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CHAPTER 1

The Topology of Data and its Transformations
� �

What information consumes is rather obvious: it consumes the attention of its re-
cipients. Hence a wealth of information creates a poverty of attention, and a need to
allocate that attention efficiently among the overabundance of information sources that
might consume it.

–Herbert Simon [34]

1.1. Introduction and Motivation

Large quantities of high-dimensional data arise in innumerable contexts. Of particular inter-
est are the experimental sciences whose measuring devices have improved their power, scope
and resolution at extraordinary rates. Aside from large size and dimensionality, experimental
data is often plagued by incompleteness and noise. Naturally, as the rapid generation of such
data outpaces our ability to extract useful and dependable information from it, we seek effi-
cient and robust data processing tools. These tools must distill qualitative information which
yields insight into the processes that have generated this over-abundance of data in the first
place.

Here is a dataset which is neither large nor high dimensional, and can therefore be easily
visualized:

FIGURE 1. Points in the plane

Traditional methods of extracting information from such datasets rely on statistical tools
such as regression analysis. These tools provide efficiently computable answers to questions
like “what line best approximates these points?”, where “best” refers to an optimal solution of a
suitably constructed variational problem, such as a minimizer of least square error. Perhaps
most importantly for concrete applications, these statistical methods typically provide coarse
information which is remarkably robust to measurement errors.

The central focus of topological data analysis is the construction of methods that – while also
being efficiently computable and robust to noise like their statistical cousins – yield a different
type of insight into data. For instance, a coarse topological description of the example dataset
from Figure 1 would ideally detect the existence of three point clusters and indicate that one of
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2 1. THE TOPOLOGY OF DATA AND ITS TRANSFORMATIONS

these clusters contains two fairly prominent loops. Such information is provided by the theory
of persistent homology, which we will describe formally later.

Heuristically, a nested family of topological sub-spaces K = {Kr | r > 0} of the plane is
constructed from the dataset as follows. For each r, Kr is the union of radius r open balls
centered at the data points. For each topological feature (i.e., a connected component or a loop)
that exists in any member space of K, one can associate a birth and death scale corresponding to
the r values where it first appears and disappears respectively. The persistence of each feature
is then defined to be its lifespan, equalling death minus birth. For instance, the two large holes
in the picture will have much greater persistence than the many smaller holes that arise from
growing balls around densely clustered points.

The features of persistent homology which make it particularly suitable for analyzing vast
datasets have been thoroughly documented in the survey articles of Gunnar Carlsson [7],
Robert Ghrist [16], Herbert Edelsbrunner and John Harer [12], so we will not delve too deeply
into those advantages here. It should suffice for the purposes of this introduction to state
that topological data analysis in general, and persistent homology in particular, have been
extremely useful tools in diverse data-driven contexts.

The three basic steps of topological data analysis are as follows:

(1) topologize the data by imposing the structure of a filtered cell complex on it,
(2) compute algebraic invariants of topological features within this complex, and
(3) represent these invariants in a manner that isolates topological features by promi-

nence.

Since we are restricting our attention to persistent homology, the algebraic invariants of interest
to us will usually be persistent homology groups and the representations of choice are their
associated persistence diagrams.

Also of interest – particularly in the topological analysis of dynamical systems – are trans-
formations of such data. In this setting, there is no fixed dataset but rather an evolving family
of datasets where the object under investigation is the unknown underlying function which
drives this evolution. Topological analysis of such data transformations involves imposing the
structure of a cell complex on each intermediate dataset and approximating the underlying
function by a suitable combinatorial map of complexes. In addition to the usual complications
imposed by large size and dimensionality, one must also account for evaluation errors in deter-
mining the image of a given data point under this unknown function. Since algebraic topology
is a functorial construction, it associates robust algebraic invariants to continuous functions as
well as topological spaces. These invariants play an important role in analyzing the underlying
dynamics induced by such unknown continuous functions.

1.2. Contributions and Outline

The central result presented here is an extension of discrete Morse theory to filtered cell com-
plexes. This result is from [27] and we cover it here in Chapter 4.

Discrete Morse theory was originally developed by Robin Forman [13] for regular CW com-
plexes. The basic idea of this theory is to define a pairing V on some of the cells of a given com-
plex X. This pairing V , called a discrete vector field, induces a new boundary map connecting
unpaired, or critical cells of adjacent dimension. This new complex consisting only of critical
cells is called the Morse complex M associated to V . The central result of discrete Morse theory
establishes chain homotopy equivalence of X and M, and hence implies an isomorphism on ho-
mology. The more cells that V pairs, the smaller M is, and the easier it becomes to compute its
homology groups. This central idea has also been extended to a purely algebraic framework by
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Ekkehard Batzies, Volkmar Welker [4] and Emil Sköldberg [35] for the purposes of constructing
minimal cellular resolutions of multi-graded ideals in polynomial rings.

Here, we introduce a version of algebraic discrete Morse theory which is subordinate to a
given filtration X0 ⊂ X1 ⊂ . . . ⊂ XK = X of a cell complex X. This theory produces a filtered
Morse complex M0 ⊂ . . . ⊂MK = M so that not only is each Xk chain homotopy equivalent to
the corresponding Mk in the sense of Forman’s original result, but also the map on homology
induced by including Xk into Xk+1 is naturally equivalent to the corresponding map for the
inclusion of Mk into Mk+1. Thus, the persistent homology groups of the filtered complexes X and
M are isomorphic. As a first application of this theory, we introduce efficient algorithms to pre-
process computation of persistent homology groups in Chapter 5.

Making the discrete vector field structure subordinate to filtrations naturally raises the ques-
tion of whether such methods will simplify more general computations in homological algebra.
We answer this question affirmatively in Chapter 6 with a second application of our theory. The
context here is one of the most basic constructions of homological algebra: the derived functor.
That is, one can apply the Morse pre-processing machinery to significantly reduce the compu-
tational cost of building long exact sequences in homology from short exact sequences of free
module chain complexes over a principal ideal domain. In particular, we focus our attention
here on the constructing the long exact sequence of a triple and the Mayer-Vietoris sequence.

One important question regarding the application of algebraic topology to datasets is, as-
suming that the data has been randomly sampled from an underlying unknown topological space, how
much information about that space can one recover from the data? A result of Partha Niyogi, Steve
Smale and Shmuel Weinberger [32] provides explicit bounds on the size of a uniformly sampled
dataset lying on or near a compact Riemannian submanifold M ⊂ Rn required to recover the
homotopy type ofM with high confidence. The secondary contribution presented here, which
is the main result of [28], is an analogous theorem for Lipschitz-continuous functions between
such submanifolds. We demonstrate in Chapter 3 that we can recover the map induced on ho-
mology by such a function with high confidence given only a sufficiently large set of uniformly
sampled data points and their images.

The algebraic, topological and combinatorial machinery required to get to the central results
of this dissertation is minimal; it has been included in Chapter 2 for completeness.





CHAPTER 2

Background and Terminology
� �

“A little learning is a dangerous thing
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,

And drinking largely sobers us again.”
–Alexander Pope, An essay on criticism

2.1. Introduction

We provide a brief synopsis of definitions and results from homological algebra in Sec-
tion 2.2 and combinatorial topology in Section 2.5 while referring the reader to the excellent
textbooks of Charles Weibel [39] and Dmitry Kozlov [23] for complete treatments of these top-
ics. Section 2.3 deals with combinatorial cell complexes as developed by Albert Tucker [37]
and Solomon Lefschetz [24]. Section 2.4 surveys the relatively new field of persistent homology
[15, 7, 40, 10] which is defined for filtered cell complexes.

2.2. Elementary Homological Algebra

Let N denote the set of natural numbers (including zero), let Z denote the integers and let
R be a principal ideal domain (PID).

2.2.1. Exact Sequences. By a sequence A of R-modules we mean a collection of R-modules
An and their morphisms γn : An → An−1 for n ∈N arranged as follows:

. . .
γn+1−→ An

γn−→ An−1
γn−1−→ . . .

γ1−→ A0

We say that A is exact if it is exact at each An, i.e., if kerγn = imgγn+1 for each n ∈ N. Given
k ∈ Z, a degree k morphism from A to another sequence A ′ is a collection of R-module maps
Σ =
{
σn : An → A ′n+k

}
so that the following diagram commutes for each n and k

An An−1

A ′n+k A ′n+k−1

//
γn

��

σn

��

σn−1

//
γ ′n+k

with the understanding that all negative indices correspond to the trivial module. We call
Σ : A→ A ′ an isomorphism if it has degree 0 and each σn is an isomorphism of R-modules. We
denote by idA the degree 0 automorphism of A where each An is identically mapped to itself.

2.2.2. Chain Complexes. A chain complex (C;∂) over R is a sequence of R-modules

. . .
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ . . .

∂1−→ C0 → 0

5



6 2. BACKGROUND AND TERMINOLOGY

such that ∂n ◦ ∂n+1 ≡ 0 for each n. An element of Cn is called a n-chain and ∂n is called the
n-th boundary operator. The submodules Zn = ker∂n and Bn = img∂n+1 of Cn are called the
n-cycles and n-boundaries respectively. The n-th homology module of the chain complex (C;∂) is
defined to be the quotient

Hn(C;∂) =
Zn

Bn
When the boundary operator ∂ is clear from context, we suppress it and simply denote the
homology modules by Hn(C). Recall that exact sequences are chain complexes which have
trivial homology modules.

Given a chain complex (C;∂), a chain subcomplex is a collection of submodules {C ′n ⊂ Cn | n ∈N}

such that ∂n(C ′n) ⊂ C ′n−1. Note that (C ′;∂) forms a chain complex in its own right. Given such
a subcomplex, we may define a relative chain complex (C,C ′) whose n-chains are the quotient
modules Cn/C ′n and the boundary maps are naturally induced by ∂. The homology modules of
this relative complex are denoted by H∗(C,C ′).

A chain map φ : (C;∂)→ (D; δ) between two chain complexes is a degree 0morphism of the
underlying R-module sequences, i.e., a sequence of maps φn : Cn → Dn such that φn−1 ◦ ∂n ≡
δn ◦ φn. It is easy to see that any chain map φ maps cycles in C to cycles in D and similarly
boundaries to boundaries. Therefore, φ induces well-defined maps φ∗n : Hn(C) → Hn(D) of
homology modules.

We say that two chain maps α,β : (C;∂)→ (D; δ) are chain homotopic if there exist R-module
morphisms Θn : Cn → Dn+1 such that

αn −βn ≡ δn+1 ◦Θn +Θn−1 ◦ ∂n on Cn.

for each n ∈ N. In this case, we call Θ a chain homotopy which realizes the chain homotopy
equivalence of α and β.

Two chain maps φ : (C;∂) → (D; δ) and ψ : (D; δ) → (C;∂) are chain equivalences if φ ◦ψ
is chain homotopic to the identity map on C and ψ ◦φ is chain homotopic to the identity map
on D. It is well-known that chain equivalences induce inverse maps on the homology modules
and hence establish an isomorphism H∗(C,∂) ' H∗(D, δ). For a detailed discussion and proofs
see [36, Ch. 4] or [31, Ch. 1.13].

2.2.3. Sequences of Chain Complexes. A sequence of chain complexes S = {Cm,γm} consists
of

(1) chain complexes Cm = (Cm;∂m),m ∈N, and
(2) chain maps γm : Cm → Cm−1.

In particular, for each n ∈ N the corresponding n-chain modules form a R-module sequence
Sn which we call the n-th row of S:

. . .
γm+1
n−→ Cmn

γmn−→ Cm−1
n

γm−1
n−→ . . .

γ1n−→ C0n

Let S be a sequence of chain complexes as defined above and let S ′ = {Dm,βm} be another
such sequence. A morphism Ω from S to S ′ is given by chain maps ωm : Cm → Dm so that for
each n ∈ N, the collection Ωn = {ωmn : Cmn → Dmn | m ∈N} of maps on n-chains determines a
morphism of R-module sequences from Sn to S ′n.

Note that morphisms of chain complex sequences may be composed in the expected way.
Given Ω : S → S ′ and Υ : S ′ → S ′′, the composition Υ ◦Ω : S → S ′′ is defined by the sequence
of composed chain maps {υm ◦ωm}. Moreover, the concept of an identity map idS on S is well-
defined to be the morphism which acts as the identity map on each row of S.



2.3. CELL COMPLEXES AND THEIR HOMOLOGY 7

Note that a morphism Ω = {ωm : Cm → Dm} of chain complex sequences induces maps
ωm∗ : H∗(C

m) → H∗(D
m) of homology modules. A morphism Υ : S ′ → S determined by maps

υm : Dm → Cm is called a weak inverse of Ω : S → S ′ if ωm and υm are chain equivalences for
eachm ∈N. We callΩ a weak equivalence of chain complex sequences if it has a weak inverse.

The existence ofΥ as a weak inverse toΩ implies the existence of a sequence of chain homo-
topies Θm : Cm → Cm and Ξm : Dm → Dm for each m ∈N which realize the chain equivalence
of ωm and υm and hence implies isomorphisms H∗(Cm) ' H∗(Dm) of homology modules for
each m ∈ N. The following stricter notion yields similar results for relative homology but
requires these chain homotopies to respect the structure of the the rows of S and S ′.

DEFINITION 2.2.1. We call Ω : S → S ′ a strong equivalence if there exists a weak inverse
Υ : S ′ → S along with chain homotopies Θm : Cm∗ → Cm∗+1 and Ξm∗ : Dm∗ → Dm∗+1 for eachm ∈N

such that
(1) Θm and Ξm realize the weak equivalence ofΩ and Υ, and
(2) the maps

{
Θmn : Cmn → Cmn+1 | m ∈N

}
and
{
Ξmn : Dmn → Dmn+1 | m ∈N

}
constitute de-

gree 1 self-morphisms of the rows Sn and S ′n respectively for each n ∈N.
Υ is called a strong inverse ofΩ in this case.

The second requirement of the definition above imposes the following additional relations
on the chain homotopies which realize a weak equivalence of chain complex sequences:

Θm−1
n ◦ γmn ≡ γmn+1 ◦Θmn and Ξm−1

n ◦βmn ≡ βmn+1 ◦ Ξmn
For each m and p ∈ N, we denote by γm,p : Cm → Cm+p the composition of chain maps

γm+p−1 ◦ . . . ◦ γm.

REMARK 2.2.2. Let Ω : S → S ′ and Υ : S ′ → S be strong equivalences. Given natural num-
bers m and p, note that ωm+p restricted to γm,p(Cm) maps into βm,p(Dm) and hence induces
a well-defined relative chain map ω̄m+p : (Cm+p,γm,p(Cm)) → (Dm+p,βm,p(Dm)). Let ῡm+p

be the corresponding map for Υ. Since Ω and Υ are strong equivalences, there exist chain ho-
motopies Θm+p and Ξm+p which induce well-defined relative chain homotopies that in turn
establish the chain equivalence of ω̄m+p and ῡm+p. Thus, we obtain an isomorphism of relative
homology modules H∗(Cm+p,γm,p(Cm)) ' H∗(Dm+p,βm,p(Dm)).

Recall that a sequence S of chain complexes is short exact if it has the form

. . .→ 0→ C
α−→ D

β−→ E→ 0→ . . .

and moreover, if for each n ∈N the n-th row Sn is an exact sequence of R-modules

0→ Cn
αn−→ Dn

βn−→ En → 0

In particular, exactness of Sn implies that αn is injective, βn is surjective and kerβn = imgαn
for each n ∈N.

2.3. Cell Complexes and their Homology

The following notion of a cell complex which dates back to Tucker [37] and Lefschetz [24]
provides a general and convenient method of representing the bases of free and finitely gener-
ated R-modules which comprise a chain complex. Our presentation here is more closely related
Mrozek and Batko’s defintion of S-complexes from [29].

DEFINITION 2.3.1. Consider a finite graded set X =
⊔
n∈N Xn along with a function κ : X×

X→ R and denote ξ ∈ Xn by dim ξ = n. Then, (X, κ) is a complex if
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(i) For each ξ and ξ ′ in X,

κ(ξ, ξ ′) 6= 0 implies dim ξ = dim ξ ′ + 1. (2.1)

(ii) For each ξ and ξ ′′ in X, ∑
ξ ′∈X

κ(ξ, ξ ′) · κ(ξ ′, ξ ′′) = 0 (2.2)

An element ξ ∈ X is called a cell and dim ξ is called the dimension of ξ. The function κ is
called the incidence function for the cell complex (X, κ). We denote (X, κ) simply by X when
there is no possible confusion about the incidence function. The face partial order 2 is induced
on the elements of X by the transitive closure of the generating relation ≺ given as follows. For
ξ and ξ ′ ∈ X

ξ ′ ≺ ξ if κ(ξ, ξ ′) 6= 0.
By (2.1), the function dim : X→N is an order-preserving map.

EXAMPLE 2.3.2. The most common types of complexes encountered in the analysis of data
are simplicial and cubical complexes. We observe that both are special cases of the general notion
of cell complex from the preceding definition.

(1) Recall that a finite abstract simplicial complex X is a collection of non-empty subsets of a
finite universal set U such that if ξ ⊂ U is in X and ξ ′ ⊂ ξ then ξ ′ is also in X. Given a
cell ξ in X – called a simplex – we define dim ξ = #ξ− 1 (where # denotes cardinality as
a set). Note that U is naturally identified with the 0-dimensional simplices X0. Assume
that the elements of U are ordered and let ξ = {u0, . . . ,uk} be a k-simplex where the
indices respect the order inherited from U. Over the integers, the simplicial incidence
function κ∆ : X×X→ Z is defined by

κ∆(ξ, ξ ′) =

{
(−1)j if ξ ′ = ξ \

{
uj
}

0 otherwise

(2) An elementary interval I has the form [p,p + k] ⊂ R for p ∈ Z and k ∈ {0, 1}. I is
called degenerate if k = 0. For a non-degenerate I, define the degenerate intervals
I+ = [p + k,p + k] and I− = [p,p] called the front and back faces of I respectively.
An elementary cube ξ of dimension d is the product of elementary intervals I1× . . .× IN
so that precisely d of these intervals are non-degenerate; the n-th front and back faces
ξ+n and ξ−n of ξ are the elementary cubes obtained by replacing a non-degenerate factor
In of ξ by I+n or I−n respectively in the product expansion.

