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Abstract
Quiver representations arise naturally in many areas across mathematics. Here we
describe an algorithm for calculating the vector space of sections, or compatible assign-
ments of vectors to vertices, of any finite-dimensional representation of a finite quiver.
Consequently, we are able to define and compute principal components with respect
to quiver representations. These principal components are solutions to constrained
optimisation problems defined over the space of sections and are eigenvectors of an
associated matrix pencil.
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Introduction

A quiver representation is an arrangement of vector spaces and linear maps tethered
to the vertices and edges of a directed graph [14, 43]. The quiver illustrated below will
be our running example throughout the paper.
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Despite being relatively concretemathematical objects, quiver representations provide
a uniform framework for a host of fundamental abstract problems in linear algebra [7].
Isomorphisms of quiver representations can be used to characterise, for example, the
Jordan normal formofmatrices and theKronecker normal formofmatrix pencils. They
also play an important role in various other fields, including the study of associative
algebras [3], Gromov–Witten invariants [22], representations of Kac–Moody algebras
[39], moduli stacks [48], Morse theory [35], persistent homology [41], and perverse
sheaves [19], among others.

In most of these contexts, the crucial property of a given quiver representation is
its decomposability into a direct sum of smaller representations. Gabriel’s celebrated
result [18] establishes that a quiver admits finitely many (isomorphism classes of)
indecomposable representations if and only if its underlying undirected graph is a
union of simply laced Dynkin diagrams (i.e. type A, D or E). Thus, most quivers have
rather complicated sets of indecomposable representations and are said to be of wild
type. It is a direct consequence of this trifecta—concreteness, ubiquity and generic
wildness—that ideas from disparate branches of mathematics have conversely been
deployed to study representations of quivers. These include algebraic geometry [34],
combinatorics [13], differential geometry [23, 25], geometric representation theory
[20], invariant theory [32, 33], and multilinear algebra [27].

Quiver representations have recently emerged in far more applied and compu-
tational contexts than the classical ones listed above. We are aware of three such
appearances:

(1) Cellular Sheaves: A vector space-valued sheaf defined over a cell complex [10,
11] constitutes a representation of the underlyingHasse diagram; here the vertices
are cells and edges arise from face inclusions. The stalks of the sheaf form vector
spaces over the vertices, while restriction maps are associated to edges.

(2) Conley theory: Morse decompositions in computational dynamics [26, Def 9.19]
are representations of Conley–Morse quivers associated to discrete dynamical
systems (vertices are recurrent sets and edges represent gradient flow). The linear
maps of such representations arise from connection matrices [17]; these assemble
into a chain complex that allows one to recover the homology of the phase space.

(3) Algebraic statistics: Matrix normal models can be studied via quiver representa-
tions [1, 12]. The sample data gives a representation of a Kronecker quiver. The
stability of the representation [33] can then be used to characterise the existence
and uniqueness of a maximum likelihood estimate in the model.

We expect (and hope) that this influx of quiver theory into more applied and compu-
tational domains will continue.
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This Paper

We consider a representation A• of a quiver Q. It assigns vector spaces Av to each
vertex v of Q and linear maps Ae to each edge e in Q. We construct a vector space
�(Q;A•) called the space of sections of the quiver representation. An element of
�(Q;A•) selects one vector γv from the vector space Av assigned to each vertex v so
that for every edge e : u → v the linear map Ae sends γu to γv . As such, �(Q;A•) is
a subspace of the total space Tot(A•) := ∏

v Av . The assignment

A• �→ �(Q;A•)

can directly be seen to be a functor from the category of Q-representations to the
category of vector spaces. We do not expect this functor to immediately answer any
deep questions regarding (in)decomposability of quiver representations. Rather, we
hope that the space of sections will become a useful and practical tool for those who
encounter quiver representations in applied and computational contexts.

Our first contribution is an algorithm for computing the space of sections for any
finite-dimensional representation of a finite quiver. This is of some relevance even
to those who have no warm feelings for quiver representations, since it is a purely
categorical procedure for computing the limit (i.e. the universal cone) of a diagram in
the category of vector spaces. With minor modifications, it can be made to work for
diagrams valued in any abelian category that has computable products and equalisers.
There are two types of restriction imposed on the space of sections: the first of these
arises from directed cycles, where we are forced to restrict to a fixed point space of an
endomorphism; and the second is the presence of multiple incoming edges at a vertex,
where we are forced to restrict to an equaliser. None of these difficulties arise when
the quiver is a directed rooted tree.

Our algorithm consists of two steps—the first step removes all directed cycles and
updates the representation A• accordingly; and the second step replaces this acyclic
quiver with a directed rooted tree, again updating the representation. The result is a
new representation A+• of a rooted directed tree T+, which has all the same vertices
as Q (plus an additional root vertex) and satisfies A+

v ⊂ Av at each vertex v.
Here is our first main result.

Theorem (A). The space of sections �(Q;A•) is the image of the map

F : A+
ρ −→ Tot(A•),

obtained by composing the linear maps assigned by the quiver representation A+•
along the unique path in the rooted directed tree T+ from the root ρ to each other
vertex.

Although the constructions of T+ and A+• are explicit and readily implementable on
a computer, they require making several intermediate choices. Each such choice is
liable to produce a different F , but its image is always �(Q;A•) regardless of these
choices.
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Our second contribution takes place in the realm of quiver representations valued in
real vector spaces; in this case, amap F as described inTheorem (A) can be represented
by an n × d full-rank real matrix, where n and d are the dimensions of Tot(A•) and
�(Q;A•), respectively. Using thismatrix, we define the principal components of any
(generic, mean-centred) finite set D of vectors in R

n � Tot(A•) with respect to the
quiver representation A•. As with ordinary principal components, the starting point is
the n × n sample covariance matrix S of the vectors in D. Next, we consider for each
r ≤ d the variational problem of maximising the trace tr(XTSX) over the set of all
n × r matrices X that satisfy XTX = id, and whose columns are constrained to lie
in the image of F , i.e. in �(Q;A•). There is a generically unique solution, obtained
by iteratively incrementing r from 1 to d, and the span of its r -th column is the r -th
principal component of D along A•, denoted PCr (D;A•). Unlike ordinary principal
components, the PCr (D;A•) are not spanned by eigenvectors of S in general.

The second main result of this paper is that the quiver principal components
PCr (D;A•) do in fact admit a spectral interpretation.

Theorem (B). For each 1 ≤ r ≤ d, the r-th principal component PCr (D;A•) is
spanned by Fur , where ur is the eigenvector of the matrix pencil FTSF − λ(FTF)

corresponding to its r-th largest eigenvalue.

We see from the matrix pencil in Theorem (B) that the principal components along
a quiver representation intertwine the properties of D (via the sample covariance
matrix S) with those of quiver Q (via the map F to the space of sections). These
principal components find directions of maximum variation among vectors in D ⊂ R

n

that respect certain linear dependencies. The coordinates in R
n can be thought of as

partitioned into blocks (one per vertex of the quiver); these blocks are related by
the linear maps of the quiver representation. In this way, the principal components
along the quiver representation interpolate between concatenating ordinary principal
components from individual blocks, and ordinary principal components in the whole
space R

n . We will mostly assume that the linear maps are fixed in advance, but we
will briefly discuss approaches to learning them from the set D.

RelatedWork

The first half of this work is inspired by the study of cellular sheaves [10], which
functorially assign vector spaces to cells and linear maps to incidence relations in
a finite cell complex. The space of sections of a cellular sheaf S defined over an
undirected graph G is isomorphic to the zeroth sheaf cohomology group H0(G;S ),
which is readily computable [11].We can turn any representationA• of a quiver Q into
a cellular sheaf over the underlying undirected graph by replacing each edge-indexed
linear map

Au
Ae−→ Av
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by a corresponding zigzag of the form

Au
Ae−→ Av

id←− Av.

Thus, each edge inherits the vector space assigned to its target vertex. Computing
zeroth cohomology of this sheaf furnishes an alternative to Theorem (A) for calculat-
ing �(Q;A•). However, this cohomological alternative suffers from two significant
drawbacks—first, the insertion of these zigzags is quite inconvenient for our pur-
poses of testing compatibility of sections across directed paths in the original quiver.
And second, the duplication of vector spaces over the edges leads to unnecessarily
large matrices and hence incurs a larger computational cost.

A central focus of the second half of this paper is the study of linearly constrained
principal components, which dates back at least to [42, Section 11]. It is referred to
as constrained PCA in [15, Section 7.1] and [45, 46]. Its statistical implications are
discussed in [29] and [45, Section 5.4]. For an example of constrained PCA occurring
in a biological context, see [28]. It is important to note that the principal components
PCr (D;A•) introduced in this paper do not constitute a low-rank approximation of
the representation A•. Such approximation of related multi-linear objects appears in
[8], where the authors find the singular value decomposition of a finite chain complex,
and in the study of orthogonal decomposition of tensor networks [24]. A study of star
quivers for parameter estimation in integrated PCA [47] appears in [16].

We comment on connections to linear neural networks in Sect. 8. Quiver represen-
tations appear in the context of neural network architectures in [2, 30], though these are
not usual quiver representations due to the presence of nonlinear activation functions.

Organisation

The remainder of this paper is divided into eight short sections. In Sect. 1, we define
quiver representations, their sections, and some elementary properties thereof.

Section 2 is devoted to the task of using the ear decomposition to compute the
sections of strongly-connected quivers. Section 3 uses the results of Sect. 2 to construct,
from any given quiver representation, a sub-representation of an acyclic subquiver that
has the same space of sections. In Sect. 4we describe how to furthermodify this acyclic
subquiver into a rooted directed tree and update the overlaid representation to preserve
the space of sections. These intermediate results are assembled in Sect. 5 to provide
a proof of Theorem (A); we also give lower bounds on the dimension of the space
of sections and provide pseudocode for our algorithm along with a computational
complexity analysis.

