and (1 − pk+1) ≥ (1 − pk−m) for m ≥ 0 it

is easy to see that V1 + V2 ≥ −4R1 − 4R2, where

R1 :=
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k + 1

m

)(
j − i + 1

q − 1

)

(1 − pk+1)i+ j−2;
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R2 :=
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(
n − j

2k + 1 − m − q

)(
2k + 1 − m − q

k

)(
k + 1

m

)(
j − i + 1

q − 1

)

p−(m2)(1 − pk+1) j−i (1 − pk+1 − pk + p2k+1−m)i−1.

For V3 we lower bound by terms with m = 1 and the negative parts of the other
terms:

V3 ≥
n−k∑

i=1

(
n − i

2k

)(
2k

k

){
(1 − 2pk+1 + p2k+1)i−1 − (1 − pk+1)2i−2

}

−
n−k∑

i=1

k∑

m=2

(
n − i

2k + 1 − m

)(
2k + 1 − m

k

)(
k

m − 1

)

{
2p−(m2)(1 − pk − pk+1 + p2k+2−m)i−1 + 2(1 − pk+1)2i−2

}

= R4 − R3;

here we call the positive part of the lower bound R4 and the negative part R3. For V4
we use the trivial lower bound V4 ≥ 0. Hence, we have:

Var(Tk+1) ≥ p2(
k+1
2 )(R4 − 8R1 − 8R2 − R3).

Let us now upper bound R1:

R1 ≤
n−k∑

i< j

k∑

m=1

min(k+1, j−i)∑

q=1

(n − j)2k+1−m−q

(2k + 1 − m − q)!
(2k + 1 − m − q)k

k!
(k + 1)m

m!
( j − i + 1)q−1

(q − 1)! (1 − pk+1)i+ j−2

≤
n−k∑

i< j

min(k+1, j−i)∑

q=1

k
n2k−q

1

(2k − 1)k

k!
(k + 1)k

1

nq−1

1
(1 − pk+1)i+ j−2

≤ (k + 1)k+1 n2k−1

(k − 1)! (2k − 1)k
∞∑

i< j

(1 − pk+1)i+ j−2

= n2k−1(2k − 1)k(k + 1)k+1

(k − 1)!
1 − pk+1

(2 − pk+1)p2k+2 .

Noting that (1 − pk+1) j−i (1 − pk+1 − pk + p2k+1−m)i−1 ≤ (1 − pk+1) j−1, we
can bound R2 in an identical way:

R2 ≤ n2k−1(2k − 1)k(k + 1)k+1

(k − 1)! p−(k2)
∞∑

i< j

(1 − pk+1) j−1
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= n2k−1(2k − 1)k(k + 1)k+1

(k − 1)! p−(k2)
1 − pk+1

p2k+2 .

Noting that (1− pk − pk+1+ p2k+2−m)i−1 ≤ (1− pk+1)i−1 and (1− pk+1)2i−2 ≤
(1 − pk+1)i−1 we proceed to bound R3:

R3 ≤
n−k∑

i=1

k∑

m=2

(
n − i

2k + 1 − m

)(
2k + 1 − m

k

)(
k

m − 1

)
2(p−(m2) + 1)(1 − pk+1)i−1

≤
n−k∑

i=1

k∑

m=2

n2k+1−m(2k + 1 − m)kkm−1

k! 2(p−(k2) + 1)(1 − pk+1)i−1

≤
n−k∑

i=1

k
n2k+1−2(2k + 1 − 2)kkk−1

k! 2(p−(k2) + 1)(1 − pk+1)i−1

≤ n2k−1(2k − 1)kkk

k! 2(p−(k2) + 1)
∞∑

i=1

(1 − pk+1)i−1

= n2k−1(2k − 1)kkk

k! 2(p−(k2) + 1)p−k−1.

To lower bound R4 we just take the i = 2 term:

R4 ≥
(
n − 2

2k

)(
2k

k

){
(1 − 2pk+1 + p2k+1) − (1 − 2pk+1 + p2k+2)

}

≥ (n − 2)2k

(2k)2k

(
2k

k

)
p2k+1(1 − p).

Since R1, R2, R3 are all at most of the order n2k−1 and R2 is at least of the order
n2k , we have that for any fixed k ≥ 1 and p ∈ (0, 1) there exists a constant Cp,k > 0
independent of n and a natural number Np,k such that for any n ≥ Np,k :

Var(Tk+1) ≥ p2(
k+1
2 )(R4 − 8R1 − 8R2 − R3) ≥ Cp,kn

2k .

��
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