A cubical complex X is a finite union of elementary cubes so that for each ξ ∈ X, all
faces of ξ are also in X. Letting ξ = I1 × . . .× IN as above, the cubical incidence function
κ� : X×X→ Z is defined by

κ�(ξ, ξ ′) =


−1 if ξ ′ = ξ+n for even n or ξ ′ = ξ−n for odd n
+1 if ξ ′ = ξ+n for odd n or ξ ′ = ξ−n for even n
0 otherwise.

Given a complex (X, κ) the associated chain complex C(X) may be written as

. . .
∂n+1−→ Cn(X)

∂n−→ Cn−1(X)
∂n−1−→ . . .

∂1−→ C0(X)



2.4. FILTRATIONS AND PERSISTENT HOMOLOGY 9

where Cn(X) is the free R-module R(Xn) based at the n-dimensional cells and the boundary
operator ∂n : Cn(X)→ Cn−1(X) is generated by the following basis action

∂nξ :=
∑
ξ ′∈X

κ(ξ, ξ ′)ξ ′.

The n-dimensional cycles, boundaries and homology modules of the cell complex X are de-
noted Zn(X), Bn(X) and Hn(X) respectively and defined to be the n-cycles, boundaries and
homology modules of the associated chain complex C(X).

Consider X ′ ⊂ X and note that the restriction of κ to X ′×X ′ satisfies (2.1). If for each η ∈ X ′

the set {ξ ∈ X | ξ ≺ η} is contained in X ′, then we say that X ′ satisfies the subcomplex property
and call X ′ a subcomplex of (X, κ). Note that equation (2.2) is automatically satisfied for X ′, and
so (X ′, κ) is a complex in its own right.

When X ′ is a subcomplex of X, its associated chain complex C(X ′) is a chain subcomplex
of C(X) and the relative homology modules Hn(X,X ′) are defined to be the relative homology
modules Hn(C(X),C(X ′)) of chain complexes.

2.4. Filtrations and Persistent Homology

Consider a complex (X, κ) over a PID R. A filtration F of X is a finite sequence of subcom-
plexes {Xm | 1 6 m 6M} of X such that

X1 ⊂ X2 ⊂ . . . ⊂ XM = X

The associated chain filtration F(X) is defined to be the following sequence of chain complexes

C(X1)
i1−→ C(X2)

i2−→ . . .
iM−1

−→ C(XM)

where the chain maps im arise from inclusion of chains. For each m and n in N, let Cn(Xm),
Zn(X

m) and Bn(Xm) denote the n-dimensional chains, cycles and boundaries of the chain com-
plex C(Xm) respectively.

For p ∈ N, we denote by im,p : C(Xm) → C(Xm+p) the composition im+p−1 ◦ . . . ◦ im with
the tacit understanding that the composition equals the identity map on C(Xm) when p = 0
and equals zero when m + p exceeds the length M of the filtration F. The p-persistent q-th
homology module of Xm is defined to be

Hpn(X
m) := im,p

n∗ (Hq(X
k)) =

im,p(Zn(X
m))

im,p(Zn(Xm))∩Bn(Xm+p)
(2.3)

where the second equality follows by induction on p.
Informally, Hp(Xm) consists of cycles included from C(Xm) into C(Xm+p) modulo bound-

aries. An algorithm for computing persistent homology modules when the underlying PID R
is a field may be found in [40].

2.4.1. Persistence Diagrams and Stability. Let S be a sequence of chain complexes of finitely
generated modules over a PID R, given by

C1
γ1−→ C2

γ2−→ . . .
γm−1

−→ Cm
γm−→ . . .

Fix a dimension n ∈ N and note that S induces a sequence Hn(S) of n-dimensional homology
modules, i.e.,

Hn(C
1)

γ1n∗−→ Hn(C
2)

γ2n∗−→ . . .
γm−1
n∗−→ Hn(C

m)
γmn∗−→ . . .

and let Hn =
⊕
m∈NHn(C

m) denote the direct sum of R-modules which comprise Hn(S). De-
note the ring of polynomials with R-coefficients in an indeterminate t by R[t] and recall that
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this ring is naturally graded:
R[t] =

⊕
m∈N

Rm[t],

where Rm[t] consists of all polynomials in R[t] of degreem. We endowHn(S) with the structure
of an R[t]-module via the following action of t on every generator x = (x1, x2, . . .) ∈ Hn

t · (x1, x2, . . .) = (0,γ1n∗(x1),γ
2
n∗(x2), . . .)

In general, there is no nice classification theorem for such modules because R[t] may not be
a principal ideal domain. However, if R happens to be a field, then R[t] is a PID and hence
the structure theorem for finitely generated (graded) modules over a (graded) PID applies.
Recalling that every graded ideal of R[t] has the form tk ·R[t] for some k ∈ N, this structure
theorem decomposes Hn into free and torsional parts

Hn '

[
I⊕
i=1

tai ·R[t]

]⊕ J⊕
j=1

tbjR[t]/(tdj)


Thus, the family of natural numbers

{
ai,bj,dj

}
for i ∈ {1, . . . , I} and j ∈ {1, . . . , J} provides a

complete invariant for the isomorphism class of Hn as a module over R[t].
Consider now the case where S is the chain filtration associated to a cell complex (X, κ)

filtered by F = {Xm}. In this case, the numbers
{
ai,bj,dj

}
completely classify then-dimensional

persistent homology modules of F. We encode the structural information of Hn in a persistence
diagram PF

n which consists of all the points (ai,∞) and (bj,dj) – with appropriate multiplicity.
In Figure 1, we plot a persistence diagram in the extended plane R × (R ∪ {∞}). Here, the
unique point of the type (a,∞) occurs when a = 0; it has been placed at the top of the diagram
above 0 and is represented by a diamond shape (♦). By convention, all points of the diagonal
{(x, x) | x ∈ R} are also included in the persistence diagram with infinite multiplicity.

FIGURE 1. A persistence diagram.
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The bottleneck distance between two persistence diagrams P and P ′ is defined as follows

dB(P,P ′) = inf
λ

sup
p∈P
‖p− λ(p)‖∞

where λ ranges over all bijections from P to P ′, and ‖ · ‖∞ denotes the usual L∞-norm on the
plane. Note that since the diagonals are included in both diagrams with infinite multiplicity,
it is always possible to pair an excess off-diagonal point with a point on the diagonal. Thus, it
is not necessary to restrict the scope of bottleneck distance to only those diagrams which have
the same number of off-diagonal points.

The key feature of persistence diagrams which makes them effective invariants of data is
their stability to perturbations [10] in the following sense. Let g : X → R be a continuous
function on a topological space X and for each a ∈ R denote by Xa the sub-level set g−1(−∞,a).
We call g tame if there are only finitely many real numbers c ∈ R for which the inclusion of
spaces Xc ↪→ Xc+ε does not induce an isomorphism of homology modules for sufficiently small
ε > 0. These exceptional numbers c are called homological critical values of g.

Assume now that the domain X is triangulable and that Xc is a sub-complex of X for each
homological critical value c of g. Ordering these critical values by c1 6 c2 6 · · · 6 cM, we have
the following filtration Fg of the triangulated complex X associated to the tame function g:

Xc1 ⊂ Xc2 ⊂ . . . ⊂ XcM ⊂ X∞ = X

Define Pg to be the persistence diagram associated to Fg with the following simple modifica-
tion: each point (i, j) of the usual diagram is replaced with the corresponding pair of homolog-
ical critical values (ci, cj) of g. The following theorem from [10] makes precise the stability of
such persistence diagrams to petrurbation

THEOREM 2.4.1. Let g and g ′ be tame functions from a triangulable space X to R. Then,

dB(Pg,Pg ′) 6 ‖g− g ′‖∞
2.4.2. Morphisms of Filtrations. Using the framework of Section 2.2.3 allows us to impose

a categorical structure on filtrations of cell complexes as follows. Let X and Y be complexes
over a PID R, and let F = {Xm}

M
1 and G = {Ym}

M
1 be respective filtrations. We denote the

corresponding chain maps arising from inclusion by im : C(Xm) → C(Xm+1) and jm : C(Ym) →
C(Ym+1) . A filtered chain map Φ = {φm : C(Xm)→ C(Ym)} from F to G is a morphism F(X) →
G(Y) of the associated chain filtrations.

This definition is illustrated by the following commutative diagram:

C(X0) C(X1) . . . C(Xm) . . .

C(Y0) C(Y1) . . . C(Ym) . . .

//
i0

��

φ0

//
i1

��

φ1

//
im−1

//
im

��

φm

//
j0

//
j1

//
jm−1

//
jm

Note that for eachm,p ∈N we may define a chain mapφm,p : C(Xm+p)→ C(Ym+p) simply
by setting φm,p = φm+p, and recall that im,p : C(Xm)→ C(Xm+p) denotes the usual composition
im+p−1 ◦ . . . ◦ im.

PROPOSITION 2.4.2. The mapsφm,p canonically induce morphismsφm,p
∗ : Hp∗(X

m)→ H
p
∗(Y

m)
of persistent homology modules.

PROOF. Pick a cycle x ′ ∈ Z(Xm) and include it into C(Xm+p) via im,p. To avoid confusion,
call the included chain x = im,p(x ′). Now let [x] be the equivalence class of x inHp(Xm). We will
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provisionally define φm,p
∗ ([x]) to be the equivalence class [φm,p(x)] in Hp(Ym). First, we show

that the image lies in Hp(Ym) as desired, and and then we will show this map is well-defined
on persistent homology in the sense of being independent of the choice of x ′ (and hence x) up
to elements of B(Xm+p).

First, φm,p(x) ∈ C(Ym+p) can be re-expressed as a cycle in C(Ym+p) by commuting the chain
maps φ∗ past the inclusions i∗ by using the fact thatΦ is a morphism of chain filtrations. More
precisely,

φm,p(x) = φm,p ◦ im,p(x ′) by definition of x

= φm,p ◦ im+p−1 ◦ . . . ◦ im(x ′) by definition of im,p

= φm+p ◦ im+p−1 ◦ im+p−2 ◦ . . . ◦ im(x ′) by definition of φm,p

= jm+p−1 ◦φm+p−1 ◦ im+p−2 ◦ . . . ◦ im(x ′) commuting φ past i
= . . . repeatedly commute

= jm+p−1 ◦ . . . ◦ jm ◦φm(x ′)
= jm,p ◦φm(x ′) by definition of jm,p

Since φm : C(Xm) → C(Ym) is a chain map, we recognize φm(x ′) as a cycle in C(Ym) which
is then included via jm,p to a cycle in C(Ym+p), as desired. For well-definedness, consider a
boundary y ∈ B(Xm+p). Then, ∃z ∈ Cm+p(X) so that y = ∂m+p(z). Immediately, we see that

φm,p(y) = φm+p(y) by definition

= φm+p ◦ ∂m+pz by definition of y

= δm+p ◦φm+p(z) since φ is a chain map

∈ B(Ym+p)

Thus, φm,p(y) lies in B(Ym+p) and is consequently trivial on the level of persistent homology
as desired. �

In light of the preceding proposition, we will unambiguously refer to the morphisms on per-
sistent homology modules induced by a filtered chain map. We will say that filtered chain maps Φ
from F to G and Ψ from G to F are filtered chain equivalent if they constitute weak inverse mor-
phisms of the associated chain filtrations. The following proposition is a direct consequence of
these basic defintions.

PROPOSITION 2.4.3. IfΦ and Ψ are are filtered chain equivalences between filtrations F and
G, then they induce isomorphisms on persistent homology modules.

PROOF. Let {Θmn : Cn(X
m)→ Cn+1(X

m)} be any sequence of chain homotopies which re-
alize a weak equivalence between the composition Ψ ◦Φ and the identity idF. We will pick
arbitrary m and p and demonstrate an isomorphism between the persistent homology mod-
ules Hp(Xm) and Hp(Ym). The central idea is to make use of the chain homotopy property of
Θm+p, namely

ψm+p ◦φm+p − idF ≡ Θm+p ◦ ∂m+p + ∂m+p ◦Θm+p (2.4)

Pick any cycle x ′ ∈ Z(Xm), include it via im,p to Z(Xm+p) and call this included cycle x. Letting
[x] denote the equivalence class of x in the persistent homology moduleHp(Xm), we also know
that φm,p

∗ ([x]) is a well-defined element of Hp(Ym). But now,
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ψm,p
∗ ◦φm,p

∗ ([x]) = [ψm,p ◦φm,p(x)]

= [ψm+p ◦φm+p(x)], by definitions of φm,p and ψm,p

= [x +Θm+p ◦ ∂m+px + ∂m+p ◦Θm+px], by (2.4)

= [x + ∂m+p ◦Θm+px] since ∂m+px = 0 for x ∈ Z(Xm+p)

= [x], since the latter term lies in B(Xm+p)

Reversing the order of composition and using a chain homotopy relating Φ ◦ Ψ to idG in
a similar argument establishes that φm,p

∗ and ψ
m,p
∗ are indeed inverses, and hence that the

persistent homology modules Hp(Xm) and Hp(Ym) are isomorphic.
�

2.5. Combinatorial Topology

We review some classical results related to nerves (used both to provide representations
of spaces and to generate associated chain complexes), carriers (used to obtain chain maps
between the spaces), and outer approximations (used to approximate continuous functions).

2.5.1. The Nerve Lemma. Let M be a topological space and let U be a finite open cover of
M. Recall [31, 36] that the nerve N(U) is the abstract simplicial complex where each simplex of
dimension k corresponds to a non-empty intersection of k+ 1 distinct elements of U.

Given the simplex σ defined by the intersection of a subcollection S ⊂ U, the support of σ is
defined to be the non-empty intersection

bσc =
⋂
U∈S

U

The support of a simplicial subcomplex K ⊂ N(U) is the union of the supports of the con-
stituent simplices: bKc =

⋃
σ∈Kbσc. On the other hand, given any subset S ⊂ M, we define

its hull hU[S] to be the simplicial subcomplex of N(U) generated by the collection of simplices
whose supports intersect S, i.e., {σ ∈ N(U) | S∩ bσc 6= ∅}.

We call N(U) a contractible nerve if the support of each simplex σ ∈ N(U) is contractible to
a single point. If M lies in a topological vector space and if each U ∈ U is convex, then the
non-empty intersections are also convex and hence contractible. Thus, the nerve of a convex
open cover is always contractible.

Ordering the elements of U orders the 0-simplices of N(U) and hence induces an orientation
on N(U). The k-chains Ck(U) of N(U) are the free abelian group generated by the oriented k-
simplices. The support of a chain x =

∑
jmjσj is the union of the supports of the underlying

simplices:
bxc =

⋃
j

bσjc

The simplicial boundary operator ∂k : Ck(U) → Ck−1(U) is defined on the k-simplex σS corre-
sponding to the ordered set S = {U1, . . . ,Uk+1} by the usual formula (see Example 2.3.2)

∂k(σS) =

k+1∑
j=1

(−1)jσS\{Uj}

It is straightforward to check that ∂ ◦ ∂ ≡ 0, and so one obtains the chain complex

. . .
∂k+1−→ Ck(U)

∂k−→ Ck−1(U)
∂k−1−→ . . .

∂1−→ C0(U)
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The simplicial homology groups of N(U) are defined to be the usual quotient

H∆k (N(U)) =
ker∂k

img ∂k+1
Finally, we have the nerve lemma (see [23, Thm. 15.21] for the proof).

LEMMA 2.5.1. Let M be a paracompact topological space and U a finite open cover of M. If the
associated nerve N(U) is acyclic, thenM is homotopy equivalent to bN(U)c.

Since homology is a homotopy invariant, we obtain as an immediate corollary a canonical
isomorphism H∆∗ (N(U)) ' H∗(M), where H∗(M) denotes the singular homology groups ofM.

2.5.2. The Acyclic Carrier Theorem. Consider two finite abstract simplicial complexes Σ
and Γ with corresponding simplicial boundary operators ∂Σ and ∂Γ . Let 〈·, ·〉Σ and 〈·, ·〉Γ be the
usual inner products on chains obtained by treating the simplices as an orthonormal basis. De-
note by≺ the partial order on simplices in Σ generated by the transitive closure of the following
face relation

σ ′ ≺ σ if
〈
∂Σσ,σ ′

〉
Σ
6= 0

DEFINITION 2.5.2. An acyclic carrier F : Σ−→→ Γ is a map from Σ to subcomplexes of Γ which
satisfies the following requirements

(1) acyclicity: for every σ ∈ Σ, F(σ) is a (non-empty) closed acyclic simplicial subcomplex
of Γ , and

(2) semicontinuity: for simplices σ,σ ′ ∈ Σwith σ ≺ σ ′, we have the inclusion F(σ) ⊂ F(σ ′)
of simplicial complexes.

Let F : Σ−→→ Γ be fixed throughout the rest of this section. Given another acyclic carrier
G : Σ−→→ Γ , we write F ⊆ G to indicate F(σ) ⊂ G(σ) for each σ ∈ Σ. It is easy to check that ⊆
induces a partial order on the set of all acyclic carriers form Σ to Γ . We say that F carries the
abelian group morphismsω : Ck(Σ)→ C`(Γ) if for each σ ∈ Σ, we have

{γ ∈ Γ | 〈ω(σ),γ〉Γ 6= 0} ⊂ F(σ)
The acyclic carrier theorem guarantees existence and uniqueness (up to chain homotopy) of

chain maps carried by acyclic carriers. See [31, Ch 1, Thm 13.3] for details.