Principal components along quiver representations are defined in Sect. 6 via three
optimisation problems; we show here that all three give the same answer. In Sect. 7
we use a generalisation of the singular value decomposition to establish Theorem (B).
And finally, Sect. 8 discusses the problem of learning the linear maps of a quiver
representation from finite samples of vectors living in the total space.
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1 Quiver Representations and Sections

A quiver Q consists of a finite set V whose elements are called vertices, a finite
set E whose elements are called edges, and two maps s, t : E → V called the
source and target map, respectively. It is customary to illustrate quivers by drawing
points for vertices and arrows (from source to target) for edges. A path in Q is an
ordered finite sequence of distinct edges p = (e1, e2, . . . , ek) with disjoint sources
(i.e. s(ei ) �= s(e j ) when i �= j) so that s(ei+1) = t(ei ) holds for every 1 ≤ i < k:

• e1 • e2 · · · ek−1 • ek •

The source and target maps extend from edges to paths via s(p) = s(e1) and t(p) =
t(ek). We call p a cycle if s(p) = t(p), and call Q acyclic if it does not admit any
cycles.

A representation of Q comprises an assignment A• of a finite-dimensional vector
spaceAv to every vertex v in V and a linear mapAe : As(e) → At(e) to every edge e in
E .Wewill remain agnostic to the choice of underlying field until Sect. 6.Using the data
of A•, one can associate to each path p = (e1, . . . , ek) the map Ap : As(p) → At(p)

via

Ap := Aek ◦ Aek−1 ◦ · · · ◦ Ae2 ◦ Ae1 . (1)

The total space of A• is the direct product

Tot(A•) :=
∏

v∈V
Av.

The following terminology has been borrowed from analogous notions that arise in
the study of sheaves and vector bundles.

Definition 1.1 Let A• be a representation of a quiver Q = (s, t : E → V ). A section
of A• is an element γ = {γv ∈ Av | v ∈ V } in Tot(A•) satisfying the compatibility
requirement γt(e) = Ae(γs(e)) across each edge e in E .

The set of all sections of A• is a vector subspace of Tot(A•), which we denote by
�(Q;A•). The explicit computation of the space of sections �(Q;A•), for any quiver
Q and representation A•, is one of the central objectives of this work.

Remark 1.2 The product of general linear groups G = ∏
v GL(Av) acts on A• by

change of basis: given any g = {gv ∈ GL(Av) | v ∈ V }, the new representation gA•
assigns

(gA)v = Av and (gA)e = gt(e) ◦ Ae ◦ g−1
s(e).

This action descends to the space of sections via γ �→ gγ , where (gγ )v = gvγv ,
and so we have an isomorphism �(Q;A•) � �(Q; gA•) for every g ∈ G. In fact, a
purely formal argument shows that the assignment A• �→ �(Q;A•) is a functor from
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the category of representations of a fixed Q to the category of vector spaces. Here a
morphism F• : A• → A′• of Q-representations is a collection of V -indexed linear
maps Fv : Av → A′

v which commute with the edge-maps, i.e. for each e ∈ E we
have

A′
e ◦ Fs(e) = Ft(e) ◦ Ae. (2)

Each section γ ∈ �(Q;A) is sent by F• to a section Fγ of A′• prescribed by
(Fγ )v = Fv(γv), since applying (2) to γs(e) gives the desired compatibility across
each edge e:

A′
e ◦ Fs(e)(γs(e)) = Ft(e) ◦ Ae(γs(e)) = Ft(e)γt(e).

Compatibility across edges imposes severe constraints on sections, even in the
simplest of examples, when the underlying quiver Q contains cycles or vertices with
multiple incoming edges.

Example 1.3 Consider the quiver that consists of a single vertex v and a single edge e
with s(e) = v = t(e). The space of sections of any representation A• is the subspace
of Av fixed by Ae, i.e. the eigenspace corresponding to eigenvalue 1.

Example 1.4 The space of sections of a representation A• of the 2-Kronecker quiver,
pictured below, is isomorphic to ker(Ae − A f ).

u

e

f

v

In sharp contrast, sections are far less constrained when the vertices of Q admit at
most one incoming edge.

Example 1.5 Given vector spaces U , V ,W along with linear maps A : V → U and
B : V → W , the sections of the quiver representation

U V
A B

W .

are triples of the form γ = (Ax, x, Bx) for x in V .

More generally, consider the case where Q admits a distinguished vertex ρ in V
called the root so that for each other vertex v �= ρ there is a unique path p[v] in Q from
ρ to v. Quivers satisfying this unique path property are studied in various contexts
and hence havemany names—these include out-trees, out-branchings, directed rooted
trees, and (the far more scenic) arborescences [6, Chapter 9].
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Proposition 1.6 Let A• be a representation of an arborescence Q with root vertex ρ.
The space of sections �(Q;A•) is isomorphic to Aρ , with every section γ uniquely
determined by the vector x = γρ in Aρ , via

γv = Ap[v](x),

where p[v] is the unique path in Q from ρ to v �= ρ.

Over the next three sections, we will describe an algorithm to compute �(Q;A)

for any given representation A• of an arbitrary quiver Q.

Remark 1.7 As described in Definition 1.1, an edge e : u → v of the quiver Q imposes
dimAs(e) linear constraints (which may not be independent) on Tot(A•). The space
of sections �(Q;A•) is the subspace that satisfies all such constraints, the kernel of a
matrix of size

⎛

⎝
∑

e∈Q
dimAt(e)

⎞

⎠ × dim Tot(A•).

In principle, this kernel may be computed directly via Gaussian elimination. We take
an alternative approach, which makes use of the structure of Q, for two compelling
reasons:

(1) Working in the space Tot(A•) quickly becomes prohibitive when the number of
vertices or edges of the quiver is large. In contrast, our approach computes the
space of sections by performing Gaussian elimination on much smaller matrices.
For a thorough complexity analysis, see Sect. 5.3.

(2) Our approach extends the notion of a spanning arborescence of a quiver to the set-
ting of quiver representations, as follows. Our algorithm constructs a new quiver
Q+ with new representationA+• . Here Q+ is an arborescence obtained by adjoin-
ing a new root vertex ρ to Q and passing to a spanning arborescence of this union,
while A+• is a representation of Q+ with A+

v ⊂ Av for each non-root vertex v.
Crucially, the space of sectionsA+

ρ � �(Q+;A+• ) is isomorphic to�(Q;A•). We
hope that our construction of the pair (Q+,A+• ) will be of independent interest.

2 Sections of Strongly-Connected Quivers

A quiver Q = (s, t : E → V ) is called strongly-connected if for any pair of
vertices v, v′ in V there is at least one path from v to v′. The simplest examples of
strongly-connected quivers are cycles, but such quivers can be far more intricate. In
this section, we study sections of strongly-connected quivers. We will use a particular
decomposition of such quivers into a union of simpler quivers. To this end, note that a
subquiver Q′ ⊂ Q is a choice of subsets V ′ ⊂ V and E ′ ⊂ E so that the restrictions
of s and t to E ′ take values in V ′. For example, every path (e1, . . . , ek) in Q forms a
subquiver with

V ′ = {s(e1), s(e2), . . . , s(ek), t(ek)} and E ′ = {e1, . . . , ek},
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where [k] = {1, . . . , k}. In the special case where a subquiver Q′ comes from a path
in Q, we define its source and tail s(Q′) and t(Q′) to be the source and tail of that
path. Here is the decomposition of interest [6, Sec 5.3].

Definition 2.1 An ear decomposition Q• of Q is an ordered sequence of c ≥ 1
subquivers {Qi = (si , ti : Ei → Vi ) | i ∈ [c]} of Q subject to the following axioms:

(1) the edge sets Ei partition E—in other words, they are mutually disjoint and their
union equals E ; moreover,

(2) the quiver Q1 is either a single vertex or a cycle, while Qi for each i > 1 is a
(possibly cyclic) path in Q; and finally,

(3) for each i > 1, the intersection of Vi with the union
⋃

j<i V j equals
{s(Qi ), t(Qi )}; this intersection has cardinality 1 if Qi is a cycle and cardinality
2 otherwise.

Ear decompositions play an important role in the study of strongly-connected quiv-
ers due to the following fundamental result.

Theorem 2.2 A quiver with at least two vertices is strongly-connected if and only if it
has an ear decomposition.

At least one standard proof of this result is given in the formof an efficient algorithm for
constructing ear decompositions—see [6, Theorem 5.3.2] for details. The figure below
illustrates a strongly-connected subquiver of the quiver depicted in the Introduction
along with its decomposition into three ears:

We assume for the remainder of this section that Q is strongly-connected and fix
an ear decomposition Q• as in Definition 2.1. The depth of an edge e ∈ E , denoted
|e|, is the unique i ∈ [c] with e ∈ Ei . We say that a path p = (e1, . . . , ek) is Q•-
increasing if the |ei | form a weakly increasing sequence, and define Q•-decreasing
paths analogously. For each vertex v ∈ V , we write �(v) for the smallest i in [c] such
that v ∈ Vi .

Proposition 2.3 Let ρ be any vertex in V1. For any vertex v �= ρ in V , there exists

(1) a unique Q•-increasing path p[v] from ρ to v with all edges of depth ≤ �(v), and
(2) a unique Q•-decreasing path q[v] from v to ρ with all edges of depth ≤ �(v).