THEOREM 2.5.3. Let F : Σ−→→ Γ be an acyclic carrier. Then, we have
(1) existence: there exists a chain map carried by F, and
(2) uniqueness: if F carries two chain maps φ and ψ, then F also carries a chain homotopy

between φ and ψ.

As an immediate corollary, we find that given any two chain maps φ and ψwhich share an
acyclic carrier, the induced maps on homology satisfy φ∗ ≡ ψ∗.

2.5.3. Outer Approximations. Throughout this section, let M and N be topological spaces
with finite open covers U and V respectively so that the nerves N(U) and N(V) are acyclic. Also
fix a continuous function f :M→ N. We will follow the strategy of [21, Ch 6] for approximating
f by a suitable acyclic carrier.

We say that an acyclic carrier F : N(U)−→→N(V) is an outer approximation of f if for each
σ ∈ N(U), we have the basic containment f(bσc) ⊂ bF(σ)c. In general, it is not true that f must
have an outer approximation because there is no guarantee that given a σ ∈ N(U) the image
f(bσc) is contained in the support of some acyclic subcomplex of N(V).
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Define the correspondence Mf from simplices of N(U) to simplicial subcomplexes of N(V)
in the following way:

Mf(σ) = hV[f(bσc)]
where hV denotes the hull in N(V).

We say that f is approximable if Mf is an outer approximation of f, and in this case we call
Mf the minimal outer approximation of f. The key requirement for approximability is that the
hull hV[f(bσc)] must be an acyclic subcomplex of N(V) for each simplex σ ∈ N(U), since the
containment f(bσc) ⊂ bMf(σ)c and the semicontinuity are both automatic from the definition
of Mf. We have the following proposition [21, Prop. 6.29, 6.36].

PROPOSITION 2.5.4. Assume that F : N(U)−→→N(V) is an outer approximation of an approximable
function f. Then, we have

(1) minimality: Mf ⊆ F, and consequently
(2) universality: If Mf carries a chain map φ, then so does F.

Thus, if f : M → N is approximable then by the preceding proposition and the acyclic
carrier theorem, any chain map φ carried by any outer approximation F of f descends to the
same module morphism φ∗ : H

∆
∗ (N(U)) → H∆∗ (N(V)). We call φ∗ a simplicial reconstruction of

f∗.
Note that while φ∗ is independent of the choices of F and φ, there remains an explicit de-

pendence on the choice of covers U and V which generate the acyclic nerves. However, we
have the following commutative diagram for any such U and V:

H∗(M) H∗(N)

H∆∗ (N(U)) H∆∗ (N(V))

//
f∗

��

'

��

'

//
φ∗

where the vertical isomorphisms arise from the nerve lemma.





CHAPTER 3

Recovering Manifolds and Functions from Data
� �

Fácilis descensus Averni:
noctes atque dies patet atri ianua Ditis;

sed revocare gradium superasque evadere ad auras.
Hoc opus, hic labor est.

–Virgil, The Aenid

3.1. Introduction

Perhaps the most ubiquitous form of experimental data is a point cloud, i.e., a finite collection
of points in Euclidean space Rn. Such data may arise from sampling an unknown topological
subspace S of Rn according to some distribution concentrated on (or near) S. As mentioned in
Chapter 1, the first step of topological analysis is the construction of a cell complex K around
this data. There are a variety of well-known methods for constructing a simplicial complex
whose vertices coincide with a given point cloud, and we refer the interested reader to [8] for an
overview of the most common constructions. Since the homology modules of a cell complex are
algorithmically computable, a natural question to ask is when are the simplicial homology modules
H∆∗ (K) of K isomorphic to the singular homology modules H∗(S) of S? Under these conditions, it
becomes possible to know S up to homology using only a finite amount of sampled data.

Sufficient conditions for homology-preserving simplicial reconstruction of compact Rie-
mannian submanifolds of Euclidean space were provided by Partha Niyogi, Steve Smale and
Shmuel Weinberger in [32]. Section 3.2 contains a brief overview of their results. Section
3.3 presents the theory and algorithms from [28] for achieving simplicial reconstruction of
Lipschitz-continuous functions between such manifolds. In Section 3.4, we prove that under
suitable hypotheses this reconstruction of functions is robust to sampling noise. Finally, we
note in Section 3.5 that the methodology of simplicial reconstruction is useful even when var-
ious assumptions requiring manifold structure and Lipschitz continuity are relaxed. Here, we
relate transformations of data to morphisms of persistent homology modules in the absence of any
strong assumptions.

3.2. Reconstructing Manifolds from Sampled Data

Let X ⊂ Rn be a compact k-dimensional Riemannian submanifold. The condition number
1/τX of X is defined as follows: τX is the largest positive real number such that for any r ∈ (0, τX),
the normal bundle of radius r about X can be embedded in Rn.

Given x ∈ Rn and r > 0, denote by Br(x) the n-dimensional Euclidean open ball of radius r
centered at x. Define the one-parameter family Nε(X) to be the nerve complexes generated by
the the collections Uε = {Bε(ξ) | ξ ∈ X} of open subsets of Rn.

DEFINITION 3.2.1. The bounding function βX : R+ × (0, 1]→ R is given by

βX(ε, δ) = β1 [log(β2) − log(1/δ)] , (3.1)

17
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where

β1 =
vol(X)

cosk(sin−1
(

ε
8τX

)
)
· vol(Bε/4)

β2 =
vol(X)

cosk
(

sin−1( ε
16τX

)
)
· vol(Bε/8)

and vol(Bε) denotes the usual volume of the standard k-dimensional ε-ball.

The following notion of density is standard in metric subspace topology: given ε > 0, we
say that a set S ⊂ Rn is ε-dense in X if for every x ∈ X there exists some s ∈ S so that x ∈ Bε(s).
The next proposition enables the reconstruction of the manifold X up to homology from a finite
point set X ⊂ Rn provided that X is sufficiently dense in X relative to τX.

PROPOSITION 3.2.2. ([32, Prop 3.1]) Assume ε ∈
(
0,
√
3/5 τX

)
and that X is ε/2-dense in X.

Then, the canonical projection map πX : bNε(X)c → X defined by

πX(w) = arg min
x∈X
‖w− x‖Rn (3.2)

is a deformation-retract.

As a corollary to this proposition one obtains the isomorphisms

H∗(M) ' H∗(bNε(X)c) ' H∆∗ (Nε(X))
The first isomorphism comes from the fact that deformation retracts preserve homotopy type.
The second isomorphism results from applying the nerve lemma: since Uε is a convex cover of
bNε(X)c for each ε, the associated nerve is contractible. A key step in proving Proposition 3.2.2
involves understanding the fibers π−1X (x) for each x ∈ X. The following lemma is useful in this
regard.

LEMMA 3.2.3. ([32, Lem 4.1]) Assume the hypotheses of Proposition 3.2.2 and let ξ ∈ X. Given
some w ∈ Bε(ξ) with πX(w) /∈ Bε(ξ), we must have πX(w) ∈ Bε2/τX(ξ).

Note that since ε < τX/2 by hypothesis, we have ε2/τX < ε/2. Thus, if we assume the hypothe-
ses of Lemma 3.2.3 then we may conclude that ‖πX(w) − ξ‖ < 3ε/2 by a simple application of
the triangle inequality. This observation yields the following corollary.

COROLLARY 3.2.4. Given σ ∈ Nε(X) determined by a subcollection S of Uε, we have

πX(bσc) ⊂
⋂
ξ∈S

B3ε
2
(ξ),

where bσc is the support of σ in the nerve Nε(X).

The following proposition assumes that X is obtained by uniform i.i.d. sampling on X and
provides a lower bound on the sample size #X which guarantees – with high confidence – the
ε/2-density needed by the previous proposition.

PROPOSITION 3.2.5. ([32, Prop 3.2]) Choose ε ∈ (0, τX/2) and the probability parameter δ ∈ (0, 1].
Assume that X is obtained by i.i.d. uniform samplings from X. If #X > βX(ε, δ), then X is ε/2-dense in
X with probability exceeding (1− δ).

Propositions 3.2.2 and 3.2.5 lead directly to the following main theorem of [32].

THEOREM 3.2.6. Let X be a compact k-dimensional Riemannian submanifold of Rn with condition
number 1/τX. Given
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(1) some probability parameter δ ∈ (0, 1],
(2) a radius ε < τX/2, and
(3) a finite set X ⊂ X of independent and identically distributed (i.i.d.) uniformly sampled points,

let N(X) denote the nerve generated by n-dimensional open ε-balls centered at the points in X. If the
sample size #X is larger than the bounding value βX(ε, δ), then N(X) deformation-retracts to X with
probability exceeding (1− δ).

3.3. Simplicial Reconstruction of Functions

In this section we provide a proof of the following Theorem.

THEOREM 3.3.1. Let X ⊂ Rn and Y ⊂ Rm be compact Riemannian submanifolds with condition
numbers 1/τX and 1/τY respectively and let f : X→ Y be a Lipschitz continuous function with Lipschitz
constant κ. Given

(1) probability parameters δX, δY ∈ (0, 1],
(2) radii εX < τX/2 and εY < τY/2 satisfying 3κ · εX < εY, and
(3) finite sets X ⊂ X and Y ⊂ Y of independent and identically distributed (i.i.d.) uniformly

sampled points,
let N(X) and N(Y) denote the nerve complexes generated by open balls of radius εX and εY around X and
Y respectively and assume that #X > βX(εX, δX) and #Y > βY(εY, δY). Then, there exist algorithms
which take X, Y and f(X) as input and produce the following output with probability exceeding (1−
δX) · (1− δY):

(1) An acyclic outer approximation F : N(X)−→→N(Y) of f, and
(2) A chain map φ : N(X)→ N(Y) carried by F.

3.3.1. Hypotheses and Assumptions. Observe that the hypothesis consists of a variety of
assumptions and a-priori choices of parameters. To clarify their respective roles we present
them via the following exhaustive list.

Cnd: X ⊂ Rn and Y ⊂ Rm are compact Riemannian submanifolds with condition num-
bers 1/τX and 1/τY, respectively.

Lip: f : X→ Y is a Lipschitz continuous function with Lipschitz constant κ.
Rad: The radii εX ∈ (0, τX/2) and εY ∈ (0, τY/2) satisfy 3κ · εX < εY.
Prb: The probability parameters δX, δY ∈ (0, 1].
Smp: We know the finite point sets X ⊂ X and Y ⊂ Y obtained by i.i.d. uniform sampling

from X and Y respectively. Furthermore, #X > βX(εX, δX) and #Y > βY(εY, δY).
Img: We know the pairs {(ξ, f(ξ)) ∈ X× Y | ξ ∈ X} which catalogs the images under f of

the data sample X.

It is important to note that neither Smp nor Img imply that sampled points map to sampled
points, so in general f(X) 6⊂ Y. Since εX and εY are now fixed by the choices in Rad, we simplify
the notation by declaring that N(X) := NεX(X) and N(Y) := NεY(Y). Also set

ρ = εY −
3

2
κεX (3.3)

3.3.2. Constructing an Acyclic Outer Approximation. We begin with two elementary al-
gorithms. The first – called Approximator – constructs a correspondence L : X → 2Y which
induces an acyclic outer approximation F : N(X)−→→N(Y) of f. The second algorithm – called
Selector – leads to the selection of a chain map φ# carried by F.
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Approximator relies on the input data from Smp and Img and constructs the correspon-
dence L : X→ 2Y defined by

L(ξ) = {η ∈ Y | ‖η− f(ξ)‖Rm < ρ} (3.4)

for each ξ ∈ X. The triangle inequality implies that

η ∈ L(ξ) if and only if B3
2κ·εX

(f(ξ)) ⊂ BεY(η) (3.5)

L is constructed in the obvious way by iterating over Y once for each element of X, and so the
algorithm terminates after at most #X · #Y total iterations.

Observe that Approximator returns a failed status precisely when there exists some ξ ∈ X
with L(ξ) = ∅. We begin our analysis of this algorithm by bounding the probability of success
from below.

TABLE 1. Algorithm: Approximator

Input: (X, f(X), Y); Output: (status, L)
1 for each ξ ∈ X
2 define L(ξ) = ∅
3 for each η ∈ Y
4 if ‖f(ξ) − η‖Rm < ρ
5 add η to L(ξ)
6 end if
7 end for(η)
8 if L(ξ) = ∅
9 return (failure, L)

10 end if
11 end for(ξ)
12 return (success, L)

PROPOSITION 3.3.2. Approximator returns a successful status on termination with probability
exceeding (1− δY).

PROOF. Noting that the assumptions Cnd and Smp and the choices Rad and Prb satisfy the
hypotheses of Proposition 3.2.5 for Y, we see that Y is εY/2-dense in Y with probability exceeding
(1− δY).

The following argument shows that that this density suffices to guarantee a non-empty L(ξ)
for each ξ ∈ X. For any ξ ∈ X there exists η ∈ Y such that f(ξ) ∈ BεY/2(η). Thus

B3
2κεX

(f(ξ)) ⊂ B3
2κεX+12εY

(η) ⊂ BεY(η)

where the last inclusion follows from Rad. Thus, η ∈ L(ξ) 6= ∅ by (3.5). Hence Approximator

terminates successfully since the failing condition in line 5 is never satisfied. �

Assuming that Approximator has terminated with successful status producing L we now
turn to the question of constructing an acyclic outer approximation. For convenience of pre-
sentation let gX : N(X) → 2X denote the injection taking each simplex σ ∈ N(X) to its defining
subset S ⊂ X such that σ has the support bσc =

⋂
ξ∈SBεX(ξ). Note that σ ≺ σ ′ in N(X) if and

only if we have the inclusion gX(σ) ⊂ gX(σ ′). Define gY : N(Y)→ 2Y similarly.
L induces a correspondence G : N(X)→ 2Y via the following definition

G(σ) = {η ∈ Y | η ∈ L(ξ) for some ξ ∈ gX(σ)} (3.6)
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PROPOSITION 3.3.3. With probability exceeding (1− δX), the following holds. For each σ ∈ N(X)
and η ∈ G(σ), we have

∅ 6= f ◦ πX(bσc) ⊂ BεY(η) (3.7)

where πX : bN(X)c → X is the canonical projection from (3.2).

PROOF. By assumptions Cnd and Smp and choices Rad and Prb, Proposition 3.2.5 holds
for X. Therefore, with probability exceeding (1− δX) we are guaranteed the requisite density
of X in X to apply Proposition 3.2.2. Assuming this density, pick w ∈ bσc. Set x = πX(w) ∈ X

and note from Corollary 3.2.4 that x ∈
⋂
ξ∈gX(σ)B3

2εX
(ξ). By Lip,

f(x) ∈
⋂

ξ∈gX(σ)

B3
2κεX

(f(ξ)). (3.8)

By definition, η ∈ G(σ) implies the existence of some ξ∗ ∈ gX(σ) so that η ∈ L(ξ∗). By (3.5), we
now have

B3
2κεX

(f(ξ∗)) ⊂ BεY(η).

Using (3.8) we see that f(x) ∈ B3
2κεX

(f(ξ∗)), and so by Rad f(x) ∈ BεY(η) as desired. �

COROLLARY 3.3.4. With probability exceeding (1− δX), the following holds. For each σ ∈ N(X),
the set G(σ) ⊂ Y defines a simplex in N(Y)

PROOF. We must show that the intersection
⋂
η∈G(σ)BεY(η) is non-empty. By Proposi-

tion 3.3.3, the non-empty set f ◦ πX(bσc) ⊂ BεY(η) for each η ∈ G(σ), and so G(σ) defines
a simplex in N(Y). �

We now assume that Approximator terminates with a successful status and that (3.7) holds.
Observe that the probability of these conditions be satisfied simultaneously exceeds (1− δX) ·
(1− δY).

For each σ ∈ N(X) define γσ in N(Y) by

γσ = g−1
Y (G(σ)). (3.9)

Define the correspondence F from N(X) to subcomplexes of N(Y) by

F(σ) = {γ ∈ N(Y) | γ � γσ} . (3.10)

PROPOSITION 3.3.5. F : N(X)−→→N(Y) is an acyclic carrier.

PROOF. As indicated in Definition 2.5.2 there are two conditions to check: acyclicity and
semicontinuity. To verify acyclicity observe that by (3.10) F(σ) consists of the sub complex
generated by the single simplex γσ. For semicontinuity, consider another simplex σ ′ ∈ N(X) so
that σ ≺ σ ′, in which case gX(σ) ⊂ gX(σ ′). By (3.6), G(σ) ⊂ G(σ ′). Thus, γσ ≺ γσ ′ in N(Y) and
so we have the desired inclusion F(σ) ⊂ F(σ ′). �

We would like to claim that F is an acyclic outer approximation of f. Unfortunately, for
the following technical reasons this is not true: the domain of f is X which is a strict subset of
bN(X)c. However, we can use the retraction πX to expand the domain of f without altering the
map f induces on homology. Define the function f̃ : bN(X)c → Y ⊂ bN(Y)c by f̃ ≡ f ◦ πX and
note that

(1) f̃|X ≡ f, and
(2) f̃ is homotopic to f via Θ : [0, 1]× bN(X)c → bN(Y)c defined by Θ(t, z) = f ◦ πX((1− t) ·

z+ t · πX(z)).
THEOREM 3.3.6. F is an acyclic outer approximation of f̃ : bN(X)c → bN(Y)c.
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PROOF. Consider σ ∈ N(X) and note that f̃(bσc) = f ◦ πX(bσc) is contained in the intersec-
tion

⋂
η∈G(σ)BεY(η) by Proposition 3.3.3. But by definition, this intersection is precisely bγσc.

Since γσ is a simplex in F(σ) by (3.10), we have bγσc ⊂ bF(σ)c as desired. �

Observe that this completes the proof of the first conclusion of Theorem 3.3.1.

3.3.3. Constructing a Representative Simplicial Map. We now turn to the second part
which is the construction of a chain map carried by F. We begin by considering the second
algorithm Selector which requires the output L of Approximator as defined in (3.4) and con-
structs a function h : X→ Y with following property: for each ξ ∈ X,

h(ξ) ∈ L(ξ). (3.11)

Selector constructs h by choosing an arbitrary η in L(ξ) for each ξ ∈ X and hence is guaran-
teed to terminate after #X iterations of the for loop.

TABLE 2. Algorithm: Selector

Input: (X, Y,L : X→ 2Y); Output: h
1 for each ξ ∈ X
2 choose any η ∈ L(ξ)
3 define h(ξ) = η
4 end for
5 return h

Our goal is to use h to define a simplicial map φ : N(X)→ N(Y). Recall that given a simplex
σ ∈ N(X), gX(σ) identifies the vertices of σ with elements of X. Let ξ ∈ gX(σ) and let η = h(ξ).
By (3.11) we have η ∈ L(ξ), and so by definition η ∈ G(σ). Therefore, for all σ ∈ N(X)

h(gX(σ)) ⊂ G(σ). (3.12)

PROPOSITION 3.3.7. Define φ : N(X)→ N(Y) by

φ(σ) = g−1
Y [h(gX(σ))].

Then φ is a simplicial map.

PROOF. Observe that as defined φ maps vertices to vertices. By Corollary 3.3.4, for any
simplex σ ∈ N(X), G(σ) is a simplex in N(Y). Thus by (3.12), φ takes the vertices of the simplex
σ into a simplex and therefore φ is a simplicial map. �

Let φ# denote the chain map generated by the simplicial map φ. More precisely, here is the
action of φ# on each simplex σ ∈ N(X)

φ#(σ) =

{
φ(σ) if dimσ = dimφ(σ)

0 otherwise.

PROPOSITION 3.3.8. The chain map φ# is carried by the acyclic carrier F.

PROOF. Pick σ ∈ N(X) and assume without loss of generality that the image φ#(σ) is non-
trivial. From Proposition 3.3.7 and (3.12), we have φ#(σ) = φ(σ) ≺ γσ and so φ(σ) is a simplex
in F(σ) by (3.10). �
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3.4. Robustness to Conditioned Noise

As is indicated in the Introduction, we extend the results of the previous section to the case
where data samples are assumed to lie near, rather than on, the underlying manifolds. This
error in sampling further cascades into imprecise knowledge of the images of the samples,
particularly if the evaluation of the function is also characterized by some inherent errors.

3.4.1. Conditioned Noise. We adopt the model of noise from [32, Sec. 7].

DEFINITION 3.4.1. Given r > 0, a probability measure µ on Rn is called r-conditioned about
X if it is

(1) Locally Supported: the support of µ is contained in the tubular neighborhood Tubr(X)
of radius r about X, and

(2) Regular: for each s ∈ (0, r), there exists some regularity constantΩs > 0 so that

inf
x∈X

µ(Bns (x)) > Ωs

where Bns (x) denotes the n-dimensional open ball of radius s about x.

As in the previous case, the following fundamental results concerning sampling of the man-
ifolds are taken from [32]. Let X be a compact Riemannian submanifold of Rn with condition
number 1/τX. For r > 0 define the functions

Γ±X (r) =
(r+ τX)±

√
τ2X + r2 − 6τXr

2

and note that 0 < Γ−X < Γ+X when the quantity under the square root is strictly positive. It
is straightforward to check that this positivity holds for r < (3−

√
8)τX. Pick such an r and

assume that X̂ ⊂ Rn is a finite point set contained in Tubr(X). For each ε > 0, define Nε(X) to
be the acyclic nerve complex generated by open balls of radius ε about the points in X.

3.4.2. Reconstructing Manifolds from Noisy Data. The following result is the noisy ana-
logue of Proposition 3.2.2.

PROPOSITION 3.4.2. ([32, Prop 7.1]) Assume that X̂ is r-dense in X for some 0 < r < (3−
√
8)τX

and choose a radius ε satisfying Γ−X (r) < ε < Γ+X (r). Let Nε(X̂) denote the nerve complex generated by
open balls of radius ε about the points in X̂. Then, the canonical projection map πX : bNε(X̂)c → X as
defined in (3.2) is a retraction.

As before, assuming the hypotheses of this proposition yields the isomorphisms of homol-
ogy groups

H∗(X) ' H∗
(
bNε(X̂)c

)
' H∆∗ (Nε(X̂)).

Recall that given r > 0, the r-covering number of X – denotedΛr(X) – is defined to be the min-
imum possible q ∈ N satisfying the following property: there exists some point set S ⊂ X of
cardinality q such that the collection {Br(s) | s ∈ S} ofn-dimensional open balls covers X. Given
an r-conditioned probability measure µ about X with regularity constants {Ωs | 0 < s < r} and
a parameter δ > 0, define the new bounding function β̂X as follows:

β̂X(µ, δ) =
1

Ωr/2

(
log(Λr/2(X)) + log (1/δ)

)
(3.13)

The next result replaces Proposition 3.2.5 in the setting of conditioned noise.
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PROPOSITION 3.4.3. ([32, Prop 7.2]) Assume that the positive real numbers r and ε satisfy 0 <
r < (3 −

√
8)τX and Γ−X (r) < ε < Γ+X (r). Let µ be any r-conditioned probability measure about X

and assume that a point set X̂ is drawn from Rn in i.i.d. fashion with respect to µ. Given a parameter
δ ∈ (0, 1], if #X > β̂X(µ, δ) then X̂ is r-dense in X with probability exceeding (1− δ).

Combining the preceding propositions yields the main result of [32] as adapted for condi-
tioned noise.

THEOREM 3.4.4. Let X ⊂ Rn be a compact Riemannian submanifold with condition number 1/τX.
Fix r ∈ (0, (3 −

√
8)τX) and choose a radius ε satisfying Γ−X (r) < ε < Γ+X (r). Assume that µ is

an r-conditioned probability measure about X and that X̂ ⊂ Rn is a point set obtained by µ-i.i.d.
sampling. Denote by Nε(X̂) the nerve complex generated by open ε-balls in Rn centered at points
in X̂. If #X̂ > β̂X(µ, δ) for some δ ∈ (0, 1], then bNε(X̂)c retracts onto X with probability exceeding
(1− δ).

3.4.3. Accounting for Conditioned Noise. Introducing the model of conditioned noise re-
quires the following modifications to the assumptions underlying our algorithms.

Lip’: f : X→ Y is a Lipschitz continuous function with constant κ satisfying 2κ · τX < τY.
Nse’: Choose positive noise bounds rX < α · τX and rY < α · τY where α = (3−

√
8). µX

and µY are rX and rY-conditioned probability measures about X and Y, respectively.
Rad’: Choose radii εX and εY satisfying Γ−X (rX) < εX < Γ

+
X (rX) and Γ−Y (rY) < εY < Γ

+
X (rY)

so that
κ · (2εX + rX) < (εY − rY). (3.14)

Smp’: We know the finite point sets X̂ ⊂ Rn and Ŷ ⊂ Rm obtained by i.i.d. µX and µY
sampling respectively. We require that #X̂ > β̂X(µX, δX) and #Ŷ > β̂Y(µY, δY).

Img’: We know the pairs
{
(ξ, f̂(ξ) ∈ X̂×Rm | ξ ∈ X̂

}
. Furthermore, for each ξ ∈ X̂

f̂(ξ) ∈ Bd(f ◦ πX(ξ))
where πX is the canonical projection map from (3.2) and

d <
(εY − rY) − κ · (2εX + rX)

2
. (3.15)

In particular, the assumptions Cnd and Prb remain unchanged. Note that in the assumption
Img’ we do not assume knowledge of the true image f ◦ πX(ξ) ∈ Y. The inequality (3.14) is a
constraint that involves the Lipschitz constant, the models for the noise, and the radii for the
nerves. It guarantees that the restriction (3.15) is always positive. The following result provides
conditions on the manifolds and the map under which (3.14) can be satisfied.

PROPOSITION 3.4.5. If 2κ · τX < τY, then there exist valid choices of εX and εY which satisfy
(3.14).

PROOF. First, we check that (2εX + rX) < 2τX on the domain 0 < rX < (3−
√
8)τX imposed

by Nse’. Recall that εX < Γ+X (rX) by Rad’ and consider the function

2Γ+X (rX) + rX = (τX + 2rX) +
√
τ2X + r2X − 6τXrX

This function has no local maximum in its domain and attains a maximum value of 2τX at the
left endpoint. Since (3.14) imposes a lower bound of κ · (2εX+ rX)+ rY on εY, it suffices to show
that the over-estimate 2κ · τX + rY of this lower bound is smaller than the upper bound Γ+Y (rY)

imposed on εY by Rad’. Equivalently, we must show that Γ+Y (rY) − rY > 2κ · τX. Observe that
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the function

Γ+Y (rY) − rY =
(τY − rY) +

√
τ2Y + r

2
Y − 6τYrY

2

has no local minima on the domain (0, (3−
√
8)τY) imposed by Nse’ and attains a minimum

value of τY at the left endpoint. Thus, it is possible to satisfy (3.14) if 2κ · τX < τY. �

3.4.4. Reconstructing Functions from Noisy Data. The main result of this section is the
following theorem.

THEOREM 3.4.6. Assume Cnd, Lip’, Nse’, Rad’, Prb, Smp’, and Img’. If #X̂ > β̂X(µX, δX) and
#Ŷ > β̂Y(µY, δY) then there exists an algorithm which takes as its input (X̂, f̂(X̂), Ŷ) and produces the
following output with probability exceeding (1− δX) · (1− δY):

(1) an acyclic outer approximation F of f, and
(2) a chain map φ# carried by F.

For the most part the proof of this theorem is analogous to that of Theorem 3.3.1. We note
the significant differences in the arguments below.

PROPOSITION 3.4.7. Set ρ = rY + d. With probability exceeding (1− δY), Approximator termi-
nates with a successful status when called with the input (X̂, f̂(X̂), Ŷ).

PROOF. By Cnd, Nse’, Rad’ and Prb, we may apply Proposition 3.4.3 to Y and assume that
Ŷ is rY-dense in Y with high probability. So for each ξ ∈ X̂, there exists some η ∈ Ŷ which
is within distance rY of the true image f ◦ πX(ξ) ∈ Y. By Img’, this η is within rY + d of the
sampled image f̂(ξ), whence η ∈ L(ξ). Thus, the output L : X̂→ 2Ŷ satisfies L(ξ) 6= ∅ for each
ξ ∈ X̂ as desired. �

Define G : N(X̂) → 2Ŷ using L as in (3.6). The following result is the noisy analogue of
Proposition 3.3.3.

PROPOSITION 3.4.8. With probability exceeding (1− δX), the following is true. For each σ ∈ N(X̂)
and η ∈ G(σ), we have f ◦ πX(bσc) ⊂ BεY(η).

PROOF. Choose w ∈ bσc and note that w ∈
⋂
ξ∈g

X̂
(σ)BεX(ξ) from the definition of support.

By Lemma 3.2.3, the distance from w to πX(w) is smaller than ε2X/τX which is bounded above
by εX from Rad’ and (3.13). Thus, the distance to πX(w) from each ξ ∈ g

X̂
(σ) is at most 2εX by

the triangle inequality. Therefore, we have

πX(w) ∈
⋂

ξ∈g
X̂
(σ)

B2εX(ξ)

By Nse’ and Smp’, each element of X̂ is no more than rX away from X, and in particular each ξ
in g

X̂
(σ) satisfies ‖ξ− πX(ξ)‖Rn < rX. We use this in the expression above to get

πX(w) ∈
⋂

ξ∈g
X̂
(σ)

B2εX+rX(πX(ξ))

Using Lip’,
f ◦ πX(w) ∈

⋂
ξ∈g

X̂
(σ)

Bκ·(2εX+rX)(f ◦ πX(ξ))

Now if η ∈ G(σ), then by definition η ∈ L(ξ∗) for some ξ∗ ∈ g
X̂
(σ). We have the following

bounds for distances in Rm:
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(1) ‖f ◦ πX(w) − f ◦ πX(ξ∗)‖ < κ · (2εX + rX) as above,
(2) ‖f ◦ πX(ξ∗) − f̂(ξ∗)‖ 6 d from Img’, and
(3) ‖f̂(ξ∗) − η‖ < ρ = rY + d from Proposition 3.4.7.

We conclude with the observation that

‖f ◦ πX(w) − η‖ < κ · (2εX + rX) + rY + 2d < εY

where the first inequality is obtained using the triangle inequality and second follows from
(3.15). �

3.5. Multi-Scale Analysis of Data Transformations

In this section, we utilize the method of building simplicial reconstructions purely on data
points without requiring most of the assumptions and hypotheses from Section 3.3.1. Of
course, in this setting it is impossible to recover the homology of manifolds or functions: we
have not assumed that the data comes from a smooth process in the first place.

In practice, one frequently does not have knowledge of regularity, condition numbers or
Lipschitz constants when confronted with experimental data. In the absence of such theoretical
guarantees, it is nevertheless of practical importance to have means of computing topological
invariants at various scales from transformations of data.

Let X ⊂ Rn and Y ⊂ Rm be finite point sets, and assume the existence of a map T : X→ Rm,
called a transformation of X, which assigns to each ξ ∈ X an image T(ξ). We make no further
assumptions about X, Y or T.

DEFINITION 3.5.1. The density of Y in T(X) is defined to be the smallest r > 0 such that for
each ξ ∈ X there exists some η ∈ Y with ‖T(ξ) − η‖Rm 6 r.

Let ρ be the density of Y in T(X), and note that ρ = 0 if and only if T(X) ⊂ Y, i.e., if T maps
the points of X to points of Y.

DEFINITION 3.5.2. Define the local Lipschitz function κ : R+ → R+ of the transformation T
as follows:

κ(ε) = sup
{
‖T(ξ) −T(ξ ′)‖Rm

‖ξ− ξ ′‖Rn

∣∣∣∣ ξ 6= ξ ′ ∈ Xwith ‖ξ− ξ ′‖Rn 6 ε

}
with the understanding that κ(ε) = 0 whenever ε < infξ,ξ ′∈X ‖ξ− ξ ′‖Rn

For each ε > 0 we have the following Lipschitz-like behavior by definition of κ:

‖T(ξ) −T(ξ ′)‖Rm 6 κ(ε) · ‖ξ− ξ ′‖Rn (3.16)

where ξ, ξ ′ in X are distinct points such that ‖ξ− ξ ′‖Rn < ε.
Following the general procedure of Section 3.3, we may use Approximator to construct the

correspondence L : X→ 2Y as follows:

L(ξ) = {η ∈ Y | ‖T(ξ) − η‖Rm 6 ρ} (3.17)

and note that L(ξ) 6= ∅ for each ξ ∈ X by the ρ-density of Y in T(X). Next, one can define
the map h : X → Y using Selector. More precisely, h(ξ) is defined to be any point from L(ξ).
Although this choice is arbitrary, we will assume that it has been fixed throughout the sequel.
The essential property of h by construction is:

‖h(ξ) −T(ξ)‖Rm 6 ρ (3.18)

For Z ∈ {X, Y} and ε > 0, let Uε(Z) be the union of balls
⋃
ζ∈ZBε(ζ) and let Nε(Z) be the

nerve associated to the cover {Bε(ζ) | ζ ∈ Z} of Uε(Z).
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PROPOSITION 3.5.3. Given εX > 0, the function h : X → Y determines a simplicial map from
NεX(X) to NεY(Y) provided εY > ρ+ 2εX · κ(εX).

PROOF. Let σ ∈ NεX(X) be a simplex with vertex set V ⊂ X. It suffices to show that there
exists some y ∈ Rm whose distance from each point in h(V) ⊂ Y is smaller than ρ+ 2εX · κ(εX).
By definition of the nerve, there exists some x ∈ Rn so that ‖x− ξ‖Rn < εX for each ξ ∈ V ,
and so by the triangle inequality we obtain ‖ξ− ξ ′‖ < 2εX for any pair of vertices ξ, ξ ′ of σ. By
(3.16), we have ‖T(ξ) − T(ξ ′)‖Rm 6 2εX · κ(εX), and so the set T(V) consists of finitely many
points in Rm that have pairwise distance at most 2εX · κ(εX). Assume that there are K such
distinct points, and define y ∈ Rm by

y =
1

K

∑
ζ∈T(V)

ζ

Clearly, we have ‖y− T(ξ)‖Rm 6 2εX · κ(εX) for each vertex ξ of σ. Finally, by (3.18) and the
triangle inequality we obtain ‖y− h(ξ)‖Rm 6 ρ+ 2εX · κ(εX) for each vertex ξ of σ. Thus, if
εY exceeds ρ+ 2εX · κ(εX) then y lies within εY of each point in the set h(V). Therefore, h(V)
determines a simplex of the nerve NεY (Y) as desired. �

Since there are only finitely many points in X, there are only finitely many values of εX > 0
such that the homology of the nerve NεX(X) changes. We arrange these critical values of εX in
ascending order as follows:

0 6 ε(1)X < ε
(2)
X < . . . < ε

(M)
X 6 diam(X)

where diam(X) is the maximum distance between any two points in X. For notational conve-
nience, define the nerves Xm = N

ε
(m)
X

(X) for m ∈ {1, . . . ,M} and note that we have a filtration

F of XM by simplicial subcomplexes:

X1 ⊂ X2 ⊂ . . . ⊂ XM

From Definition 3.5.2, it is clear that κ is a monotone increasing function and so it is possible to
choose an increasing sequence

0 6 ε(1)Y < ε
(2)
Y < . . . < ε

(M)
Y

so that for eachm ∈ {1, . . . ,M}, we have

ε
(m)
Y > ρ+ 2ε

(m)
X · κ(ε(m)

X ). (3.19)

Setting Ym = N
ε
(m)
Y

(Y) for each suchm, we have the following filtration G of YM:

Y1 ⊂ Y2 ⊂ . . . ⊂ YM

By Proposition 3.5.3 and the assumption (3.19), h : X → Y induces a simplicial map φm :
Xm → Ym for each 1 6 m 6M. Moreover, since each φm is completely determined by h : X→
Y independent ofm, it is clear that φm+1|Xm ≡ φm. Thus, the chain maps φm# : C(Xm)→ C(Ym)
associated to φm fit into the following commutative diagram

C(X1) C(X2) . . . C(XM)

C(Y1) C(Y2) . . . C(YM)

//

��

φ1#

//

��

φ2#

//

��

φM#

// // //
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where the horizontal maps arise from inclusion. Thus, we have proved the following main
result of this section.