Proof For �(v) = 1, the desired conclusion follows immediately because Q1 must
be a cycle by axiom (2) of Definition 2.1. Proceeding inductively, we assume that the
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assertion holds whenever �(v) < i , and consider any v ∈ Vi . Once again by axiom
(2), our vertex v lies on a path Qi from s(Qi ) to t(Qi ); and by axiom (3), the inductive
hypothesis applies to both s(Qi ) and t(Qi ). The increasing path p[v] is built by first
going from ρ to s(Qi ) along p[s(Qi )] and then onward to v along Qi . Similarly, the
decreasing path q[v] is built by concatenating the piece of Qi which goes from v to
t(Qi ) with the path q[t(Qi )]. �

For each i in [c], the set Ei contains at most one edge εi ∈ Ei whose target is
t(Qi ); we allow for the possibility that ε1 does not exist if Q1 has no edges, but all
other εi exist and are uniquely determined by the ear decomposition. We call εi the
i-th terminal edge with respect to the ear decomposition Q•, and denote the set of all
terminal edges by Eter ⊂ E .

Definition 2.4 The arborescence induced by Q• is the subquiver T = T (Q•) with
vertex set V and edges E − Eter.

To confirm that T is an arborescence, note that its root vertex is ρ = s(Q1), and
that for any other vertex v there is a unique path p[v] from ρ to v, whose existence
is guaranteed by Proposition 2.3. In the ear decomposition drawn above, the three
terminal edges (with respect to the root vertex u1) are replaced by dotted arcs in the
figure below. The arborescence induced by Q• is obtained by removing these three
edges:

Given a terminal edge ε ∈ Eter, consider the linear map �ε : Aρ → At(ε) given by

�ε = Ap[t(ε)] − Aε ◦ Ap[s(ε)]. (3)

The kernel of each such map is a subspace ker�ε ⊂ Aρ . These kernels depend on
the choice of ear decomposition Q• and the representation A•. Let us denote their
intersection by

K (Q•;A•) :=
⋂

ε

ker�ε, (4)

where ε ranges over Eter. This intersection of kernels is independent of the ear decom-
position, since it is also the intersection of all ker(Ap − Aq), where p and q are any
two paths from ρ to the same vertex v. We have the following result.
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Lemma 2.5 Let Q = (s, t : E → V ) be a strongly-connected quiver with ear decom-
position Q•. For any representation A• of Q, there is an isomorphism

�(Q;A•) � K (Q•;A•)

between the space of sections of A• over Q and the intersection of the kernels from
(4).

Proof Let T be the arborescence induced by Q• and ρ its root vertex. Using Propo-
sition 1.6, vectors in Aρ correspond bijectively with sections in �(T ;A•) via the
assignment that sends each x in Aρ to the section given by

v �→ γv = Ap[v](x).

The subspace �(Q;A•) ⊂ �(T ;A•), is obtained by additionally enforcing com-
patibility across the edges in Eter. Let ε be a terminal edge and xρ a vector in Aρ .
Now the section v �→ Ap[v](xρ) of �(T ;A•) satisfies the compatibility requirement
Aε(xs(ε)) = xt(ε) across ε if and only if xρ lies in the kernel of the map �ε from (3).
Thus, our xρ-induced section is compatible across all the terminal edges if and only
if xρ lies in K (Q•;A•). �

We may safely combine this result with Proposition 1.6 to reduce a strongly-
connected quiver to an arborescence while preserving the space of sections.

Corollary 2.6 Assuming the hypotheses of Lemma 2.5, let T be the arborescence
induced by Q• and ρ its root vertex. Let A′• be the representation of T prescribed
by the following assignments to vertices v ∈ V and non-terminal edges e ∈ E − Eter:

A′
v :=

{
Av v �= ρ,

K (Q•;A•) v = ρ; and A′
e :=

{
Ae s(e) �= ρ,

Ae
∣
∣
K (Q•;A•) s(e) = ρ.

Then, there is an isomorphism of sections

�(Q;A•) � �(T ;A′•).

Wewill use Corollary 2.6 to perform section-preserving simplifications of arbitrary
(i.e. not necessarily strongly-connected) quivers.

3 The Acyclic Reduction

Fix a quiver Q = (s, t : E → V ). A strongly-connected subquiver R ⊂ Q ismaximal
if it is not contained in a strictly larger strongly-connected subquiver of Q. We denote
the set of all maximal strongly-connected subquivers of Q byMSC(Q). This set can
be extracted from Q very efficiently by employing the remarkable algorithm of Tarjan
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[6, Section 5.2]. Distinct subquivers in MSC(Q) have disjoint vertices.1 For each R
inMSC(Q), fix an ear decomposition R• as in Definition 2.1. We write T (R•) for the
arborescence induced by R• as in Definition 2.4, and let Eter(R•) ⊂ E be the set of
terminal edges of R•.

Definition 3.1 The acyclic reduction Q∗ of Q = (s, t : E → V ) with respect to
the ear decompositions {R• | R ∈ MSC(Q)} is the subquiver Q∗ ⊂ Q defined as
follows: it has the same vertex set V , while its edge set E∗ ⊂ E is given by removing
all terminal edges, i.e.

E∗ = E −
⋃

R

Eter(R•),

where R ranges over MSC(Q).

We note that the quiver Q∗ is indeed acyclic (as suggested by its name) as follows.
Each cycle in Q is strongly-connected, hence lies in a single maximal strongly-
connected component R ∈ MSC(Q). But the removal of all the terminal edges
Eter(R•) turns R into the arborescence T (R•), which cannot contain any cycles.
Depicted below is the quiver from the Introduction; the light-shaded edges lie within
strongly-connected subquivers, whose root vertices are coloured red. The dotted edges
are terminal for the associated ear decompositions, and their removal produces the
acyclic reduction:

Our next goal is to reduce a given representation A• of Q to a new representation
A∗• of Q∗ in a manner that preserves the space of sections. Let ρ : MSC(Q) → V
be the injective root map, which sends each maximal strongly-connected subquiver
R ⊂ Q to the root vertex of T (R•). We associate to each vertex v ∈ V the subspace
A◦

v ⊂ Av given by

A◦
v :=

{
AR

v if v = ρ(R) for some R ∈ MSC(Q),

Av otherwise,

where, for each R ∈ MSC(Q), we writeAR• for the representation of T (R•) described
in Corollary 2.6.

1 If R �= R′ in MSC(Q) share a vertex v, then there is a path (passing through v) in the union R ∪ R′
from any vertex of R to any vertex of R′ and vice versa. The existence of such paths makes R ∪ R′
strongly-connected, contradicting the maximality of either R or R′.
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Definition 3.2 For each vertex v ∈ V and strongly-connected R ∈ MSC(Q), let
P∗

v→R be the set of all paths in Q∗ with source v and target ρ(R). The R-constrained
space at v is the subspace 	v,R ⊂ A◦

v given by

	v,R :=
{
x ∈ A◦

v | Ap(x) ∈ AR
ρ(R) for all p ∈ P∗

v→R

}
,

with the implicit understanding that 	v,R equals A◦
v whenever P∗

v→R is empty.

Our next result shows that R-constrained subspaces behave well under the linear
maps assigned by A• to edges of Q∗.

Proposition 3.3 For any edge e in E∗ and subquiver R ∈ MSC(Q), the linear map
Ae : As(e) → At(e) sends 	s(e),R to 	t(e),R.

Proof Let p = (e1, . . . , ek) be any path in P∗
t(e)→R and note that the augmented path

p′ = (e, e1, . . . , ek) is an element of P∗
s(e)→R . Now for any x in 	s(e),R we know that

Ap′(x) lies in AR
ρ(R) by Definition 3.2. But Ap′(x) is Ap ◦ Ae(x), whence Ae(x) lies

in 	t(e),R . �
Consider the intersection of all the R-constrained spaces at a given vertex v ∈ V , i.e.
define the subspace 	v ⊂ Av as

	v :=
⋂

R

	v,R (5)

where R ranges over MSC(Q). It follows immediately from Proposition 3.3 that for
each edge e in E∗ the map Ae sends 	s(e) to 	t(e).

Definition 3.4 Let Q∗ be the acyclic reduction of Q with respect to a choice of ear
decompositions {R• | R ∈ MSC(Q)}. The acyclification of a representation A• of Q
is a new representationA∗• of Q∗ which assigns to every vertex v in V the vector space

A∗
v = 	v

and to every edge e in E∗ the restriction of Ae to 	s(e), denoted A∗
e : 	s(e) → 	t(e).

As promised, our new representation A∗• retains full knowledge of the sections of
the original representation A• even though it is only defined on the acyclic reduction
Q∗.

Proposition 3.5 Let A• be a representation of a quiver Q = (s, t : E → V ). Writing
Q∗ for the acyclic reduction of Q with respect to some choice of ear decompositions
{R• | R ∈ MSC(Q)} and A∗• for the corresponding acyclification of A•, there is an
isomorphism of sections

�(Q;A•) � �(Q∗;A∗•).
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Proof First we show that a section γ in �(Q;A•) gives a section in �(Q∗;A∗•). Since
E∗ ⊂ E by Definition 3.1, it suffices to prove that γv lies in the subspace 	v of Av

for all vertices v in V . Since γ restricts to a section in �(R;A•) for every subquiver
R ∈ MSC(Q), it follows from Corollary 2.6 that γρ(R) lies in the subspace AR

ρ(R) of
Aρ(R). Thus, for any vertex v ∈ V and every path p in P∗

v→R , compatibility forces
Ap(γv) ∈ AR

ρ(R). Thus, γv must lie in the subspace 	v from (5). Now consider any
edge e ∈ E∗ and note thatA∗

e is defined simply by restrictingAe to the subspace	s(e).
Thus, we obtain

A∗
e(γs(e)) = Ae(γs(e)) = γt(e)

for each such edge, and it follows that γ is a section in �(Q∗;A∗•). Conversely,
consider a section γ ∗ in �(Q∗;A∗•). The A•-compatibility of γ ∗ across every edge
e ∈ E∗ follows from the fact that A∗

e is the restriction of Ae; it therefore suffices to
show that γ ∗ is also A•-compatible across all the edges in E − E∗. By Definition 3.1,
any such edge ε lies in Eter(R•) for a unique R ∈ MSC(Q). We know that 	ρ(R)

is a subspace of AR
ρ(R), by (5) combined with Definition 3.2. Thus, Corollary 2.6

guarantees that γ ∗ is also A•-compatible across ε, as desired. �

4 The Arboreal Replacement

We assume here that Q = (s, t : E → V ) is an acyclic quiver, so its vertex set V is
partially ordered by (the reflexive closure of) the binary relation

u < v if and only if there is a path p in Q with s(p) = u and t(p) = v.