PROPOSITION 3.5.4. The transformation T canonically induces a morphism of filtrations from F to
G.

As a consequence of results from Section 2.4.2, T induces homomorphisms of persistent ho-
mology modules of F and G; thus, it is possible to systematically track how T maps topological
features at various scales arising from nerves centered at X to the corresponding features in
nerves centered at Y.



CHAPTER 4

Discrete Morse Theory for Filtrations
� �

Every mathematician has a secret weapon. Mine is Morse theory.
–Raoul Bott, [5]

4.1. Introduction

Traditionally, Morse theory studies the connection between a smooth compact manifold M
and a suitably generic smooth map f : M → R – called a Morse function – by considering the
sub-level sets Ma = {m ∈M | f(m) 6 a} for different values of a ∈ R. It turns out that there is
no change in homotopy type between Ma and Mb for a < b if there exist no critical values of
f between a and b. On the other hand, if such a critical value c exists then the homotopy type
of Mb may be captured by attaching a single disc of suitable dimension along its boundary to
Ma. Thus, it is possible to recoverM up to homotopy type by understanding how the topology
of the sub-level sets of a generic R-valued function changes at the critical points.

John Milnor’s book [26] provides a clear and wonderful exposition of smooth Morse theory.
Various flavors of this theory have been developed since Marston Morse’s original work. The
survey article of Raoul Bott [6] 1 provides an entertaining overview of Morse-Smale, Morse-Bott
and Morse-Witten theories as well as their triumphs.

Our focus here is on a different type of Morse theory, much closer in spirit to the piece-wise
linear Morse theory described in [5] by Mladen Bestvina and most importantly, the discrete
Morse theory of Robin Forman [13] developed for regular CW complexes. Forman’s original
description of the theory involves actual discrete Morse functions µ : X → R associating a real
value to each cell in the regular complex X such that µ increases with dimension, allowing at
most one exception per cell. In almost all contexts, the actual function values are inconsequen-
tial and one only has to catalog pairs of cells that are exceptions to this rule. This leads to Manoj
Chari’s reformulation [9] of discrete Morse theory in terms of acyclic matchings.

Our definition of an acyclic matching (A,w : Q → K) coincides with that of Chari. For
our purposes, the w-paired cells are important, and so we provide explicit labels for them
along the lines of Dmitry Kozlov’s presentation [22, 23]. In order to optimize the notation and
terminology for extending this theory to filtered cell complexes in Section 4.3, we provide a
self-contained introduction to discrete Morse theory as it applies to complexes in Section 4.2.

4.2. Discrete Morse Theory for Cell Complexes

Let (X, κ) be a complex over the PID R and denote by ≺ the generating relation of the face
partial order 2 on X which is defined by ξ ≺ η if and only if κ(η, ξ) 6= 0.

DEFINITION 4.2.1. A partial matching µ of (X, κ) consists of a partition of X into three sets
A, K and Q along with a bijection w : Q→ K, such that for each q ∈ Q the incidence κ(w(q),q)
is a unit in R.

1aptly titled “Morse theory indomitable”!

29
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Let µ = (A,w : Q→ K) be a matching on (X, κ).
Observe that by Definition 2.3.1(i) and the unit incidence requirement, we have dimw(q) =

dimq+ 1 and q ≺ w(q) for each q ∈ Q. The cells in A are called the critical cells of µ and the
remaining cells are said to be paired by µ.

A path of µ is a sequence of cells

ρ = (q1,w(q1),q2,w(q2), . . . ,qd,w(qd))

such that qj ∈ Q and qj 6= qj+1 ≺ w(qj) for each j. We denote the starting and ending cells
of this path by sρ = q1 and eρ = w(qd). We call ρ a cycle if it has length d > 1 and sρ ≺ eρ.
The matching µ is called acyclic if none of its paths is a cycle; we will assume throughout the
remainder of this chapter that µ is acyclic.

The index of ρ is defined as

ind(ρ) =

∏d−1
j=1 κ(w(qj),qj−1)∏d
j=1−κ(w(qj),qj)

And for any pair a,a ′ of critical cells, the multiplicity of ρ from a to a ′ is defined to be

mul(a
ρ→ a ′) = κ(a, sρ) · ind(ρ) · κ(eρ,a ′)

Define the following R-valued function on A×A:

κµ(a,a ′) = κ(a,a ′) +
∑
ρ

mul(a
ρ→ a ′) (4.1)

where the sum is taken over all paths ρ of the matching µ. The remainder of this section is
devoted to proving the following central theorem.

THEOREM 4.2.2. Let (X, κ) be a complex over a PID R and let µ = (A,w : Q → K) be an acyclic
matching of X. Then, (A, κµ) is also a complex over R, and

H∗(X) ' H∗(A).

The complex (A, κµ) is called the Morse complex associated to µ and κµ is called the associ-
ated Morse incidence function.

4.2.1. The Reduction Step. Let (X, κ) be a complex with associated chain complex (C(X);∂).
Let µ be an acyclic matching (A,w : Q→ K) of X. Fix q ∈ Q and define X ′ ⊂ X by

X ′ := X \ {q,w(q)}

and the function κ ′ : X ′ ×X ′ → R by

κ ′(η, ξ) = κ(η, ξ) −
κ(η,q) · κ(w(q), ξ)

κ(w(q),q)
(4.2)

Note that κ ′ is constructed by a sequence of row and column operations on the matrix
representation of the boundary operator ∂ which make the unit incidence of q and w(q) a
pivot.

PROPOSITION 4.2.3. For any η and η ′ in X ′, we have∑
ξ∈X ′

κ(η, ξ) · κ(ξ,η ′) = −κ(η,w(q)) · κ(w(q),η ′) − κ(η,q) · κ(q,η ′)

Moreover, at most one of the two terms on the right side can be non-zero.
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PROOF. We only need to use (2.2) along with the fact that X ′ contains all the cells in X except
q and w(q). The non-zeroness assertion follows from property (i) of Definition 2.3.1 and the
fact that dimw(q) = dimq+ 1 6= dimq. �

A direct computation using this calculation establishes that κ ′ is an incidence function on
X ′, and so (X ′, κ ′) is a complex. We also show that the new κ ′ is not very different from κ in the
following sense

PROPOSITION 4.2.4. Let q ′ 6= q be an element of Q. Then, κ ′(w(q ′),q ′) = κ(w(q ′),q ′) and in
particular, the unit incidence of paired cells is preserved in X ′.

PROOF. Recall that

κ ′(w(q ′),q ′) − κ(w(q ′),q ′) =
κ(w(q ′),q) · κ(w(q),q ′)

κ(w(q),q)
by the defining formula (4.2). Assume for contradiction that this quantity is non-zero. Since R
is a PID, each factor comprising the numerator must be non-zero. Thus, we have q ≺ w(q ′)
which implies that q ′ precedes q in the following path of µ:

ρ = (q ′,w(q ′),q,w(q)).

But by non-zeroness of that numerator, we also have q ′ ≺ w(q) which in turn forces ρ to be
a cycle. Since the matching µ is acyclic by our standing assumption, we must have q = q ′, a
contradiction. �

Observe that the acyclic matching µ on X induces an acyclic matching µ ′ on X ′ of the form
(A,w : Q ′ → K ′) where we have Q ′ = Q \ {q} and K ′ = K \ {w(q)}. The following result which
guarantees that the Morse incidence function κµ remains unaffected by the reduction step.

PROPOSITION 4.2.5. Let κ ′µ ′ denote the Morse incidence function of the induced acyclic matching
µ ′ on the reduced complex X ′. Then, κ ′µ ′ ≡ κµ on A×A.

PROOF. Note that κ ′µ ′(w(q
′),q ′) = κ(w(q ′),q ′) for any q ′ ∈ Q ′ by Proposition 4.2.4.

Fix critical cells a and a ′ in A and let ρ = (q1, . . . ,w(qd)) be a connection of µ ′ from a to
a ′. We make the simplifying assumptions that q ⊀ a and a ′ ⊀ w(q), because the argument is
very similar to the sequel when one or both of these assumptions is revoked. Now, we have
κ ′(a,a ′) = κ(a,a ′) by (4.2), so we only need to show that the sum-over-connections term of
(4.1) is the same for X with the matching µ and X ′ with the matching µ ′.

Note that there is at most one j ∈ 1, . . . , (d− 1) with κ ′(w(qj),qj+1) 6= κ(w(qj),qj+1) by the
following contradiction. If j < j ′ both satisfy this inequality, then an argument similar to the
proof of Proposition 4.2.4 allows us to conclude that the following path is a cycle of µ:

(q,w(q),qj+1, . . . ,qj ′ ,w(qj ′))

If there is no such j, then the index of ρ – and hence its multiplicity as a connection between
any two critical cells – is the same in both X and X ′. On the other hand, if there is such a j, then
there exists a unique augmented connection ρ+ from a to a ′ in X given by

ρ+ = (q1,w(q1) . . . ,w(qj),q,w(q),qj+1, . . . ,qd,w(qd))

and it is readily verified by definition that the index of ρ in X ′ equals the sum of the indices
of ρ and ρ+ in X. Thus, the sum over all connections of the multiplicities is preserved in the
reduced complex (X ′, κ ′). �



32 4. DISCRETE MORSE THEORY FOR FILTRATIONS

4.2.2. Constructing Chain Equivalences. Define an R-linear map ψ from C∗(X) to the re-
duced chain complex C∗(X ′) by the following basis action

ψ(η) =


0, if η = w(q)

−
∑
ξ∈X ′

κ(w(q),ξ)
κ(w(q),q)ξ, if η = q

η, otherwise

(4.3)

Let ∂ ′ be the boundary operator on C(X ′) associated to the incidence function κ ′ from (4.2).

PROPOSITION 4.2.6. ψ is a chain map, i.e., ψ ◦ ∂ ≡ ∂ ′ ◦ψ.

PROOF. For any η ∈ X, we have

ψ ◦ ∂η = ψ

∑
ξ∈X

κ(η, ξ)ξ

 by definition of ∂

Since X = X ′ ∪ {w(q),q}, we have

ψ ◦ ∂η = ψ

∑
ξ∈X ′

κ(η, ξ)ξ

+ κ(η,w(q))w(q) + κ(η,q)q


=
∑
ξ∈X ′

κ(η, ξ)ψ(ξ) + κ(η,w(q))ψ(w(q)) + κ(η,q)ψ(q)

=
∑
ξ∈X ′

κ(η, ξ)ξ+ κ(η,q)ψ(q), by (4.3)

=
∑
ξ∈X ′

[
κ(η, ξ) −

κ(η,q)
κ(w(q),q)

κ(w(q), ξ)
]
ξ, also by (4.3)

Recognizing the formula (4.2) for κ ′ in the summand and recalling that it may only differ from
κwhen dimη = dimw(q) 6= dimq, we have

ψ ◦ ∂(η) =


0, η = w(q)

∂q, η = q

∂ ′η otherwise

On the other hand, if η /∈ {w(q),q} then the right side ∂ ′ ◦ψ(η) of the desired equality also
equals ∂ ′η since ψ is just the identity map in this case. So we only need to check separately
when η = w(q) or η = q. Clearly, ∂ ′ ◦ψ(w(q)) = 0 by the trivial action of ψ on w(q). Finally,

∂ ′ ◦ψ(q) = ∂ ′
−∑

ξ∈X ′

κ(w(q), ξ)
κ(w(q),q)

ξ

 , by (4.3)

= −
∑
ξ∈X ′

κ(w(q), ξ)
κ(w(q),q)

∂ ′ξ

Applying the definition of ∂ ′ to this expression, we have
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∂ ′ ◦ψ(q) = −
∑
ξ∈X ′

κ(w(q), ξ)
κ(w(q),q)

∑
ζ∈X ′

κ ′(ξ, ζ)ζ


=

−1

κ(w(q),q)

∑
ζ∈X ′

∑
ξ∈X ′

κ(w(q), ξ) · κ ′(ξ, ζ)ζ

We know that if κ(w(q), ξ) 6= 0 then dim ξ = dimq and so κ ′(ξ, ζ) 6= 0 forces dim ζ = dimq− 1.
But now κ ′(ξ, ζ) = κ(ξ,η) for these dimensions and so

∂ ′ ◦ψ(q) = −1

κ(w(q),q)

∑
ζ∈X ′

∑
ξ∈X ′

κ(w(q), ξ) · κ(ξ, ζ)ζ

An application of Proposition 4.2.3 on the inner sum yields

∂ ′ ◦ψ(q) =
∑
ζ∈X ′

κ(q, ζ)ζ

Finally, we may as well let ζ range over all of X instead of just X ′ since κ(q, ∗) = 0 for ∗ = w(q)
and ∗ = q by dimension requirements. At last, we have ∂ ′ ◦ψ(q) = ∂q as desired. �

We now requre a chain map in the other direction. To this end, we define another R-linear
map φ from C∗(X

′) to C∗(X) by

φ ′(η) = η−
κ(η,q)

κ(w(q),q)
w(q) (4.4)

PROPOSITION 4.2.7. φ is a chain map, i.e., ∂ ◦φ ≡ φ ◦ ∂ ′.

PROOF. For any η ′ ∈ X ′,

∂ ◦φ(η ′) = ∂
(
η ′ −

κ(η ′,q)
κ(w(q),q)

w(q)

)
, by (4.4)

= ∂η ′ −
κ(η ′,q)
κ(w(q),q)

∂w(q)

=
∑
ξ∈X

[
κ(η ′, ξ) −

κ(η ′,q)
κ(w(q),q)

κ(w(q), ξ)
]
ξ, by definition of ∂

Compare the summand to (4.2) and note that it equals zero for ξ = q. Using X = X ′ ∪ {w(q),q}
and κ(w(q),w(q)) = 0 by dimension requirements, we have

∂ ◦φ(η ′) =
∑
ξ∈X ′

κ ′(η ′, ξ)ξ+ κ(η ′,w(q))w(q)

= ∂ ′η ′ + κ(η ′,w(q))w(q)

Thus, ∂ ◦φ(η ′) = ∂ ′η ′ except when κ(η ′,w(q)) 6= 0; but this inequality may only hold when
dimη ′ = dimw(q) + 1. On the other hand, we note that φ ◦ ∂(η ′) is also just ∂η ′ whenever
dimη ′ 6= dimw(q) + 1 since in those cases φ reduces to the identity map. So assume without
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loss of generality that dimη ′ = dimw(q) + 1 and observe

φ ◦ ∂ ′η ′ = φ

∑
ξ∈X ′

κ(η ′, ξ)ξ

 , by definition of ∂ ′

=
∑
ξ∈X ′

κ(η ′, ξ)φ(ξ)

=
∑
ξ∈X ′

κ(η ′, ξ)
(
ξ−

κ(ξ,q)
κ(w(q),q)

w(q)

)
, by (4.4)

= ∂ ′η ′ −
1

κ(w(q),q)

∑
ξ∈X ′

κ(η ′, ξ) · κ(ξ,q)

w(q)
Using Proposition 4.2.3 on the sum and noting that κ(η ′,q) = 0 by dimension requirements
gives

φ ◦ ∂ ′η ′ = ∂ ′η ′ + κ(η ′,w(q))w(q)
Comparing this to the expression for ∂ ◦φ(η ′) obtained above concludes the argument. �

LEMMA 4.2.8. The maps ψ and φ are chain equivalences.

PROOF. A direct computation shows that the composition ψ ◦ φ is the identity map on
C(X ′). It remains to be shown that φ ◦ ψ is chain homotopic to the identity on X. Define a
collection Θ of R-module maps {Θ : C∗(X)→ C∗+1(X)} by the following action on cells

Θ(η) =

{
1

κ(w(q),q) w(q) if η = q

0 otherwise.
(4.5)

When η ∈ X ′ ⊂ X, we see that ψ(η) = η and so φ ◦ψ(η) = η−
κ(η,q)

κ(w(q),q) w(q). Therefore, we
have [

idC(X) −φ ◦ψ
]
(η) = η−φ ◦ψ(η) = κ(η,q)

κ(w(q),q)
w(q)

On the other hand, Θ(η) = 0 since η 6= q, and so we have

[∂ ◦Θ+Θ ◦ ∂] (η) = Θ ◦ ∂(η) = κ(η,q) ◦Θ(q) = κ(η,q)
κ(w(q),q)

w(q)

so it is clear that idC(X) − φ ◦ ψ ≡ ∂ ◦ Θ + Θ ◦ ∂ on X ′ and we only need to check the cases
η ∈ {w(q),q}. First we handlew(q): immediately, we see thatw(q)−φ ◦ψ(w(q)) = w(q) since
ψ is trivial on w(q), and

∂ ◦Θ(w(Q)) +Θ ◦ ∂(w(q)) = Θ ◦ ∂(w(q))

=
∑
ξ∈X

κ(w(q), ξ)Θ(ξ)

= κ(w(q),q)Θ(q)
= w(q)
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as desired. On the other hand, for q, we have ∂ ◦Θ(q) +Θ ◦ ∂(q) equals ∂ ◦Θ(q) and hence
1

κ(w(q),q)∂w(q). Moreover,

q−φ ◦ψ(q) = q+φ

∑
ξ∈X ′

κ(w(q), ξ)
κ(w(q),q)

ξ


= q+

∑
ξ∈X ′

κ(w(q), ξ)
κ(w(q),q)

φ(ξ)


We know that κ(w(q), ξ) 6= 0 forces dim ξ = dimq 6= dimw(q) by the second property of
Definition 2.3.1 and so φ(ξ) = ξ. Therefore, we have q − φ ◦ ψ(q) = q +

∑
ξ∈X ′

κ(w(q),ξ)
κ(w(q),q)ξ.

Using X = X ′ ∪ {w(q),q} and κ(w(q),w(q)) = 0 gives us

q+
∑
ξ∈X ′

κ(w(q), ξ)
κ(w(q),q)

ξ =
1

κ(w(q),q)

∑
ξ∈X

κ(w(q), ξ)ξ =
1

κ(w(q),q)
∂(w(q))

as desired. This concludes the proof. �

An immediate consequence of Lemma 4.2.8 is the existence of an isomorphism H∗(X) '
H∗(X

′) induced by ψ and φ. Finally, we provide a brief proof of the central theorem of discrete
Morse theory.

PROOF OF THEOREM 4.2.2. Let
{
qj | j = 1, . . . , J

}
denote the set of all cells in Q indexed ar-

bitrarily. Consider the sequence of cell complexes X(j) defined inductively as follows: X(0) =
X, and for each j > 0we construct X(j) from X(j− 1) by removing the paired cells qj andw(qj)
via the reduction step of Section 4.2.1. By Propositions 4.2.7 and 4.2.6, we know that there are
chain maps ψj and φj between the chain complexes of X(j) and X(j− 1). By Lemma 4.2.8 we
know that these chain maps are in fact chain equivalences. Since all the paired cells are eventu-
ally removed, we know that X(J) = A. By Proposition 4.2.5, the incidence functions converge
to κµ. Define the chain maps ψ : C(X)→ C(A) and φ : C(A)→ C(X) by the compositions

ψ :=

J∏
j=1

ψj and φ :=

1∏
j=J

φj

Note that (A, κµ) is a complex by induction: we have already assumed that (X, κ) is a complex
as the base case. The reduction step does not alter the cells in A and preserves the complex
property. Finally, Lemma 4.2.8 guarantees the chain equivalence of ψ and φ. �

4.3. Filtration-Subordinate Acyclic Matchings

Consider a filtration F of a cell complex (X, κ) over the PID R:

X1 ⊂ X2 ⊂ . . . ⊂ Xm ⊂ . . . ⊂ XM = X

and let µ = (A;w : Q → K) be an acyclic matching on X. For each m ∈ {1, . . . ,M} and
D ∈ {A,K,Q}, define Dm = D∩Xm.

DEFINITION 4.3.1. We say that µ is subordinate to F if for eachm ∈ {1, . . . ,M}, the restriction
wm := w |Qm is a bijection from Qm to Km.

We check that if µ is F-subordinate, then each subcomplex Xm inherits an acyclic matching
from µ.
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PROPOSITION 4.3.2. If µ is F-subordinate, then it induces an acyclic matching µm = (Am,wm :
Qm → Km) on each subcomplex Xm, where wm is defined by the restriction of w to Qm.

PROOF. Let κm : Xm ×Xm → R be the incidence function on Xm obtained by restricting κ.
For any q ∈ Qm, we have κm(wm(q),q) = κ(w(q),q) which is a unit in R since µ is a partial
matching on X. If a path ρ of µm is a cycle, then it is also a cycle of µ, a contradiction. �

We write µ1 ⊂ µ2 ⊂ . . . ⊂ µM = µ to indicate that µ is F-subordinate.

4.3.1. The Filtered Morse Complex. Assume throughout that µ is F-subordinate.

PROPOSITION 4.3.3. Let ρ be a path of µ and letm ∈ {1, . . .M}. If the first cell sρ lies in Xm, then
so do all the other cells of ρ.

PROOF. Let ρ = (q1,w(q1), . . . ,qd,w(qd)) and assume that sρ = q1 satisfies q1 ∈ Xm. Since
µ is F-subordinate, the pairing w respects the filtration, and so w(q1) also lies in Km ⊂ Xm. By
definition of a path, q2 ≺ w(q1) and hence q2 ∈ Xm by the subcomplex property. Proceeding
in this way, we see that every cell of ρ lies in Xm. �

Denoting the Morse complex associated to each µm on Xm by (Am, κmµ ), we see that the the
Ams constitute a filtration of A.

PROPOSITION 4.3.4. Fµ := {Am | m = 1, . . . ,M} is a filtration of the Morse complex (A, κµ)
associated to µ.

PROOF. First we show that κµ |Am×Am≡ κmµ for each m. Given a in Am and an arbitrary
a ′ ∈ A, it suffices to check by (4.1) that there are no connections in X \ Xm from a to a ′. To
see this, observe that any such connection ρ must have its first cell sρ satisfy sρ ≺ a and so
sρ ∈ Xm by the subcomplex property of Xm. By Proposition 4.3.3, each element of ρ lies in Xm

as desired.
Now assume that κµ(a,a ′) 6= 0 for some a ∈ Am. We will show that a ′ ∈ Am, thus proving

the desired subcomplex property for Am ⊂ A. From (4.1) we see that either κ(a,a ′) 6= 0 or
there exists at least one connection ρ from a to a ′ with mul(a

ρ−→ a ′) 6= 0. In the first case we
have a ′ ∈ Xm by the fact that Xm is a subcomplex of X, so without loss of generality we assume
that there exists some connection ρ from a to a ′. Again, since sρ ≺ a, we know that each cell of
ρ lies in Xm. In particular, the last cell eρ lies in Xm. Since a ′ ≺ eρ by definition of a connection,
we see that a ′ ∈ Xk by the subcomplex property. �

We call Fµ the Morse filtration associated to the F-subordinate acyclic matching µ. By The-
orem 4.2.2, the homology modules of the Morse complex (A, κµ) are isomorphic to those of
(X, κ). We now extend this result to the level of persistent homology.

4.3.2. Obtaining a Filtered Chain Equivalence. The goal of this section is to prove the
following main theorem.

THEOREM 4.3.5. Let F = {Xm | m = 1, . . . ,M} be a filtration of a complex (X, κ). Let µ be an
F-subordinate acyclic matching on X. Let (A, κµ) be the associated Morse complex with Morse filtration
Fµ = {Am | m = 1, . . . ,M}. Then for eachm in {1, . . . ,M}, n and p in N, there exists an isomorphism

Hpn(X
m) ' Hpn(Am). (4.6)

In order to make the proof of this theorem transparent, consider the function b : X → N

given by

b(ξ) := min {m ∈N | ξ ∈ Xm} . (4.7)

The two important properties of b are:
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(1) By Definition 4.3.1, b(q) = b(w(q)) for each q ∈ Q, and
(2) By the subcomplex property, b(ξ) 6 b(η) whenever ξ ≺ η.

Let
{
qj | j = 1, . . . , J

}
denote the set of all cells in Q with the following additional constraint:

if b(qj) > b(qi) then j > i.

This gives us positive integers J1 6 J2 6 · · · 6 JM = J such that qj ∈ Xm if and only if j 6 Jm.
Define chain maps ψm : C(Xm)→ C(Am) and φm : C(Am)→ C(Xm) by the compositions

ψm :=

Jm∏
j=1

ψj and φm :=

1∏
j=Jm

φj (4.8)

where ψj and φj are the chain equivalences from the proof of Theorem 4.2.2.
Let Ψ = {ψm : C(Xm)→ C(Am)} and Φ = {φm : C(Am)→ C(Xm)}. Note that these collec-

tions constitute maps between F(X) and Fµ(A). The proof of Theorem 4.3.5 concludes with the
following result.

PROPOSITION 4.3.6. The maps Ψ andΦ are filtered chain equivalences.

PROOF. Lemma 4.2.8 implies that ψm and φm are chain equivalences for allm ∈ {1, . . . ,M}.
Thus, it suffices to show that Ψ and Φ maps of chain filtrations F(X) and Fµ(A). That is, given
anym ∈ {1, . . . ,M− 1} we will show that the following diagrams commute.

C(Xm) C(Xm+1) C(Xm) C(Xm+1)

C(Am) C(Am+1) C(Am) C(Am+1)

//

��

ψm

��

ψm+1

//

// //

OO

φm

OO

φm+1

Here the horizontal arrows represent the usual chain maps arising from inclusion.
Fix some q ∈ Q with b(q) > m+ 1. Note from the defining equation (4.3) that the map ψ

associated to the removal of q differs from the identity only on q andw(q), both of which have
b-values exceeding k+ 1 by our explicit assumption on q and the first observed property of the
function b. Therefore, ψm+1 |C(Xm) is the identity map. Thus, Ψ is a filtered chain map by (4.8).

Similarly, we show that the map φ from (4.4) associated to the removal of q is the identity
map on C(Xm) whenever b(q) > m+ 1. Note by definition that φ(η) may differ from η only
when κ(η,Q) 6= 0, i.e., when q ≺ η. By the second observed property of the function b, we
must have b(η) > b(q) = m+ 1 and so η ∈ X \ Xm as desired. Thus, Φ is a filtered chain map
as well by (4.8). �

REMARK 4.3.7. In the homological algebraic language of Section 2.2, Ψ and Φ are weak
inverse morphisms of the chain filtrations F(X) and Fµ(A). In fact, it is easy to see that they
are strong inverses in the sense of Definition 2.2.1. Since Ψ ◦Φ is the identity automorphism of
Fµ(A), it suffices to observe that the chain homotopy Θq from (4.5) associated to the removal of
some q ∈ Q with b(q) = j also satisfies Θq(η) = 0 whenever b(η) 6 j− 1. But this is immediate
from the definition: Θq(η) is only non-zero when η = q.





CHAPTER 5

Simplifying Computation of Persistent Homology
� �

Exitus acta probat.
– Ovid, Heroides

5.1. Introduction

The objective of this chapter is to describe an algorithm called MorseReduce, which takes a
filtered complex X as input, efficiently imposes a filtration-subordinate acyclic matching µ on
X, and outputs the filtered Morse complex A associated to µ. By the results of Chapter 4, this
filtered Morse complex has persistent homology isomorphic to that of X, and hence the per-
sistent homology of X can be computed up to isomorphism by using the standard persistence
algorithm [40] on the filtered Morse complex.

The popularity of persistent homology as a tool for understanding large datasets has led
to a variety of highly efficient implementations and pre-processing algorithms (see [17], [38]
for instance). To the best of our understanding, these approaches rely heavily on the efficient
storability of cubical datasets of low dimension, and there appears to be little hope of similar
techniques succeeding on other types of complexes. Since our approach with MorseReduce only
requires face relations on the input filtered complex as encoded by the underlying incidence
function, it applies in significantly broader contexts. The coreduction-based strategy of [30] has
similarly wide applicability but it only pairs those cells which have gradient paths descending
to unpaired cells of dimension zero, and therefore results in the reduction of much fewer cells
when compared to MorseReduce.

5.2. The MorseReduce Algorithm

Consider a cell complex (X, κ) over a PID R filtered by F = {Xm | m = 1, . . . ,M}.
Theorem 4.3.5 implies that it is possible to compute the persistent homology groups of F by

applying the algorithm of [40] to a potentially smaller Morse filtration Fµ = {Am | m = 1, . . . ,M}

associated with a Morse complex (A, κµ) corresponding to some choice of F-subordinate acyclic
matching µ on X. The usefulness of this approach depends upon having an efficient algo-
rithm for constructing the filtration Fµ and the Morse incidence function κµ, or equivalently
the boundary operator ∂µ on A.

The filtration Fµ and incidence function κµ naturally depend on the choice of acyclic match-
ing µ = (A,w : Q → K). The trivial matching given by A = X and Q = K = ∅ always exists,
but results in the same filtration and thus provides no savings in computational cost. Clearly,
the desired goal is to choose an acyclic matching which minimizes the number of cells in A, or
equivalently maximizes the number of cells paired by w : Q → K. It is known (see [25, Section
4.5]) that in general the problem of constructing an optimal acyclic matching is MAX-SNP hard.

5.2.1. Coreduction Pairs and Gradient Chains. Our approach to producing an acyclic match-
ing is based on the coreduction homology algorithm of Mrozek and Batko [29] which has
proven effective in computing homology of complexes [18, 19]. Heuristically, this algorithm

39
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is based on the following idea. Let X ′ ⊂ X be a sub-collection of cells. A pair of cells ξ,η ∈ X ′

form a coreduction pair in X ′ if restricted to C∗(X ′)

∂ξ = u · η
where u ∈ R is a unit. In this case we make the identifications ξ ∈ K, η ∈ Q and w(η) = ξ, and
remove both ξ and η from X ′.

From (4.1) it is clear that κµ – and hence the Morse boundary operator ∂µ – is defined by
summing over all connections between cells in A. However, even enumerating all the connec-
tions between two such cells is a combinatorially explosive proposition. To circumvent this
summation, we make use of the observation that the coreduction-based construction of the
pairing w : Q → K is done by building paths in reverse order. Heuristically, we assign to each
cell ζ ∈ X a chain g(ζ) ∈ C∗(A) called the gradient chain such that if s ∈ A, then g(a) = ∂µa.

Initially we set g(ζ) := 0. However, as the coreduction algorithm is used to construct the
acyclic matching – that is, as the paths are constructed – the value of g(ζ) is suitably modified.
Thus, the computation of ∂µ can be performed during the construction of w : Q→ K using the
subroutine UpdateGradientChain presented below.

We make use of the following notation in the algorithms: given ξ ∈ X, the coboundary cells
of ξ are given by

cb(ξ) := {η ∈ X | ξ ≺ η} .
It is not necessary to impose any specific order on the cells in cb(ξ).

To emphasize that we only need to store each cell once rather than save a copy for each
subcomplex Xm containing that cell, we partition the cells in X by setting

Nm = Xm \ Xm−1, m = 1, . . . ,M

where X0 = ∅. Note that each cell ξ ∈ X lies uniquely in Nb(ξ) where b : X → Z is as defined
in (4.7). The partition {Nm | k = 1, . . . ,M} defines the input to our algorithms; each cell ξ is
eventually excised from Nb(ξ) either as an element of A or in a coreduction pair. Given a cell
ξ ∈ Nm, we denote by cbN(ξ) and ∂N(ξ) the coboundary cells and the boundary chain when
restricted to {N∗}. Once a cell is removed from Nm, it is also removed from the corresponding
cbN and boundary ∂N of the remaining cells. Similarly, the cells of the output Morse complex
(A, κµ) are also partitioned via NmA = Am \ Am−1.

TABLE 1. Algorithm: UpdateGradientChain

In: ξ ∈ X;
Out: Updates g(ζ) for each ζ ∈ cbN(ξ)
01 for each ζ ∈ cbN(ξ)
02 if ξ ∈ NmA for somem
03 g(ζ)← g(ζ) + κ(ζ, ξ) · ξ
04 else
05 g(ζ)← g(ζ) + κ(ζ, ξ) · g(ξ)
06 end if
07 end for

5.2.2. Subroutines for Removing Cells. The next two subroutines perform tasks pertain-
ing to removing cells. The first subroutine – called MakeCritical – chooses an arbitrary a ′ of
minimal dimension in a non-empty Nm and excises it as an element of A.
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TABLE 2. Algorithm: MakeCritical

In: m ∈ {1, . . . ,M} so that Nm 6= ∅
Out: a ′ ∈ NmA

01 choose a ′ ∈ Nm of min dimension
02 add a ′ to NmA ;
03 updateGradientChain(a ′)
04 remove a ′ from Nm

05 ∂µa
′ ← g(a ′)

06 return a ′

Thus, the output a ′ of MakeCritical becomes a generator of the free module C∗(Am). The
gradient chains of remaining coboundary cells cbN(a

′) are then updated to reflect their inci-
dence with a ′. In this manner, the construction of gradient chains is from the “bottom-up”.
Finally, the action of the Morse boundary operator ∂µ on a ′ is recovered from the correspond-
ing gradient chain g(a ′).

The obvious operation of the second subroutine, called RemovePair, is to perform the re-
duction step from Section 4.2 with respect to a single coreduction pair k,q from the complex.

TABLE 3. Algorithm: RemovePair

In: k,q ∈ Nm∗ with ∂Nk = u · q, Queue of cells Que, n ∈N

Out: Removes (k,q) as a cell pair from Nm∗

01 remove k from Nm∗

02 enqueue cbN(q) in Que
03 if dimq = n

04 g(q)← −
g(k)
u

05 updateGradientChain(q)
06 end if
07 remove q from Nm∗

Recall that on the theoretical level coreduction pairs are identified as w-paired cells and
hence they define the paths of µ. Thus, before the coreduction pair can be removed two addi-
tional steps need to be performed involving the remaining coboundary cells cbN(q) of q. First,
we check if the removal of q has created new coreduction pairs. For this, it suffices to check cells
in the coboundary of q and so we add those cells to a queue structure. Secondly, if the pair (k,q)
potentially lies on a path between unpaired cells of adjacent dimension, the gradient chains of
q and hence of its remaining coboundary cells are updated by a call to UpdateGradientChain.

5.2.3. MorseReduce. These subroutines are combined to form our main algorithm MorseReduce.
The input to this algorithm is a filtration F of a complex (X, κ) partitioned by {Nm} as described
above; the incidence function κ represents knowledge of the boundary operator ∂. The output
is a new filtration Fµ of the Morse complex (A, κ) – partitioned by

{
NmA
}

– corresponding to a
coreduction-based F-subordinate acyclic matching µ = (A,w : Q → K). The Morse incidence
function κµ is recovered from the boundary operator ∂µ.