Let Vmin ⊂ V be set of all minimal vertices with respect to this partial order—thus,
a vertex v lies in Vmin if and only if there is no edge e ∈ E with t(e) = v. We fix
a representation A• of Q, and seek to compute the space of sections �(Q;A•). For
this purpose, it will be convenient to formally add a new vertex to Q that serves as the
global minimum for the partial order described above.

Definition 4.1 The augmented quiver Q+ has vertices V+ := V ∪ {ρ}, where ρ is a
new vertex. Its edge set E+ is E ∪ {ev | v ∈ Vmin}; the sources and targets of edges in
E are inherited from Q, while each new edge ev has source ρ and target v in Vmin.

Drawn below is the augmented quiver corresponding to the acyclic reduction from
the previous section; the root and (two) new edges ev for the vertices v ∈ Vmin are
highlighted in blue.
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A representation A• extends to Q+ if we define

Aρ :=
∏

v∈Vmin

Av,

and letAev : Aρ → Av be the canonical projection map. Now each section ofA• over
Q extends uniquely to a section over Q+, whence we have an isomorphism

�(Q;A•) � �(Q+;A•). (6)

Thus, there is no loss of generality encountered when computing the sections of A•
over Q+ rather than Q. We will also make frequent use of the following notion.

Definition 4.2 Let n ≥ 1 be a natural number and X ,Y a pair of vector spaces. The
equaliser of a collection of n linear maps { fi : X → Y | 1 ≤ i ≤ n} is the largest
subspace Eq{ f•} ⊂ X satisfying fi (x) = f j (x) for all x in Eq{ f•} and all i, j in
{1, . . . , n}.

In practice, for finite-dimensional X the equaliser Eq{ f•} can be computed by
intersecting kernels of successive differences:

Eq{ f•} =
n−1⋂

i=1

ker ( fi − fi+1) ,

with the understanding that for n = 1 this intersection over the empty set equals all
of X .

Definition 4.3 Assign to each vertex v ∈ V+ a subspace 
v ⊂ Aρ and a linear map
φv : 
v → Av , called the flow space and flow map of A• at v, inductively over the
partial order ≤ as follows:

(1) for v = ρ, the flow space 
ρ equals Aρ , and the flow map φρ : 
ρ → Aρ is the
identity;

(2) for v �= ρ, let Ein(v) ⊂ E+ be the (necessarily nonempty) set of all edges e
satisfying t(e) = v. Noting that s(e) < v for any such e, define the subspace

′

v ⊂ Aρ via


′
v :=

⋂

e


s(e),
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where e ranges over Ein(v). For each such e, the composition Ae ◦ φs(e) restricts
to a linear map 
′

v → Av . The flow space at v is the equaliser


v := Eq
{
Ae ◦ φs(e) : 
′

v → Av | e ∈ Ein(v)
}
.

The flow map φv : 
v → Av is given by Ae ◦ φs(e) for any e in Ein(v).

By construction, the flow space 
v for a vertex v �= ρ forms a subspace of the
intersection

⋂
u 
u of flow spaces ranging over all preceding vertices u < v. Thus,

we can restrict the flow map φu at u to a vector in the flow space 
v whenever u ≤ v.
Our affinity for flow spaces and maps stems mainly from the following result.

Proposition 4.4 For each vertex v ∈ V+, let Q+≤v be the subquiver of Q+ generated
by all vertices u ≤ v and the edges between them. Then, γ is a section in �(Q+≤v;A•)
if and only if the vector γρ ∈ Aρ lies in the flow space 
v .

Proof For v = ρ the result holds because in this case the spaces below are all equal:


ρ = �(Q+≤ρ;A•) = Aρ,

with the flow map φρ : 
ρ → Aρ being the identity. Proceeding inductively over
the partial order ≤, consider any v �= ρ and assume that the desired result holds for
all preceding vertices u < v. We must show that any x ∈ 
v generates a section in
�(Q+≤v;A•) via the assignment u �→ φu(x) for every u ≤ v. Compatibility for all
edges e with t(e) �= v follows from the inductive hypothesis, so it suffices to examine
all edges e ∈ Ein(v). For any such edge, Definition 4.3 yields

Ae ◦ φs(e)(x) = φv(x),

hence establishing the desired compatibility. Conversely, if γ is a section in
�(Q+≤v;A•) then it suffices to show that the vector γρ ∈ Aρ lies in the subspace

v . By the inductive hypothesis, we have

γρ ∈ 
′
v =

⋂

e


s(e),

where e ranges over the edges in Ein(v). By compatibility of γ across any such e, we
have

Ae ◦ φs(e)(γρ) = γv,

so γρ lies in the equaliser 
v = Eq
{
Ae ◦ φs(e) | e ∈ Ein(v)

}
as desired. �

Using the fact that the quiver Q+ is the union of the subquivers
{
Q+≤v | v ∈ V+}

,
we are able to describe the sections of A• as intersections of its flow spaces. We write
Vmax ⊂ V for the ≤-maximal vertices (i.e. the vertices which do not serve as sources
of edges in E+).
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Proposition 4.5 Let A• be a representation of an acyclic quiver Q, and Q+ the aug-
mented quiver (as in Definition 4.1). We have an isomorphism

�(Q;A•) �
⋂

v∈Vmax

v

between the sections of A• over Q and the intersection of the flow spaces of A• at the
maximal vertices.

Proof Combining (6) with Proposition 4.4 and the fact that Q+ = ⋃
v∈V Q+≤v gives

�(Q;A•) �
⋂

v∈V

v.

Since maximal vertices have the smallest flow spaces, by Definition 4.3, the desired
result follows. �

For brevity, we write 
(A•) to indicate the intersection
⋂

v 
v of flow spaces
ranging over Vmax (or, equivalently, over V ). By employing breadth-first search [6,
Chapter 3.3] on Q+ starting atρ, one can construct a spanning arborescence T+ ⊂ Q+
with root ρ. This arborescence T+ must necessarily contain all the vertices in V+ and
all the edges in (E+ − E), but in general it is not uniquely determined otherwise. One
possible spanning arborescence for the augmented quiver drawn above is obtained by
removing the light-shaded edges below:

Definition 4.6 Let T+ ⊂ Q+ be any spanning arborescence with root ρ. An arboreal
replacement of A• is the representation A+• of T+ that assigns

A+
v :=

{
Av v �= ρ,


(A•) v = ρ; and A+
e :=

{
Ae s(e) �= ρ,

Ae
∣
∣

(A•) s(e) = ρ.

The following result is obtained by combining Proposition 4.5 with Proposition 1.6.

Corollary 4.7 Let A• be a representation of an acyclic quiver Q and T+ a spanning
arborescence of the augmented quiver Q+. There is an isomorphism

�(Q;A•) � �(T+;A+• )

between the sections of A• and those of its arboreal replacement A+• defined on T+.
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5 The Space of Sections

We are now ready to establish Theorem (A) from the Introduction.

Theorem 5.1 For any representation A• of a quiver Q = (s, t : E → V ), the follow-
ing spaces are all isomorphic:

�(Q;A•) � �(Q∗;A∗•) � �(T+;A+• ) � A+
ρ . (7)

Here, Q∗ is the acyclic reduction of Q with A∗• the acyclification of A•. Similarly,
writing Q+ for the augmented quiver associated to Q∗ with root ρ, the representation
A+• is the arboreal replacement of A∗• defined on any spanning arborescence T+ ⊂
Q+.
Proof The first isomorphism follows from Proposition 3.5, the second from Corol-
lary 4.7, and the third from Proposition 1.6. �

Theorem (A) asserts the existence of an isomorphism A+
ρ � �(Q;A•) as a map

F , which we now describe. Assuming the hypotheses and notation of Theorem 5.1,
there are containments

A+
v ⊂ A∗

v ⊂ Av,

for each vertex v in V , by Definitions 3.4 and 4.6. Since T+ is an arborescence, it
admits a unique path p[v] from its root ρ to any such v. This path carries a linear map
A+

p[v] : A+
ρ → A+

v , and the collection of all such linear maps (indexed over v ∈ V )
assembles to furnish a single map to the direct product:

A+
ρ →

∏

v

A+
v .

In light of the containments A+
v ⊂ Av described above, the codomain is a subspace

of Tot(A•). Thus, we obtain a linear map

F : A+
ρ → Tot(A•), (8)

whose image of F inside Tot(A•) is an isomorphically embedded copy of �(Q;A•).
Although various choices (of ear decompositions and spanning arborescences) made
above will produce different F’s, the image of F remains invariant.

5.1 Lower Bounds on the Dimension

As stated in the Introduction,wewill defineprincipal components alongA• as solutions
to an optimisation problem over �(Q;A•). In order for this to be a nontrivial problem,
one requires the dimension d := dim �(Q;A•) to exceed zero. We therefore take a
brief detour here in order to highlight some sufficient conditions (on Q andA•)which
give lower bounds on d. Among the simplest cases to analyse in terms of the topology
of Q are the extreme ones, as recorded in the following observation.
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Proposition 5.2 Let A• be a representation of a quiver Q.

(1) if Q is an arborescence with root ρ, then d = dimAρ; and
(2) if Q is strongly-connected, then d = 0 for all sufficiently generic A•.

Proof The first assertion follows directly from Proposition 1.6, so we concentrate on
the second assertion. Let Q• be an ear decomposition of Q (see Definition 2.1) and ρ

a vertex in Q1. By strong connectedness, there exists a path p in Q from ρ to itself,
which carries an endomorphism Ap : Aρ → Aρ . Now any section γ of Q must
satisfy Ap(γρ) = γρ . For generic A•, this endomorphism Ap will not have 1 as an
eigenvalue, so γρ must be zero. The result now follows from applying Proposition 1.6
to the arborescence induced by Q•. �

Although the result in part (2) of Proposition 5.2 might appear disappointing at
first glance, we note that there are several interesting nongeneric families of linear
maps which do admit 1 as an eigenvalue, such as those arising from row-stochastic
matrices. Moreover, general quivers are neither strongly-connected nor arboreal but
lie somewhere in between. Using Proposition 3.5, any representation of an arbitrary
quiver can be reduced to a representation of an acyclic quiver while preserving d, so
it remains to provide lower bounds on d for representations of acyclic quivers.

Proposition 5.3 Let Q be an acyclic quiver with minimal vertices V min and maximal
vertices Vmax. For any representation A• of Q, we have

dim �(Q;A•) ≥
∑

u∈Vmin

dimAu −
∑

v∈Vmax

(nv − 1) dimAv,

where nv is the total number of paths in the augmented quiver Q+ from the root ρ to
the vertex v.

Proof By Definition 4.3, the flow space 
ρ = Aρ has dimension
∑

u∈Vmin
dimAu .

We claim that the flow space 
v at a vertex v ∈ Vmax has codimension at most
(nv − 1) dimAv in 
ρ . To establish this claim, let

{
fk : Aρ → Av | 1 ≤ k ≤ nv

}
be

the linear maps carried by paths from ρ to v, and examine the (nv − 1) kernels of the
differences �k = ( fk − fk+1). Since each ker(�k) has codimension at most dimAv

in 
ρ , and since the codimension of their intersection is at most the sum of these
codimensions, we have codim 
v ≤ (nv − 1) dimAv as claimed. The inequality in
the statement now follows from Proposition 4.5. �

Remark 5.4 The space of sections might be trivial for several interesting representa-
tions of acyclic quivers, Proposition 5.3 notwithstanding. For example, this occurs
frequently in two parameter persistence modules [9] which arise from homology
groups of bifiltered simplicial complexes. Such a module is a representation A• of the
grid quiver Q whose vertices are identified with integer points (i, j)with 1 ≤ i, j ≤ �

for some integer � > 0; there are two edges from each (i, j), one to (i + 1, j) and
another to (i, j + 1).
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Since homology is functorial, each square of the form

A(i, j+1) A(i+1, j+1)

A(i, j) A(i+1, j)

commutes. It follows that the space of sections of such a quiver representation is
isomorphic to A(1,1), which might be trivial even though the other A(i, j) and the
linear maps between them contain relevant information. As a partial remedy, one can
fix a vertex (i0, j0) of interest and restrict to the largest subquiver Q≥(i0, j0) ⊂ Q
containing all vertices (i, j) with i0 ≥ i and j0 ≥ j . This allows us to extract features
from representations of Q (as in Sect. 6) even when the space of sections is trivial.

5.2 Algorithms

We describe algorithms to compute the space of sections by combining graph theoretic
operations on the quiver with linear algebraic operations on the representation. That
is, we give algorithms arising from Corollary 2.6, Proposition 4.5, and Corollary 4.7.
Quiver representations A• may be stored on computers as directed graphs whose
vertices v have non-negative integer weights dimAv and whose edges e have matrix-
valued weights Ae.

The first subroutine implements the constructions from Sect. 2: it ear-decomposes
a given strongly-connected quiver, produces an arborescence by removing all terminal
edges, and updates the overlaid representationA• at the root vertex in accordance with
Corollary 2.6. We recall that an efficient algorithm for performing ear decomposition
may be found in [6, Section 5.3].

Algorithm 1: SCReduce
Input: Strongly-Connected quiver R with representation A•
Output: Arborescence T (R) ⊂ R with A• modified

1 Set {R1, . . . , R�} := EarDecompose(R)

2 Set ρ := root of R1 and K := Aρ

3 for i in (1, . . . , �) do
4 Set ε := terminal edge of Ri

5 Remove ε from Ri

6 Compute �ε := Ap[t(ε)] − Aε ◦ Ap[s(ε)]
7 Set K = K ∩ ker(�ε)

8 end
9 Set Aρ := K

10 Return (R,A•)

The second subroutine implements the constructions from Sect. 3 by computing
the acyclification of a given representation A• of a quiver Q. It uses Tarjan’s efficient
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algorithm for computing the setMSC(Q) ofmaximal strongly-connected components
[6, Section 5.2]. The BFSEqualise function invoked in line 5 is an enhancement of
the standard breadth-first search algorithm to do the following computation. Starting
from the root ρ of a given R ∈ MSC(Q), it finds all edges ewith target ρ, and replaces
each vector space As(e) with the R-constrained subspace 	s(e),R from Definition 3.2.
It then recursively repeats this operation, starting from s(e) rather than ρ, until all
vertices that admit paths to ρ have been processed.

Algorithm 2: AcycReduce
Input: A representation A• of a quiver Q
Output: The acyclification A∗• and the acyclic reduction Q∗

1 Compute MSC(Q)

2 for R inMSC(Q) do
3 Set (T (R),A◦•) := SCReduce(R,A•)
4 Set ρ := root of T (R)

5 BFSEqualise(ρ, Q,A•)
6 end
7 Return (Q,A•)
Our final subroutine is based on Sect. 4. It takes as input a representation of an

acyclic quiver (such as one produced by AcycReduce). The algorithm augments the
quiver with a new root and inductively builds the arboreal replacement by constructing
flow spaces and maps (see Definition 4.3). The subroutine Augment builds Q+ from
Q (as in Definition 4.1) and extends the representation A• to A+• by letting A+

ρ be the
product of Av over initial vertices v. The function TopSort builds a linear ordering of
the vertices that respects the path-inducedpartial order (this is often called a topological
sorting in the graph theory literature). Finally, the function SpanArb uses breadth-first
search to construct a spanning arborescence T+ ⊂ Q+ with root ρ.

Algorithm 3: ArbReplace
Input: An acyclic quiver Q with representation A•
Output: A spanning arborescence T+ and arboreal replacement A+•

1 Set (Q+,A+• ) := Augment(Q,A•)
2 TopSort(Q+), label vertices {ρ, v1, . . . , vm}
3 Set 
ρ := Aρ and φρ : 
ρ → Aρ the identity map
4 for i in (1, 2, . . . ,m) do
5 Set 
′

vi
:= ⋂

t(e)=vi

s(e)

6 Set 
vi := Eq
{
Ae ◦ φs(e) : 
′

vi
→ Avi | t(e) = vi

}

7 Set φvi := Ae ◦ φs(e) for any e with t(e) = vi .
8 Set Aρ := Aρ ∩ 
vi

9 end
10 Set T+ := SpanArb(Q+, ρ)

11 Return (T+,A•)
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To compute the space of global sections �(Q;A•), we invoke

ArbReplace
(
AcycReduce(Q,A)

)
(9)

This produces a representation A+ of an arborescence T+ so, by Proposition 1.6,
the vector space A+

ρ at the root vertex ρ yields the space of sections �(Q;A•). At
each nonroot vertex v of T+, the output vector space A+

v is a subspace of the original
Av . Thus, we can compute an embedding �(Q;A•) ↪→ Tot(A•): the component
�(Q;A•) ↪→ Av for vertex v equals A+

p[v], where p is the unique path in T+ from ρ

to v.

5.3 Computational Complexity

Let Q = (s, t : E → V ) be a quiver with nV vertices and nE edges. Fix a representa-
tionA• of Q with nA := maxv {dimAv}. We assume throughout that scalar operations
in the underlying field take O(1) time.

Remark 5.5 Fix a basis for each vector spaceAv , so the linearmapsAe : As(e) → At(e)

can be expressed as matrices. Ordering the vertices and edges of Q arbitrarily, let
M = M(A•) be the block matrix whose column blocks are indexed by vertices v ∈ V ,
row blocks are indexed by edges e ∈ E , and whose (e, v)-block is

Me,v :=

⎧
⎪⎨

⎪⎩

−Ae if v = s(e)

IdAv if v = t(e)

0 otherwise.

The subspace �(Q;A•) is the kernel of M , cf. Remark 1.7. Thus, computing a basis
for this space naïvely requires Gaussian elimination on the augmented matrix

M ′ :=
[
IdTot(A•) | MT

]
.

In the worst case, M ′ has nV nA rows and 2nEnA columns. Since we may need up to
O(n2V n

2
A) row operations, and since each such operation incurs a cost of O(nEnA),

the time complexity is O(n2V nEn
3
A).

Here we establish the following.

Corollary 5.6 The algorithms from Sect. 5.2 invoked using (9) extract a basis for
�(Q;A•) in time

O
(
nV (nV + nE )n3A

)
.

We prove Corollary 5.6 in three parts. The first step gives the complexity of SCRe-
duce.
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Lemma 5.7 If Q is strongly-connected and admits an ear decomposition with � ears,
then the subroutine SCReduce has time complexity O(nV + nE + n3A�) when called
with input (Q,A•).