Note that we use a queue data structure Que which gets re-initialized once for each iteration
of the outer while loop from line 02. We keep track of which cells are in Que so that no cell
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TABLE 4. Algorithm: MorseReduce

In: {Nm}M1
Out:

{
NmA
}M
1

01 for eachm = 1, . . . ,M
02 while Nm 6= ∅
03 a ′ ← MakeCritical(m)
04 Que := Empty Queue of Cells
05 enqueue cbN(a

′) in Que
06 while Que 6= ∅
07 dequeue ξ from Que
08 if ∂Nξ = 0
09 enqueue cbN(ξ) in Que

10 else if ∂Nξ = u · η for some η ∈ Nb(ξ) and unit u ∈ R
11 RemovePair(ξ, η, Que, dima)
12 end if
13 end while
14 end while
15 end for
16 return

{
NmA
}M
1

is queued twice per such iteration. This can be achieved in practice either by storing an addi-
tional flag for each cell or by mirroring the queue in a separate data structure which has been
optimized for search.

5.3. Verification of Correctness

We use Theorem 4.3.5 to confirm that the output filtration Fµ generated by the algorithm
MorseReduce has the same persistent homology groups as those of the input filtration F.

THEOREM 5.3.1. Let F = {Xm | m = 1, . . . ,M} be a filtration of a complex (X, κ) over a PID R
and define Nm := Xm \ Xm−1 for eachm. Then,

(1) MorseReduce terminates when applied to {Nm}
M
1 and produces smaller collections of cells{

NmA
}M
1

from a Morse complex (A, κµ) associated to a F-subordinate acyclic matching µ =
(A;w : Q→ K) on X.

(2) The output
{
NmA
}

defines a filtration Fµ = {Am}
M
1 of (A, κµ) where each subcomplex Am is

given by
⋃m
`=1N

`
A and the underlying incidence function κµ corresponds to the Morse boundary

operator ∂µ.
(3) For each p, n andm, we have an isomorphism of the corresponding persistent homology group

Hpn(X
m) ∼= Hpn(A

m).

PROOF. Each iteration of the outer while loop from line 02 permanently excises at least
one cell a from N∗ via MakeCritical. In practice many more cells are also removed, since if
(ξ,η) appear as a coreduction pair then they are excised during the RemovePair subroutine.
Furthermore, observe that their appearance as a coreduction pair is equivalent to their being
part of a path that terminates at a. The fact that no cell is queued twice during any iteration
of the second while loop in line 07 guarantees the absence of infinite loops. Moreover, it is
clear that the final size of each NmA is smaller than the initial size of Nm because MakeCritical
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is only called once per iteration of the outer while loop and each call to MakeCritical results
in a single cell from Nm being removed and stored in the corresponding NmA . Thus, NmA ⊂ Nm

for eachm.
Observe from line 10 that if (ξ,η) is sent to RemovePair, then b(ξ) = b(η) and κ(ξ,η)

equals some unit u in R. Let m∗ = b(ξ), and note that defining wm∗(η) = ξ for each such
pair constructs wm∗ : Qm∗ → Km∗ . Combining this pairing information with the output of
MakeCritical produces a partial matching µ = (A,w : Q→ K) which is subordinate to F.

To see that this partial matching is acyclic, observe from lines 10 and 11 that a pairingw(η) =
ξ is only made when η is the last remaining face of ξ, i.e., the unique cell in

{
ζ ∈ Nb(ξ) | ζ ≺ ξ

}
.

Thus, all elements of Q satisfying that could possibly come after ζ in a path must have already
been excised before the pair (ξ,η). Thus, no path of µ can be a cycle.

By Theorem 4.3.5, in order to show that the output determines a filtration Fµ with isomor-
phic persistent homology to F, it suffices to establish that Fµ is the Morse filtration associated
to µ. Thus, we must ensure that the stored boundary ∂µ of each cell a ∈ A built from the
corresponding gradient chain g(a) equals the boundary operator corresponding to the Morse
incidence function κµ from (4.1). This is addressed by the subsequent proposition, which con-
cludes the proof. �

The proof of the following proposition employs the usual inner product 〈 , 〉 : C(X) ×
C(X) → R on chains of the input complex (X, κ) obtained by treating the cells in X as an
orthonormal basis.

PROPOSITION 5.3.2. Assume the hypotheses and notation of Theorem 5.3.1. For cells a and a ′ in
A, 〈

g(a),a ′
〉
= κµ(a,a ′)

PROOF. We provide a brief summary of how gradient chains are constructed. Assume
throughout that a ′ is removed via MakeCritical. Consider the following two cases.

[a] Assume that ζ is an unremoved cell with a ′ ≺ ζ. Then, by line 02 of MakeCritical
and the subsequent call to UpdateGradientChain, the gradient chain g(ζ) of ζ is incre-
mented as follows:

g(ζ)← g(ζ) + κ(ζ,a ′) · a ′

Since this is the first instance of a ′ being added to gradient chains, we are guaranteed
〈g(ζ),a ′〉 = κ(ζ,a ′) when MakeCritical returns a ′.

[q] Assume ζ is an arbitrary unremoved cell. Each cell q excised as an element of Q via
RemovePair inherits its gradient chain from the existing gradient chain of its paired cell
w(q) by the formula

g(q) =
g(w(q))

κ(w(q),q)
This follows from line 04 of RemovePair. Since UpdateGradientChain is called in the
next line, each remaining cell ζ satisfying q ≺ ζ has its gradient chain incremented by
κ(ζ,q) · g(q). By the preceding formula for g(q), we have

g(ζ)← g(ζ) +
κ(ζ,q)

−κ(w(q),q)
· g(w(q))

Thus, there are two ways a critical cell a ′ appears with non-zero coefficient in the gradient
chain g(ζ) of some hitherto unremoved cell ζ: either a ′ ≺ ζ and we directly apply [a], or
〈g(w(q)),a ′〉 6= 0 for some previously removed q ∈ Q with q ≺ ζ and we apply [q]. Combining
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these contributions, we have the following formula〈
g(ζ),a ′

〉
= κ(ζ,a ′) +

∑
q∈Q

κ(ζ,q)
−κ(w(q),q)

〈
g(w(q)),a ′

〉
(5.1)

Now assume that a cell a is eventually removed by MakeCritical. Recalling (4.1), we substitute
ζ = a in (5.1) to get 〈

g(a),a ′
〉
= κ(a,a ′) +

∑
q∈Q

κ(a,q)
−κ(w(q),q)

〈
g(w(q)),a ′

〉
Applying (5.1) recursively to each 〈g(w(q)),a ′〉 in the expression above completes the argu-
ment. �

5.4. Complexity

Let (X, κ) be a complex over a PID R filtered by F =
{
Xk
}K
1

with face partial order 2
generated by the usual relation:

ξ ≺ ξ ′ if κ(ξ ′, ξ) 6= 0 ∈ R.

5.4.1. Parameters and Assumptions. We will describe the computational cost of using MorseReduce

to construct an F-subordinate acyclic matching (A,w : Q→ K) as well as the associated Morse
complex (A, κµ). These bounds on worst-case performance will be established in terms of the
following basic complexity parameters.

(1) The input size – denoted by n – is the number of cells in X.
(2) The output size is the number of cells in the filtered Morse complex A which we denote

by m. Note that m is partitioned by m = m0 + . . .+mD where md is the cardinality of
d-dimensional cells in A. Constructing an optimal acyclic matching – that is, a match-
ing that minimizes m – is MAX-SNP hard [25]. Providing sharp bounds on optimal
m values relative to n for arbitrary complexes would require major breakthroughs in
algebraic topology as well as graph theory. Therefore, we leavem as a parameter.

(3) The coboundary mass p of X is defined as

p = sup
ξ∈X

# {η ∈ X | κ(η, ξ) 6= 0} ,

where # denotes cardinality. Thus, the coboundary mass bounds the number of cells
η ∈ X which satisfy ξ ≺ η for a given cell ξ ∈ X. Even though pmay safely be bounded
by n, in most situations this is a gross over-estimate. For example, the coboundary
mass of a d-dimensional cubical grid is bounded above by 2d independent of the total
number of cubes present.

For the purposes of complexity analysis, we also make these two simplifying assumptions:
(1) we assume that adding, removing or locating a cell ξ ∈ X incurs a constant cost, and
(2) we assume that ring operations in R may be performed in constant time so that the cost

of adding and scaling gradient chains is linear in the length of the chains involved.

5.4.2. Evaluating Complexity. We begin by evaluating the complexity of a single iteration
of the outer while loop from Line 02 of MorseReduce. Assume that in this iteration the call
to MakeCritical via Line 03 has returned a cell A ′ of dimension d. Since in each iteration of
this while loop we add a cell to Que at most once, the maximum size attainable by Que is n.
Moreover, each Que insertion involves testing the coboundary of a cell which requires at most
p operations. In light of these bounds, we will just assume that the total cost of managing the



5.4. COMPLEXITY 45

Que data structure within a single while iteration depends linearly on n · p and we will not
separately tabulate the cost of each Que operation.

We also require the following observations regarding the cost of the three subroutines in
terms of the complexity parameters defined previously.

(1) The cost of calling UpdateGradientChain on a d-dimensional cell equals O(p ·md). This
follows from the fact that we must iterate over each cell ζ in the remaining coboundary
of ξ and update the gradient chain g(ζ) which consists of d-dimensional cells in A.

(2) A call to MakeCritical in Line 03 also costs O(p ·md), since the only non-trivial oper-
ation is the call to UpdateGradientChain in Line 03.

(3) In the worst case, the if statement from Line 03 of RemovePair always evaluates pos-
itively and hence UpdateGradientChain is called. Thus, each call to RemovePair also
incurs a worst case cost of O(p ·md) since all other non-trivial operations only involve
Que insertion.

Since the inner while loop from Line 06 of MorseReduce depends only on the size of Que, it
may run at most n times. Thus, the cost of iterating the outer while loop from Line 02 reduces
to a single call to MakeCritical, the management of the Que structure, and at most n calls to
RemovePair. Adding these respective contributions, the total cost of a single iteration of this
outer while loop equals

O(p ·md) + O(n · p) + O(n · p ·md)

The third quantity clearly dominates the first two, so the desired complexity estimate of the
outer while loop when A ′ has dimension d is O(n · p ·md).

It now suffices to estimate how many iterations of the outer while loop are actually executed
in a single instance of MorseReduce. But this is straightforward: each such iteration corresponds
to exactly one cell A ′ ∈ A as returned by MakeCritical, so this while loop executes precisely
m times. Partitioning m = m0 + . . .+mD by dimension as usual, we estimate the following
total cost of running MorseReduce in terms of our complexity parameters:

O

(
n · p ·

D∑
d=0

m2
d

)
In light of this expression, it is convenient to define the number m̃ 6 m2 by

m̃ =

D∑
d=0

m2
d.

Thus, we have the following result regarding the computational complexity of MorseReduce.

PROPOSITION 5.4.1. Assume that MorseReduce is executed on a filtered complex X of top dimen-
sionD, size n and coboundary mass p. If the resulting Morse complex A has sizem = m0+ . . .+mD,
then the worst-case complexity is bounded by O(n · p · m̃), where m̃ = m2

0 + . . .+m
2
D.

Thus, the cost of computing the maps induced on homology by inclusions Xk ⊂ Xk+1 in
the filtered complex X over any PID R reduces from O(n3) without MorseReduce to O(n · p ·
m̃+m3) after MorseReduce. When m is much smaller than n, the first term is dominant and
one observes essentially linear cost in terms of the input size n. In the special case when R is
a field, recall that the standard persistence algorithm of [40] has cubic complexity in the size of
the input filtered complex. Therefore, the total cost of computing the persistence intervals of X
via the algorithm of [40] after applying MorseReduce to X also equals O(n · p · m̃+m3).
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REMARK 5.4.2. The efficiency of our approach depends crucially on m being much smaller
than n. In the worst case, no cells get paired and we are left with m = n. Examples of filtered
complexes which realize these pathologies may be easily constructed in two ways:

(1) consider a complex X such that any non-zero incidence κ(ξ, ξ ′) ∈ R is never a unit for
any pair of cells ξ, ξ ′ ∈ X. Alternately,

(2) consider a complex X so that whenever κ(ξ, ξ ′) 6= 0 for cells ξ, ξ ′ we have b(ξ) 6= b(ξ ′).
Since matched cells are required to have the same b-values by Definition 4.3.1, no non-
trivial matching is possible in this case.

It is easy to test the input complex for both pathologies in O(n · p) time by checking each
pair of cells ξ, ξ ′ ∈ X with non-trivial incidence κ(ξ, ξ ′) 6= 0. Moreover, these pathologies are
extremely rare in practical situations such as those involving simplicial or cubical complexes
arising from typical experimental data, since

(1) for both cubical and simplicial complexes all non-zero incidences are units ±1 in any
PID R, so the first pathology is avoided,

(2) often, the b-values are only prescribed on top-dimensional cells (such as grayscale pixel
or voxel values for image data). In these situations, each lower dimensional cell recur-
sively inherits its b-value as the minimum b-value encountered among its co-boundary
cells. This guarantees the existence of at least some cells ξ ≺ ξ ′ with b(ξ) = b(ξ ′) and
avoids the second pathology,

(3) in other cases, the b-values are inherited from lower dimensional cells. A prime ex-
ample is the Vietoris-Rips complex built around point cloud data. Here each simplex
inherits the maximum b-value encountered in its 1-skeleton. Again, this process en-
sures the existence of dimensionally adjacent cells which share b-values and hence
avoids the second pathology.

As we demonstrate in Section 5.5, Morse theoretic pre-processing is remarkably effective
for computing persistent homology of several types of filtered complexes arising from experi-
mental data.

We believe that a more nuanced approach to analyzing the effectiveness of combinatorial
Morse theory would require imposing reasonable probability measures on the set of all com-
plexes and proving statements regarding the expected fraction of cells reduced. We leave such
considerations to future work.

5.5. Experimental Results

The popularity of persistent homology as a tool for understanding large datasets has led
to a variety of highly efficient implementations and preprocessing algorithms (see [33, 17, 38]
for instance).These approaches rely heavily on the efficient storability of cubical datasets of
low dimension over Z2 coefficients, and there appears to be little hope of similar techniques
succeeding on other types of complexes. Since MorseReduce only requires face relations on the
input complex as encoded by the underlying incidence function, it applies to filtered complexes
independent of coefficient ring and dimensionality. The coreduction-based strategy of [30] has
similarly wide applicability but it only pairs those cells which have gradient paths descending
to unpaired cells of dimension zero, and therefore results in the reduction of much fewer cells
when compared to MorseReduce.

Note that since the output of MorseReduce is a filtration in its own right, it is possible to
iterate the algorithm until the number of reductions performed becomes essentially negligible.
Thus, the cells output by an iteration of MorseReduce get further partitioned by the subsequent
iteration and may get paired by the associated acyclic matching.
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We demonstrate the results of MorseReduce on cubical grids, simplicial complexes, Vietoris-
Rips complexes and movies. The cubical complexes come from sub-level sets of finite ele-
ment Cahn-Hilliard simulations and the simplicial complexes arise from brain imaging data.
The Vietoris-Rips complexes come from point clouds of experimental granular flow data. The
largest datasets by far, courtesy of M. Schatz, are two black and white movies obtained by seg-
menting Rayleigh-Bénard convection data, each successive frame consisting of about 155, 000
three dimensional cubes.

The implementation of MorseReduce benchmarked here was coded in C++ using the stan-
dard template library and compiled using the GNU C++ compiler with optimization level O3.
All computations were performed on an Intel Core i5 machine with 32 GB of available RAM
and virtual memory disabled. The source code for our implementation is available at [3].

The comparison is with our implementation of the standard algorithm for computing per-
sistent homology as found in [40] which we will denote by SP. While this algorithm may also
be found in various flavors and as part of the software package jPlex [2] or from the Diony-
sus project [1], the present comparison is fair because the same data structures are used in
both cases. The SP results simply provide the time taken when no discrete Morse theoretic
pre-processing is performed while holding all other implementation-specific factors constant.
Thus, if more efficient implementations of SP exist, then preprocessing with MorseReduce will
vastly improve the performance of those implementations as well.

While the results of Theorem 5.3.1 apply to input filtrations over any PID R, the usual
computation of persistence intervals via SP requires R to be a field. In the experimental re-
sults that follow, we have performed all reductions over Z, but we assume R = Z2 throughout
when applying SP to the reduced filtration output by MorseReduce. The following table demon-
strates the performance comparison of computing peristence with and without pre-processing
by MorseReduce.

Type Dim # Frames # Cells Red. # Cells SP MR + SP

C 2 16 0.26 M 2.31 K 2.4 0.9
C 3 25 1.24 M 3.35 K 12.7 4.2
C 3 2400 5.25 M 9.50 K 195.8 46.6
S 5 20 12.86 M 27.13 K 73.9 8.8
S 5 5000 0.86 M 99.8 K 1951.6 303.1

VR 2 100 2.34 M 86.33 K 1277.0 37.7
VR 3 50 9.50 M 18.31 K 286.5 47.2
VR 3 250 1.29 M 53.95 K 551.1 125.2
M 3 209 259.21 M 1.25 K DNF 7,213
M 3 215 266.67 M 2.10 K DNF 7,416

TABLE 5. Experimental Results.

The table is arranged as follows: the first column indicates the type of complexes in the
filtration (Cubical, Simplicial, Vietoris-Rips or Movie) while the second column contains the
maximum dimension of the cells present in the filtration. The third column contains the length
M of each input filtration F = {Xm}

M
1 . The next two columns provide the size (in number

of cells) of the filtration before and after Morse reduction. The penultimate column provides
the time taken by our implementation of SP to compute persistence intervals over Z2 of the
filtration, whereas the last column provides the total time taken to first apply MorseReduce and
then compute the persistence intervals of the reduced filtration with SP. DNF indicates that the
given algorithm failed to terminate because it ran out of memory. All times are in seconds.
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A final note to illustrate the power and scalability of the Morse theoretic approach: the
movie datasets were far too large to be held in memory all at once. Our approach involved
storing about 30 frames at a time and removing paired cells from all but the last frame. This
freed up considerable memory which we used to input the remaining portions of the movies in
pieces, each comprising 30 consecutive frames. At each stage we left the last frame unreduced
so that the next piece of the movie could be attached to it, and so on. In this way, extremely
large and complicated persistence computations may be brought within the scope of commod-
ity hardware. To the best of our knowledge, there is no other publically available technique
which yields persistence intervals of a large filtration from such local computations without
ever holding all the cells in memory at once.