Proof As described in [6, Exercise 5.18], the cost of building an ear decomposition
of Q is O(nV + nE ). The for loop spanning lines 3-8 runs � times and, in each
iteration of this loop, the computational cost is dominated by the kernel intersection
in line 7. Computing this intersection requires Gaussian elimination on a matrix of
size at most nA × 2nA, which costs O(n3A). Hence we obtain the complexity bound
O(nV + nE + n3A�). �

We now estimate the complexity of calling AcycReduce with input (Q,A•).

Lemma 5.8 The computational complexity of AcycReduce(Q,A•) is

O
(
(n2V + nE )n3A

)
.

Proof The set of maximal strongly-connected subquiversMSC(Q) can be computed
in time O(nV + nE ) [6, Section 5.2]. Enumerating its elements as {Q1, . . . , Qs}, for
s ≥ 0,wenote that the for loop spanning lines 2-5 runs s times. For each j in {1, . . . , s},
we let nV , j and nE, j denote the number of vertices and edges of Q j , and let � j be the
number of ears produced when Q j is ear-decomposed. We know from Proposition 5.7
that the call to SCReduce in line 3 incurs a cost of O(nV , j + nE, j + � j n3A). The call
to BFSEqualise in line 5 has a worst-case burden O(nEn3A), since we must traverse
every edge of Q and perform Gaussian elimination on an augmented nA ×2nA matrix
to compute the restricted subspace (as in Definition 3.2) at its source vertex. Thus, the
j-th iteration of the for loop costs

O
(
nV , j + nE, j + (nE + � j )n

3
A

)
.

Since the subquivers Q j are mutually disjoint, we sum the above expression over j
in {1, . . . , s} to obtain the total cost incurred by the for loop

O

⎛

⎝nV + nE +
⎛

⎝snE +
s∑

j=1

� j

⎞

⎠ n3A

⎞

⎠ .

The conclusion follows by discarding small terms and using the fact that s and
∑

j � j

are bounded from above by nV and nE , respectively. �
In practice, the runtime ofAcycReduce can be improved in the presence of parallel

processing, since SCReduce may be called on the strongly-connected subquivers of
Q concurrently. It remains to estimate the complexity of invoking ArbReplace on
the output (Q∗,A∗•) of AcycReduce(Q;A•). We know from Definition 3.1 that the
vertex set of Q∗ coincides with V , though the edge set E∗ may be strictly contained
in E . Moreover, we have dimA∗

v ≤ nA for each vertex v.
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Lemma 5.9 The computational complexity of ArbReplace(Q∗,A∗•) is O
(
nV nEn3A

)
.

Proof Augmentation, topological sorting, and the construction of a spanning arbores-
cence (from lines 1, 2 and 10, respectively) are all O(nV + nE ) operations, so we
restrict our focus to the for loop spanning lines 4–9. For each integer j ≥ 0, let
Vj ⊂ V be the (possibly empty) subset of vertices which admit exactly j incoming
edges in E∗, and write nVj for the cardinality of Vj . Thus, we have

nV =
∑

j≥0

nVj and nE ≥
∑

j≥0

j · nVj , (10)

where the inequality follows from the fact that the sum of j · nVj over j ≥ 0 is the
cardinality of E∗ ⊂ E . The for loop runs once per vertex of V , and the cost of each
iteration is dominated by the equaliser computation in line 6. In the worst case, each
equaliser computation requires Gaussian elimination on a matrix with nA rows (for
Av) and 2nV0nA columns (for 
′

v). For each vertex v in Vj , there are ( j − 1) such
Gaussian eliminations to perform, so executing the for loop for v ∈ Vj incurs a cost
of O(( j −1) nV0 n

3
A). Since each Vj contains nVj vertices, the total cost of processing

all vertices is given by

O

⎛

⎝
∑

j≥0

nVj ( j − 1) nV0 n
3
A

⎞

⎠ .

From (10), we obtain nV ≥ nV0 and nE ≥ ∑
j ( j − 1) nVj , which concludes the

argument. �
Proof of Corollary 5.6 Summing the estimates from Lemmas 5.8 and 5.9 gives a total
complexity of O(n2V + nE + nV nE )n3A). The term nEn3A is dominated by nV nEn3A
and may be omitted. �

5.4 Examples

We describe two instances where the space of sections �(Q;A•) arises naturally. The
first example is in the representation theory of finite groups.

Example 5.10 The ability to compute sections of quiver representations allows us to
recover fixed spaces of group representations. Let G be a finite group and V a finite-
dimensional vector space.A representationofG valued inV is a grouphomomorphism
φ : G → GL(V ). Consider a quiver Q with a single vertex v and one edge e(g) from v

to itself for each g inG. The data of our group representation produces a representation
A• of Q whose vector spaceAv is V and whose linear mapsAe(g) are φ(g) : V → V .
As in Example 1.3, the space of sections �(Q;A•) is the fixed space of φ:

�(Q;A•) = {v ∈ V | φ(g)(v) = v for all g ∈ G}.
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Every right Kan extension problem [37, Chapter X] for functors valued in the
category of vector spaces can be solved by computing sections of an appropriate
representation of a (possibly infinite) quiver. Our second example involves one such
extension problem.

Example 5.11 Computing spaces of sections of quiver representations allows us to
construct pushforwards of sheaves on posets. Given an order-preserving map f :
X → Y between finite partially ordered sets, one can construct a pair of adjoint
functors

f∗ : Sh(X) → Sh(Y ) and f ∗ : Sh(Y ) → Sh(X)

between the categories of sheaves (valued in finite-dimensional vector spaces, with
respect to the Alexandrov topology) on X and Y , see [10, Sec 5] for details. Whereas
the pullback f ∗ admits a straightforward definition, describing the pushforward
f∗S ∈ Sh(Y ) of a sheaf S ∈ Sh(X) is more delicate, since it requires comput-
ing the categorical limit

f∗S (y) = lim
f (x)≥y

S (x).

Let Q be the quiver with vertex set X and edges x → x ′ whenever x ≤ x ′. The sheaf
S induces a representation A• of Q, where Ax is the stalk S (x) and the edge map
Ax → Ax ′ is the restriction map S (x ≤ x ′). Given y ∈ Y , let Q≥y be the quiver
Q restricted to the vertices {x ∈ X | f (x) ≥ y}, and let Ay• restrict the representation
A• to these vertices. The stalks of the desired pushforward coincide with the space of
sections

f∗S (y) = �
(
Q≥y;Ay•

)
.

6 Principal Components via Optimisation

Here we will define principal components with respect to a quiver representation as
solutions to an optimisation problem over the space of sections. To this end, let us first
recall the starting point, ordinary principal component analysis (PCA).

Definition 6.1 Let D := {y1, . . . , ym} be a finite collection of mean-centred2 vectors
in Rn ; the sample covariance of D is the n × n symmetric matrix

S := 1

m

m∑

i=1

yi y
T
i ,

where T indicates transpose. Assuming that the top r eigenvalues λ1 > · · · > λr of S
are distinct, the r -th principal component PCr (D) of D is the λr -eigenspace of S.

2 i.e. 1
m

∑
i yi lies at the origin.
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Since the r -th principal component is a one-dimensional subspace of Rn , it is
standard practice to represent it by any constituent nonzero vector inPCr (D). Treating
the sample covariance matrix as a bilinear form on Rn allows us to interpret principal
components in terms of the following variance maximisation problem:

max
X

tr(XTSX) subject to XTX = idr . (11)

Here tr indicates trace and idr is the r × r identity matrix. The columns of an optimal
n×r matrix X form an orthonormal basis for the space PC≤r (D) spanned by the top r
principal components, and solving (11) for increasing r gives the individual principal
components in descending order.

6.1 Principal Components Along Quiver Representations

Consider a quiver Q and fix a representation A• of Q valued in real vector spaces.

Henceforth we will fix an isomorphismR
dimAv

�−→ Av for each vertex v in V , which
allows us to impose (once and for all) an inner product structure on each Av . Writing
n for the dimension of Tot(A•),

n =
∑

v∈V
dimAv,

we inherit an isomorphism R
n �−→ Tot(A•) and a concomitant inner product struc-

ture on the total space of A•. Making choices of ear decompositions and spanning
arborescences for Q produces a map F : R

d → Tot(A•), described in (8), where
d = dim �(Q;A•). Expressed in terms of the chosen isomorphisms, F becomes a
full-rank n × d matrix whose image is an embedded copy of �(Q;A•) inside Rn . We
are therefore able to define principal components relative to this embedding F .

Definition 6.2 Given any mean-centred finite subset D of Rn � Tot(A•), let S be the
sample covariance (as in Definition 6.1). For each r ≤ d, consider the optimisation
problem over all n × r matrices X = [x1 x2 · · · xr ] prescribed by

max
X

tr(XTSX) subject to XTX = idr and x1, . . . , xr ∈ �(Q;A•). (12)

The space of top r principal components of D alongA• is the subspacePC≤r (D;A•)
of Rn determined by the column span

PC≤r (D;A•) = span{x1, . . . , xr }

of an optimal matrix X .

It is possible to uniquely construct an optimal solution X∗ to (12) by proceeding one
column at a time and imposing the orthogonality of each column with respect to all of
the preceding columns. The r -th principal component of D alongA• is the subspace
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PCr (D;A•) spanned by the r -th column of X∗. In sharp contrast to the ordinary
principal components from Definition 6.1, these principal components along A• need
not be eigenvectors of the covariance matrix S. There are, however, two special cases
where ordinary principal components coincide with their quiver-compatible avatars.

Proposition 6.3 Assume that one of the two conditions below holds:

(1) either D ⊂ R
n lies entirely in the subspace �(Q;A•), or

(2) the edge set of Q is empty.