CHAPTER 6

Applications to Exact Sequences
� �

The infernal Serpent; he it was whose guile,
stirred up with envy and revenge, deceived
the mother of mankind, what time his pride

had cast him out from Heaven, with all his host;
–John Milton, Paradise Lost

6.1. Introduction

Exact sequences of chain complexes are basic objects of fundamental interest in algebraic
topology and homological algebra. Given a short exact sequence S of free, finitely generated
chain complexes C,D and E over a principal ideal domain R,

0→ C
α−→ D

β−→ E→ 0

there exist well-defined connecting homomorphisms ∆n : Hn(E) → Hn−1(C) of homology mod-
ules so that the following sequence L(S) is exact

. . .
∆n+1−→ Hn(C)

α∗n−→ Hn(D)
β∗n−→ Hn(E)

∆n−→ Hn−1(C)
α∗n−1−→ . . .

Here α∗ and β∗ are the induced maps on homology corresponding to the chain maps α and β
respectively.

The explicit construction of these connecting homomorphisms ∆ – and hence, of L(S) –
has various important applications in computational topology and dynamics. For instance, the
Mayer-Vietoris long exact sequence [20, Ch. 2.2] allows one to compute the homology modules
of a cell complex in terms of the homology modules of its subcomplexes and their intersections.
Similarly, the long exact sequence of a triple [20, Ch. 2.1] is used to compute Conley indices
[11, 14] in computational dynamics. While our focus is on constructing these two long exact
sequences, the methods outlined here are rather general and apply to a significantly larger class
of such constructions.

The construction of ∆ typically involves bringing matrix representatives of the chain maps
and/or the boundary operators into normal form. These operations are at least of cubical
complexity in the size of the bases of the underlying chain modules. In many practical cases,
these bases are large enough to render matrix algebra untenable in terms of both time taken
and memory consumed.

Our strategy utilizes discrete Morse theory from Chapter 4 to perform efficient reductions
on the bases of the chain modules while preserving the underlying homology modules. This
generates a new short exact sequence S ′ which is weakly equivalent to S but has significantly
smaller chain modules. Consequently,

(1) L(S ′) is isomorphic to L(S), and
(2) the matrices which need to be normalized for constructing L(S ′) are typically much

smaller than those needed to construct L(S).
49
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Thus, the connecting homomorphisms may be constructed for L(S ′) via the usual matrix oper-
ations on these smaller matrices and then transported isomorphically to L(S).

We briefly discuss the complexity of constructing long exact sequences in Section 6.2. Dis-
crete Morse theory is then applied to simplify constructions of the long exact sequence of a
triple and the Mayer Vietoris sequence in Sections 6.3 and 6.4 respectively.

6.2. The Zigzag Lemma

The Zigzag Lemma is a standard tool in homological algebra which describes the construc-
tion of long exact sequences in homology as a consequence of the Snake Lemma. This result
describes a functorial construction from the category of short exact sequences of chain com-
plexes to the category of long exact sequences.

Its statement and detailed proof may be found in most standard presentations of algebraic
topology [20, Theorem 2.13] and homological algebra [39, Lemma 1.3.2]. We provide a brief
outline of the argument in order to discuss the complexity of various algebraic operations in-
volved therein.

LEMMA 6.2.1 (Zigzag Lemma). Consider a short exact sequence S of chain complexes given by

0→ C
α−→ D

β−→ E→ 0.

There exist canonical connecting morphisms ∆n : Hn(E) → Hn−1(C) of homology modules such that
the following sequence L(S) is exact

. . .
∆n+1−→ Hn(C)

α∗n−→ Hn(D)
β∗n−→ Hn(E)

∆n−→ Hn−1(C)
α∗n−1−→ . . .

PROOF. Consider the following commutative diagram induced by the boundary operators
from Sn to Sn−1:

Cn Dn En 0

0 Cn−1 Dn−1 En−1

//
αn

��

∂n

//
βn

��

δn

//

��

dn

// //
αn−1

//
βn−1

Given a cycle x ∈ En, by the surjectivity of β there exists some y ∈ Dn with β(y) = x. Let
z ∈ Dn−1 be given by z = δn(y). It is easy to see that z ∈ kerβ, since β is a chain map:

β(z) = β ◦ δn(y) = dn ◦β(y) = dn(x) = 0.
Here the last equality follows from the assumption that x is a cycle. By exactness of the se-
quence at the bottom, z ∈ imgα, so there exists some w ∈ Cn−1 with α(w) = z. Since α is a
chain map, we have

α ◦ ∂n−1(w) = δn−1 ◦α(w) = δn−1(z) = δn−1 ◦ δn(y) = 0
By the injectivity of α, we have ∂n−1(w) = 0 and therefore w is a cycle. It is easy to check that
defining ∆n as the map which sends the homology class of x to the homology class of w yields
the desired long exact sequence in a well-defined manner. �

In order to make the complexity of constructing ∆ transparent, consider the simpler situa-
tion where R is a principal ideal domain and each R-module in C, D and E is finitely generated
and free; assume also that the morphisms α and β have been expressed as matrices with R
coefficients relative to some fixed bases of these free modules. Here are the four essential steps
in the proof outlined above:
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(1) Computing the homology modules of E so that we may choose representative cycles x,
(2) Solving the matrix equation β(y) = x for y,
(3) Solving the matrix equation α(w) = z for w, where z = δn(y), and finally
(4) Computing the homology modules of C so that we may express w as a R-linear combi-

nation of representative cycles.
Each step reduces to performing row and column operations on matrices with R coeffi-

cients. For instance, computing the homology modules of C and E is a matter of bringing the
corresponding matrix representations of the boundary operators ∂ and d into their Smith nor-
mal forms. Similarly, solving the matrix equation β(y) = x for y involves bringing the matrix
representation of β into reduced echelon form.

In the general spirit of the rest of our basic approach, reducing the sizes of the bases of
the chain modules Cn, Dn and En in an efficient manner while preserving homology modules
would also reduce the sizes of all matrices in sight, thereby providing a considerable computa-
tional advantage. The following classical result [31, Theorem 24.2] establishes functoriality of
the construction outlined above.

PROPOSITION 6.2.2. Given a morphismΩ : S→ S ′ of short exact sequences of chain complexes

0 C D E 0

0 C ′ D ′ E ′ 0

// //
α

��

ωC

//
β

��

ωD

//

��

ωE

// //
α ′

//
β ′

//

there is an induced morphism L(Ω) : L(S)→ L(S ′) of the associated long exact sequences. That is, the
following diagram commutes.

. . . Hn(C) Hn(D) Hn(E) Hn−1(C) . . .

. . . Hn(C
′) Hn(D

′) Hn(E
′) Hn−1(C

′) . . .

//
∆n+1

//
α∗n

��

ωC∗
n

//
β∗n

��

ωD∗
n

//
∆n

��

ωE∗
n

//
α∗n−1

��

ωC∗
n−1

//
∆ ′n+1

//
α ′∗n

//
β ′∗n

//
∆ ′n

//
α ′∗n−1

This functoriality enables us to bypass some of the algebraic complexity of constructing ∆
in the following way. We use algebraic Morse theory to perform homology-preserving reduc-
tions on the bases of the underlying chain modules of C,D and E. This produces a short exact
sequence S ′ of chain complexes whose chain modules have smaller bases than those of S along
with an explicit weak equivalence Ω : S → S ′. Then, the induced map L(Ω) : L(S) → L(S ′)
is an isomorphism of long exact sequences because all the vertical maps are invertible. Thus,
constructing∆ ′ via the Zigzag Lemma for S ′ allows us to recover∆ for S via the simple formula

∆n ≡ (ωC∗
n−1)

−1 ◦∆ ′n ◦ (ωE∗
n )

We remark here that evaluating this composition reduces to multiplying matrices rather than
bringing them into normal form; in this case, it is well known that sparseness actually leads to
significant computational gains.

6.3. The Long Exact Sequence of a Triple

Let (X, κ) be a cell complex in the sense of Definition 2.3.1 over a principal ideal domain R.
Consider a filtration F of X given by U ⊂ V ⊂ X where U and V are subcomplexes and let F(X)
be the corresponding chain filtration:

C∗(U)
i−→ C∗(V)

j−→ C∗(X)
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where i and j are chain maps induced by inclusion. The long exact sequence of the triple U,V and
X is defined to be the long exact sequence L(S) associated to the following short exact sequence
S of relative chain complexes

0→ C∗(V,U) α−→ C∗(X,U)
β−→ C∗(X,V)→ 0 (6.1)

where α is the inclusion of relative chains and β is the projection of relative chains. That is,

α(v +C∗(U)) = j(v) +C∗(U) and β(x +C∗(U)) = x +C∗(V)

for v ∈ C∗(V) and x ∈ C∗(X).
If U = ∅, then S reduces to the familiar short exact sequence of the pair (X,V) given by

0→ C∗(V)→ C∗(X)→ C∗(X,V)→ 0

Let Y ∈ {U,V,X}. Assume the existence of acyclic matchings

µY = (AY;wY : QY → KY) on Y (6.2)

subordinate to the filtration U ⊂ V ⊂ X. In practice, one may construct these matchings via the
algorithms of Chapter 5. By Theorem 4.3.5, note that A := AX is the Morse complex associated
to µX and AU ⊂ AY ⊂ A is a filtration of that complex. Here is the associated chain filtration
Fµ(A):

C∗(AU)
iµ−→ C∗(AV)

jµ−→ C∗(AX)

Let ψY : C∗(Y) → C∗(AY) and φY : C∗(AY) → C∗(AY) be the chain equivalences from the
proof of Theorem 4.2.2 induced by µY. Define Ψµ to be the sequence of maps ψY for Y = U,V,X
and similarly define Φµ. By Theorem 4.3.5 and Remark 4.3.7, Ψµ : F(X) → Fµ(A) and Φµ :
Fµ(A)→ F(X) are strong equivalences of chain filtrations.

THEOREM 6.3.1. Let S be the short exact sequence (6.1) of a triple of complexes U ⊂ V ⊂ X and let
µY for Y ∈ {U,V,X} be subordinate matchings as defined in (6.2). Then, the following sequence Sµ is
short exact

0→ C∗(AV,AU)
α ′−→ C∗(AX,AU)

β ′−→ C∗(AX,AV)→ 0

Here α ′ and β ′ are induced by inclusion and projection of relative chains respectively. Moreover, Sµ is
weakly equivalent to S.

PROOF. Since AU ⊂ AV ⊂ AX = A is a filtration by Theorem 4.3.5, it is immediately clear
that Sµ is a short exact sequence and it suffices to construct a weak equivalence Ω : S → Sµ.
It follows from Remarks 2.2.2 and 4.3.7 that for Y,Z ∈ {U,V,X} such that Y ⊂ Z, the chain
equivalences ψZ and φZ induce relative chain equivalences

ψZ,Y : C(Z,Y)→ C(AZ,AY) and φZ,Y : C(AZ,AY)→ C(Z,Y)

Now, we have the following diagram between S and Sµ:

0 C(V,U) C(X,U) C(X,V) 0

0 C(AV,AU) C(AX,AU) C(AX,AV) 0

//

��

//
α

��

ψV,U

//
β

��

ψX,U

��

ψX,V

//

��

// //
α ′

//
β ′

//
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Routine computations using the fact that Ψµ : F(X)→ Fµ(A) is a morphism of chain filtrations
confirm that this diagram commutes. For instance, consider the first square:

ψX,U ◦α(v +C(U)) = ψX,U(j(v) +C(U))
= ψX ◦ j(v) +C(AU)

= jµ ◦ψV(v) +C(AU)

= α ′(ψV(v) +C(AU))

= α ′ ◦ψV,U(v +C(U))

LetΩ : S→ Sµ be the morphism consisting of the maps ψZ,Y. Note that a morphism Υ : Sµ → S
may be constructed analogously via the mapsφZ,Y. Clearly, Υ is a weak inverse ofΩ as desired.

�

6.4. The Mayer-Vietoris Sequence

Let (X, κ) be a cell complex and consider subcomplexes U,V ⊂ X such that X = U ∪ V.
Note that the intersection Y = U ∩ V is also a (possibly empty) subcomplex of X. Consider the
following diamond of inclusion maps of chains

C(X)

C(U) C(V)

C(Y)

??

i
__

j

__

k

??

l

Define the chain maps α : C(Y)→ C(U)⊕C(V) and β : C(U)⊕C(V)→ C(X) as follows.

α(y) = (k(y), l(y)) and β(u, v) = i(u) − j(v).

Now, the following sequence S of chain complexes is short exact:

0→ C(Y)
α−→ C(U)⊕C(V) β−→ C(X)→ 0 (6.3)

and the corresponding long exact sequence L(S) is called the Mayer Vietoris sequence associated
to U and V.

There are two filtrations of interest in the inclusion diagram above: Y ⊂ U ⊂ X and Y ⊂ V ⊂
X. Assume the existence of acyclic matchings µZ = (AZ;wZ : QZ → KZ) for Z ∈ {Y,U,V} such
that the compatibility requirement µU ⊃ µY ⊂ µV is satisfied. We call µY the intersection of µU
and µV in this case.

DEFINITION 6.4.1. Given acyclic matchings µU ⊃ µY ⊂ µV as above, set AX = AU ∪AV,
KX = KU ∪KV and QX = QU ∪QV. For each q ∈ Q, define

wX(q) =

{
wU(q), if q ∈ QU

wV(q), if q ∈ QV

noting that if q ∈ QU ∩QV = QY then both expressions equal wY(q).

It is straightforward to check that µX = (AX;wX : QX → KX) is a partial matching on
X. To see that µX is indeed acyclic, note that any path ρ of µX must start with an element
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q ∈ QX = QU ∪ QV. If q ∈ QU then ρ is also a path of µU and must consequently be acyclic.
Similarly, if q ∈ QV then ρ is also a path of µV.

By this construction, we obtain the compatibility µU ⊂ µX ⊃ µV. We call µX the union of µU
and µV, and emphasize that it is only defined when the intersection µY exists.

REMARK 6.4.2. Given subcomplexes U,V of X with Y = U ∩ V, it is possible to use the
Algorithm MorseReduce from Chapter 5 to construct acyclic matchings µZ for Z ∈ {Y,U,V,X} so
that µY and µX are the intersection and union of µU and µV respectively. To see this, note that
we may use MorseReduce to construct a matching on X subordinate to the following filtration:

Y ⊂ U ⊂ X.

Set µZ = (AZ;wZ : QZ → KZ) for Z ∈ {Y,U,X} and note that we have µY ⊂ µU ⊂ µX by
Theorem 4.3.5. Finally, define µV = (AV;wV : QV → KV) as follows: DV = DY t (DX \ DU) for
D ∈ {A,K,Q} and

wV(q) =

{
wX(q) q ∈ QX \ QU

wY(q) q ∈ QY

It is straightforward to check that µY ⊂ µV ⊂ µX as desired.

Letting ψZ : C(Z)→ C(AZ) and φZ : C(AZ)→ C(Z) be the chain equivalences associated to
µZ for Z ∈ {Y,U,V,X}, we obtain the following commutative diagram of diamonds by Theorem
4.3.5.

C∗(AX)

C∗(X)

C∗(AU) C∗(U) C∗(V) C∗(AV)

C∗(Y)

C∗(AY)

OO

ψX

::

iµ

::

i

oo
ψU

dd

j

//
ψV

dd

jµ

dd
k

::
l

��
ψY

dd

kµ

::

lµ

where the maps on the outer diamond are induced by inclusions of critical chains. A similar
diagram exists for the maps φZ with Z ∈ {Y,U,V,X}.

THEOREM 6.4.3. Let (X, κ) be a cell complex with subcomplexes U and V such that X = U ∪ V

and set Y = U ∩ V. Let S be the short exact sequence (6.3). Let µZ = (AZ;wZ : QZ → KZ) be acyclic
matchings on Z = {Y,U,V,X} so that µY and µX are the intersection and union respectively of µU and
µV. Then, the following sequence Sµ is short exact

0→ C(AY)
α ′−→ C(AU)⊕C(AV)

β ′−→ C(AX)

where α ′ and β ′ are defined analogously to α and β from S. Moreover, S is chain homotopy equivalent
to Sµ.

PROOF. By the existence of the outer diamond in the preceding diagram, it is clear that Sµ
is a short exact sequence, so we focus on constructing a weak equivalenceΩ : S→ S ′. Consider
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the following diagram between S and Sµ:

0 C(Y) C(U)⊕C(V) C(X) 0

0 C(Y) C(U)⊕C(V) C(X) 0

//

��

//
α

��

ψY

//
β

��

(ψU,ψV)

//

��

ψX

��

// //
α ′

//
β ′

//

From the diagram between diamonds it can be checked that this diagram of short exact se-
quences commutes. Consider the third square for example and observe that for (u, v) ∈ C(U)⊕
C(V) we have

β ′ ◦ (ψU,ψV)(u, v) = β ′(ψU(u),ψV(v))
= iµ ◦ψU(u) − jµ ◦ψV(v)
= ψX ◦ i(u) −ψX ◦ j(v)
= ψX(i(u) − j(v))
= ψX ◦β(u, v)

Thus, a morphismΩ : S→ Sµ may be defined via the sequence of vertical maps in the diagram
above. To see thatΩ is in fact a weak equivalence, note that we can analogously define a weak
inverse Υ : Sµ → S using the maps φZ : C(AZ)→ C(Z). �
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