Then PCr (D) = PCr (D;A•) for every r ≤ d.

Proof If D ⊂ � = �(Q;A•), then the sample covariance S restricts to an endomor-
phism of �. For all r ≤ d, the columns of any matrix X that maximises (11) must also
lie in �. Thus, such an X also maximises (12). Finally, if there are no edges in Q then
� equals all of Rn so (12) reduces to (11). �

In its most general form, linearly constrained PCA can be described as follows.
The space of top r principal components of D ⊂ R

n (with sample covariance S),
constrained by some n × c matrix W , is the span of the columns of an optimal n × r
matrix X in

max
X

tr(XTSX) subject to XTX = idr and W TX = 0.

This formulation follows from [15, Equation 7.4], and it is usually assumed that
W TW = idc. Evidently, finding principal components along a quiver representation
is a special instance of constrained PCA, provided we have access to an orthogonal
basis for the complement of �(Q;A•) in Tot(A•).

6.2 Alternate Perspectives

Here we define two more optimisation problems related to (12); as before, both will
require a fixed choice of embedding F : Rd → Tot(A•) of �(Q;A•), where the map
F is viewed as an n × d matrix. Here is the first one, which is defined over the space
of d × r matrices Y :

max
Y

tr(Y TFTSFY ) subject to Y T(FTF)Y = idr . (13)

The n × n matrix B := FFT serves as a (not necessarily orthogonal) projection onto
the image of F . Now, we set SB := BSB and consider another optimisation problem
defined over n × r matrices Z :

max
Z

tr(ZTSB Z) subject to ZT(B2)Z = idr . (14)

Although the r columns of Z can be any B2-orthonormal vectors in Tot(A•), the
optimal directions will lie in �(Q;A•) because SB restricts to an endomorphism of
�(Q;A•) for any r ≤ d. Our next result establishes the equivalence of these two
alternate perspectives with the original one from Definition 6.2.
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Proposition 6.4 The maximum values of the three optimisation problems (12), (13),
and (14) are all the same. Moreover, a matrix X maximises (12) if and only if matrix
Y maximises (13) if and only if matrix Z maximises (14), where

X = FY = BZ .

Proof We first show that Z maximises (14) if and only if BZ maximizes (12). Since
� = �(Q;A•) is the image of B, it follows that the columns of BZ all lie in �.
Moreover, we have (BZ)T(BZ) = ZT(B2)Z = idr , so BZ is orthogonal and satisfies
all the constraints of (12). Moreover, we have

tr(ZTSB Z) = tr(ZT · BSB · Z)

= tr
(
(BZ)TS(BZ)

)
.

Conversely, given some X maximising (12), its columns xi are orthonormal vectors
in �, hence xi = Bzi for some zi ∈ Tot(A•). Letting Z be the matrix of columns
zi gives a solution to (14) with the same maximal value (as confirmed by the trace
calculation above). This gives the desired equivalence of (12) and (14). Turning now
to (13), assume again that Z maximises (14) and let Y = FTZ , so

(FY )T(FY ) = (BZ)T(BZ) = idr .

Computing the relevant trace for (13) gives

tr(Y TFTSFY ) = tr(ZTFFTSFFTZ)

= tr(ZTBSBZ)

= tr(ZTSB Z).

Thus, the value of the objective function of (14) at Z equals the value of the objective
function of (13) at Y = FTZ . Conversely, given some Y maximising (13), its image
FY is a matrix of orthogonal vectors in �, hence lies in the feasible set for (12), with
the trace of X = FU = BV in (12) being the same as the trace of Y in (13). �

We consider (12) an implicit version of the optimisation problem to deter-
mine principal components along quiver representations, while (13) and (14) are its
parametrised and projected variants. Thanks to the preceding result, it becomes pos-
sible to freely translate between these three perspectives. In practice, the dimension d
of �(Q;A•) is much smaller than the ambient dimension n of Tot(A•), so one might
wish to work with the optimisation problem (13) in this smaller space. An algorithmic
approach to (14) that similarly reduces to a smaller space has been studied in [21].

Remark 6.5 The argument invoked in the proof of Proposition 6.4 simplifies consider-
ably if the n×d matrix F has orthonormal columns. In this case, the matrices Y in (13)
satisfy Y TY = idr . Moreover, the matrix Z that maximises (14) satisfies ZTZ = idr .
This is because B = FFT is an orthogonal projection onto �, so v ∈ � if and only
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if Bv = v. Since the columns of Z are in � at the optimum, we have BZ = Z and
hence idr = ZTBTBZ = ZTZ , as claimed.

6.3 Examples

We conclude this section with some examples to illustrate principal components along
quiver representations.As for usual principal components, they give a low-dimensional
projection of the data, with interpretable coordinates, in which features may be found.
We first consider a statistically motivated example.

Example 6.6 Consider the quiver representation R
2 ← R

4 → R
2 with arrow maps

A =
[
1 1 0 0
0 0 1 1

]

and B =
[
1 0 1 0
0 1 0 1

]

,

cf. Example 1.5. The space of sections is the image of R4 under the flow map, i.e. the
points

x = [
x11 x12 x21 x22 x1+ x2+ x+1 x+2

] ∈ Tot(A•) � R
8,

where + denotes summing over an index, e.g. x1+ = x11 + x12. The first four coor-
dinates xi j are joint observations, and the last four coordinates xi+ and x+ j are two
pairs of marginal observations. For example, if xi j is a gene expression measurement
for gene i in cell type j , then xi+ sums over the two cell types, while x+ j sums over
the two genes.

The principal components along the quiver representation are directions in R8 that
maximise the variance in the data, subject to taking the form of a joint observation and
its two marginals. Note that one could also consider the principal components of the
joint observations in R4, and take their image under the flow map F to give directions
in R

8. These directions will in general not coincide with the principal components
along the quiver representation, cf. the last paragraph of Example 7.5.

We next consider a biological setting, involving gene expression measurements.

Example 6.7 The development of methods that relate bulk and single-cell transcrip-
tomics data is an active area of study, see e.g. [31, Figure 1]. Bulk RNA-seq gives
an average gene expression across the cells in a sample. Single-cell RNA-seq gives
measurements for each cell. Then, cells can be clustered to give the a gene expression
value for each cell type.

Fixing g genes and c cell types, we consider the quiver representationRgc −→ R
g .

The linear map on the arrow is I ⊗a ∈ R
g×gc, where the c cell types are assumed to be

present in proportions a = (a1, . . . , ac) ∈ R
1×c. The sample data lies in Tot(A•) =

R
gc×R

g . For a sample (v,w) ∈ R
gc×R

g , the entry vi j is the gene expression of gene
i in cell type j , while wk is the bulk measurement for gene k. The data will in general
not lie in the space of sections, on account of the different measurement techniques,
as well as variation in the proportions of cell types.
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The principal components along the quiver representation are directions inRgc×R
g

that exhibit high variance in the datawhile being consistent between the single-cell and
bulk measurements. Given a coarser assignments of cells into types, this idea extends
to the quiver representation R

gc → R
gt → R

g , where t < c is the number of cells
types in the coarser clustering, see e.g. [51, Figures 3 and 4]. If the two assignments
of cells into types are not compatible, we instead consider the quiver representation
R
gc → R

g ← R
gt .

7 Principal Components as Generalised Eigenvectors

We have already noted that—aside from some very special cases as in Proposi-
tion 6.3—the principal components PCr (D;A•) of Definition 6.2 are not eigenvectors
of the sample covariance S. Here we remedy this defect by providing a spectral inter-
pretation for PCr (D;A•). All scalars, vectors and matrices described below live over
the field of real numbers.

Definition 7.1 Fix two identically sized square matrices A and B. The generalised
eigenvalues of the matrix pencil A − λB are the solutions λ to det(A − λB) = 0.
We call a nonzero vector x with Ax = λBx a generalised eigenvector, with λ its
generalised eigenvalue.

Our main tool in the quest to interpret quiver principal components as generalised
eigenvectors is the generalised singular value decomposition (GSVD) [49, Theorem
2].

Theorem 7.2 [GSVD] Given positive integers a ≥ b ≥ c, fix an (a × c) matrix A and
a (b × c) matrix B. There exist

(1) orthogonal matrices WA and WB of size a × a and b × b, respectively,
(2) (rectangular) diagonal matrices � and  of size a × c and b × c, respectively,

and
(3) a c × c invertible matrix G,

satisfying both

A = WA�G and B = WBG.

ThematricesWA,WB andG are not uniquely determined, but the ratios δ2i /σ
2
i of the

squares of the diagonal entries of � and  are completely specified (up to reordering)
by A and B. We note en passant that a different generalisation of the singular value
decomposition [49, Theorem 3] also appears in the context of constrained PCA, and
that a discussion of GSVD naming conventions can be found in [45, Section 5.5].
Returning to the setting of interest, we fix a representationA• of a quiver Q and select
a full-rank n× d matrix F : Rd → Tot(A•) whose image is �(Q;A•). The following
result is Theorem (B) from the Introduction.

Theorem 7.3 Let S be the sample covariance of a sufficiently generic mean-centred
subset D = {y1, . . . , ym} ⊂ R

n of cardinality m ≥ n. For each r ≤ d, the r-th
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principal component PCr (D;A•) is spanned by Fur , where ur is the eigenvector
of the matrix pencil FTSF − λ(FTF) corresponding to its r-th largest generalised
eigenvalue.

Proof Let M denote them×n matrix whose i-th row is the normalised vector yi/
√
m,

so that the sample covariance satisfies S = MTM . Noting that m ≥ n ≥ d, we apply
the GSVD from Theorem 7.2 to the m × d matrix A = MF and the n × d matrix
B = F . This produces factorisations

MF = WA�G and F = WBG

with orthogonal WA,WB , invertible G, and diagonal �,. Since D is generic and F
has full rank, we may safely assume that the diagonal entries of � and  are nonzero.
And by orthogonality of both the W -matrices, we obtain two new identities

(MF)T(MF) = GT�2G and FTF = GT2G. (15)

Since S = MTM by design, the first identity reduces to FTSF = GT�2G. Let us
write {δ1, . . . , δd} and {σ1, . . . , σd} for the (necessarily nonzero) diagonal entries of
� and , respectively, and denote by gi the i-th column of G−1. It follows from (15)
that gi is a generalised eigenvector for the d × d matrix pencil (FTSF) − λ · (FTF),
corresponding to the generalised eigenvalue λi := δ2i/σ 2

i . In other words, we have

(FTSF)gi = λi · (FTF)gi . (16)

The top d × d block d of  is invertible because its diagonal has nonzero entries.
Since G is also invertible, the product dG permutes the set of d × r matrices via
Y �→ Y◦ = dGY , which allows us to re-express the optimisation (13) in a particularly
convenient form. To this end, we calculate:

Y T(FTSF)Y = Y T(GT�2G)Y by (15)

= (G−1−1
d Y◦)T(GT�2G)(G−1−1

d Y◦) since Y◦ = dGY

= Y T◦ −1
d �2−1

d Y◦ after two cancellations.

Now the intermediate product∇ := −1
d �2−1

d is a d×d diagonal matrix whose i-th
diagonal entry is λi = δ2i/σ 2

i . Reordering basis vectors if necessary, we can assume
without loss of generality that λ1 > · · · > λd . The change of variables Y �→ Y◦
transforms the optimisation problem from (13) into

max
Y◦

tr(Y T◦ ∇Y◦) subject to Y T◦ Y◦ = idr .

This is ordinary PCA the optimisation (11), which generically admits a unique solution
Y∗ obtained by successively increasing r . Since∇ is diagonal, the i-th column of Y∗ is
the i-th elementary basis vector. Thus, the columns {u1, . . . , ur } of U = G−1−1

d Y∗
lie in the directions of the corresponding columns of G−1. By (16), these columns
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are generalised eigenvectors associated to the r largest generalised eigenvalues of our
matrix pencil. Finally, applying F to U gives the principal components along the
quiver representation as in Proposition 6.4. �

It follows that the top principal component is Fu, where u maximises the Rayleigh
quotient

uT(FTSF)u

uT(FTF)u
, (17)

but in general for r > 1 the optimisation (13) is not equivalent to a single trace ratio
problem (see [40]).

Remark 7.4 Since the embedding F : Rd → Tot(A•) has rank d, the d×d matrix FTF
is invertible. We can therefore convert the generalised eigenproblem of Theorem 7.3
into the usual eigenvector problem F+SFx = λx , where F+ = (FTF)−1FT is the
pseudo-inverse. However, as explained in [21, Section 4], it is often preferable to work
with the generalised eigenvalue problem as the matrix F+SF may not be symmetric.
And depending on the condition number of (FTF)−1, the numerical stability might
be worse .

Example 7.5 Consider the quiver u• •ve with representation:

R
p • •Rq .

J

Writing n = p + q for the dimension of the total space, the n × n sample covariance
S of some D ⊂ R

n and the embedding F : Rp → R
n can be written as

S =
[
Suu Suv

Svu Svv

]

, F =
[
idp
J

]

,

where Svu = STuv . Theorem 7.3 shows that the principal components are given by the
generalised eigenvectors of the matrix pencil A − λB spanned by

A = Suu + J TSvu + Suv J + J TSvv J , B = idp + J T J .

In the special case where D lies in the image of F , we have

S =
[
idp
J

]

Suu
[
idp J T

] =
[
Suu Suu J T

J Suu J Suu J T

]

,

and the matrix pencil is spanned by

A = Suu + J T J Suu + Suu J
T J + J T J Suu J

T J , B = idp + J T J .

If, in addition, J T J equals ηidp for some scalar η, then this specialises further to
give the matrix pencil spanned by A = (1 + 2η + η2)Suu and B = (1 + η)idp. Now
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the principal components along the quiver representation are given by Fξ , where ξ

are the usual principal components of D restricted to the vector space Rp on the first
vertex of the quiver.

8 Learning Quiver Representations

We conclude this paper with a discussion focused on the problem of learning quiver
representations fromobserved data. Fix a quiver Q = (s, t : E → V ), and assume that
we have full knowledge of the real vector spaces {Av | v ∈ V } assigned by some Q-
representation A• to all the vertices. However, none of the linear maps Ae : As(e) →
At(e) are known. Instead, we are given access to mean-centred data {y1, . . . , ym},
where each yi is a vector in the total space Tot(A•) � R

n . Our task is to determine the
Ae maps that best fit the available data; here we will show how in special cases this
task reduces to well-studied problems. It will be convenient to define, for each vertex
v, the m × dimAv matrix Yv whose i-th row is the part of yi that lies in Av .

Example 8.1 Consider the quiver u• •ve with representation Au• •Av,
Ae

with matrix Ae unknown. Given data yi = (yi,u, yi,v) ∈ Au ×Av for i ∈ {1, . . . ,m},
minimising the Euclidean distance between yi,v and Ae yi,u for each i gives the least
squares optimisation problem

min
Ae

‖Yv − YuAT
e‖.

Thus, the optimal estimate for AT
e is (Yu)+Yv , where (Yu)+ indicates the Moore-

Penrose inverse of Yu .

The preceding example can equivalently be viewed as training (or, learning the
dim(Au)×dim(Av) parameters in) a linear neural network with full bipartite connec-
tions between a single input and output layer:

dim(Au)

{
...

◦

◦
...

◦

◦

}
dim(Av)

The principal components along the quiver representation are then pairs of points in
the input space Au and the output space Av that fit the weights on the edges and along
which high variance is seen in the data.

Remark 8.2 More generally, a linear neural networkwith k layers corresponds to learn-
ing a quiver representation on the quiver with k edges

• e1 • e2 · · · ek−1 • ek •

Each vertex v is replaced by dim(Av) scalar nodes, with full bipartite connections
between nodes in adjacent layers. A more general architecture could involve other
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quivers. For example, loops arise from lateral interactions [5, Figure 5]. The setting of
learning parameters in linear neural networkswith two layers is itself closely connected
to principal component analysis [4].

One way to extend the above to more general quivers is to learn the map on each
edge e independently, which amounts to minimising the objective function:

∑

e∈E

(
‖Yt(e) − Ys(e)AT

e‖2
)

. (18)

Now the estimate for each edge map Ae is given by Example 8.1. If the quiver Q is an
arborescence, then the optimisation (18) falls into the setting of a Gaussian graphical
model [36, 44] associated to a certain directed acyclic graphwith dim Tot(A•) vertices,
as we now describe.

Definition 8.3 Let δ : V → Z≥0 be a function from the vertices of an arborescence Q
to the non-negative integers. The δ-blowup of Q is the quiver Qδ where each v ∈ V
is replaced by δ(v) vertices, and each edge e ∈ E is replaced by a complete directed
bipartite graph whose edges go from the δ(s(e)) vertices replacing s(e) to the δ(t(e))
vertices replacing t(e).

The directed acyclic graph of interest to us here is the δ-blowup of the arborescence
Q where δ(v) = dimAv . We denote this blowup by Qdim(A•). For instance, if Q is
the arborescence on the left and A• is the representation (known only on the vertices)
depicted in the middle, then the blowup Qdim(A•) is shown to the right.

• • •

•

R R
2

R
3

R
2

◦ ◦
◦
◦

◦
◦

◦
◦

The entries of the unknown matricesAe become unknown scalar weights on the edges
of Qdim(A•). Maximum likelihood estimation in the Gaussian graphical model learns
the weights on these edges byminimising least squares error. Since this is equivalent to
(18), it gives an identical estimate for the unknown maps in the quiver representation.

Although Definition 8.3 extends verbatim to the case where Q is not an arbores-
cence, the maximal likelihood estimation strategy described above is restricted to the
setting of an arborescence. This is because weights of incoming edges at a vertex of the
directed acyclic graph are summed over in a graphical model [44, Equation (13.2.3)].
By comparison, in the quiver setting we do not sum incoming edges from different
vertices of the quiver in (18). Thus the above strategy only works when each vertex in
the quiver has at most one incoming edge.

The local assumption governing the choice of objective function in (18) is that
the maps Ae can be learned independently of one another; this does not take into
account the goodness of fit of data along longer paths in the quiver. Given such a path
p, one may wish to minimise the distance between yi,t(p) and Ap yi,s(p). This yields
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an immediate generalisation of the objective function in (18), where one sums the
contributions of each path in Q, rather than just over each edge. For acyclic quivers,
such an optimisation can be approached by using a suitable partial order on edges,
but it is more complicated for quivers with cycles. We defer a more general study of
learning maps in quiver representations to future work.

Our final example is an illustration of finding principal components along a learned
quiver representation. This combines parameter estimation with principal component
analysis, as is also seen in [38, 47, 50].

Example 8.4 Consider once again the quiver with one edge e : u → v and representa-
tionRp → R

q with unknownAe. The best estimate is given by (Y+
u Yv)

T, as described
in Example 8.1. Thus, a parameterisation of the space of sections �(Q;A•) is given
by

F =
[

I
(Y+

u Yv)
T

]

.

The top principal component along the quiver representation is the direction in the
image of F along which there is maximum variance in the data. This can be computed
using Theorem 7.3 via the matrix pencil from Example 7.5, provided that we set
J = (Y+

u Yv)
T.
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