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Abstract In this paper we partially clarify the relation between the compressibility
of a protein and its molecular geometric structure. To identify and understand the
relevant topological features within a given protein, we model its molecule as an
alpha filtration and hence obtain multi-scale insight into the structure of its tunnels
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2 M. Gameiro et al.

and cavities. The persistence diagrams of this alpha filtration capture the sizes and
robustness of such tunnels and cavities in a compact and meaningful manner. From
these persistence diagrams, we extract a measure of compressibility derived from those
topological features whose relevance is suggested by physical and chemical properties.
Due to recent advances in combinatorial topology, this measure is efficiently and
directly computable from information found in the Protein Data Bank (PDB). Our
main result establishes a clear linear correlation between the topological measure and
the experimentally-determined compressibility of most proteins for which both PDB
information and experimental compressibility data are available. Finally, we establish
that both the topological measurement and the linear correlation are stable with respect
to small perturbations in the input data, such as those arising from experimental errors
in compressibility and X-ray crystallography experiments.

Keywords Protein compressibility · Computational topology · Persistence diagram ·
Stability

Mathematics Subject Classification 55N99

1 Introduction

The softness of a protein is known to be closely related to its geometric structure and
biological function [20,23–25]. One of the quantities which partially characterizes pro-
tein softness is compressibility [1,10,11,13,14,17,18,20]. The accurate evaluation of
protein compressibility is essential to elucidating the physical mechanism responsible
for the structure-function relationship of proteins. It has been hypothesized [10,11]
that softness depends on the size of the individual molecular cavities. Thus, proteins
whose molecules contain larger cavities are predicted to be softer than proteins with
smaller cavities even if the total volume of the cavities is the same. This suggests that
concentrating on the total volume or the number of cavities separately cannot provide
a satisfactory prediction of compressibility. It is possible that the ratio of total volume
to number of cavities would provide a better indicator; however, this ratio does not
offer any insight into sizes and geometric features of the individual cavities.

In this paper, we propose a new topological predictor for compressibility of proteins
based on a relatively new mathematical tool known as persistent homology [3,9,
26]. Persistent homology has several features which suggest that it is a potentially
powerful tool for analyzing geometric characteristics of molecules. First, it provides
topological information; that is, it counts cavities and tunnels (a precise definition is
provided in Sect. 2), but in addition it provides information about their sizes. Second,
the information it provides is robust to perturbations such as measurement error. In
other words, small changes in the input data lead to small changes in the output of
the persistent homology computations. Finally, persistent homology can be computed
efficiently using freely available open-source software [30] starting with standard
molecular datasets such as those of the Protein Data Bank (PDB) [31].

A standard model for the geometry of a molecule is obtained by representing each
atom by a solid ball in three-dimensional space with the van der Waal radius of the cor-
responding atom. While this model is easy to generate, it has two obvious limitations.
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A topological measurement of protein compressibility 3

First, the van der Waal radius of a given atom depends on its chemical environment
and is not a universal constant. Second, the model depends on precise knowledge of
the locations of all the atoms. For PDB data, the typical error bounds on atom locations
often exceed 1 Å. If one assumes a fixed radius, then the aforementioned experimental
variability can easily lead to the creation of false cavities or the destruction of real ones.
Given the hypothesis that cavities are correlated with compressibility, this becomes a
serious issue. To circumvent this problem we make use of alpha filtrations [8] weighted
by the van der Waal radii. An exact description is given in Sect. 3, for the moment it is
sufficient to view it as providing an increasing family of geometric models indexed by
a parameter α ≥ 0, where at α = 0 one obtains the standard model described above.

As α increases, various topological features such as cavities and tunnels are created
and destroyed. Persistent homology provides a coherent means by which topological
features at different scales can be uniquely identified. Thus, it allows us to obtain
for each topological feature z a unique α-value bz at which this feature first appears
and another α-value dz at which this feature disappears. The collection of all such
pairs (bz, dz) forms a finite subset of the plane called the persistence diagram of
our molecular alpha filtration. As is discussed in Sect. 2.3, there is a natural notion
of distance between persistence diagrams along with theorems which guarantee that
slight changes in the assumptions concerning the location of the atoms or the particular
choice of van der Waal radii result in small changes to the persistence diagram.

From each point (bz, dz) in the persistence diagram of a molecular alpha filtration,
we can make inferences about the size and structure of the associated feature z which
it identifies. This leads us to define a topological compressibility measure, denoted
�, as the ratio of the number of cavities to tunnels which lie in a specific portion of
the persistence diagram. Our main result—illustrated in Fig. 6—is that � exhibits a
remarkable linear correlation with most experimental compressibility data present in
[11]. Moreover, to test a different hypothesis requires only a modification of the mea-
sure � based on the persistence diagrams of the proteins which can be found at [28].

It should be noted that while there are alternative methods (e.g., Naccess [29],
RosettaHoles [21], etc) which identify cavities in a protein at a fixed scale, our approach
using persistent homology has several advantages. As indicated above, it is because
we use a 1-parameter family of geometric models, that we can be guaranteed of
the stability of the results with respect to small experimental errors or variants in
the chemical environment. Furthermore, persistent homology provides a consistent
unique identification of the desired topological features over the family of models.
Finally, because we make use of alpha filtrations to perform these computations we
can be sure of capturing the appearance and disappearance of all cavities and tunnels
that are used to define �.

2 Background on topological methods

We provide a brief and heuristic introduction to simplicial complexes and their homol-
ogy groups. The reader is encouraged to consult [16] for a complete presentation. A
detailed account of filtered simplicial complexes and their persistent homology groups
may be found in [3,9] and the references therein.
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2.1 Simplicial complexes and homology groups

Let V be a finite set. A simplicial complex K with vertex set V is a collection of non-
empty subsets of V so that the following two conditions hold. First, for each vertex
v in V , the singleton {v} lies in K, and second, K is closed under the containment
relation. That is, if σ ⊂ V is in K and τ ⊂ σ , then τ is also in K. Given a simplicial
complex K with vertex set V , an element σ in K is called a simplex of K and its
dimension, denoted dim σ , equals its cardinality minus 1. Note that the collection of
0-dimensional simplices in K is naturally identified with the underlying vertex set V .

If we assume that the vertices in V are ordered, then we can impose an algebraic
structure on K in the following manner. For each dimension m, one defines a vector
space Cm(K) of m-chains spanned by the m-dimensional simplices as an orthonormal
basis. The boundary operators ∂m : Cm(K) → Cm−1(K) are linear maps whose action
on a basis simplex σ = (v0, . . . , vm) with ordered vertices is given by

∂m(σ ) =
m∑

j=0

(−1) jσ j ,

where σ j denotes the (m − 1)-dimensional simplex containing all the same vertices
as σ but with the vertex v j removed.

Thus, we obtain a sequence of vector spaces connected by linear maps

· · · → Cm+1(K)
∂m+1−→ Cm(K)

∂m−→ Cm−1(K) → · · ·

The kernel of ∂m in Cm(K) is called the subspace of m-cycles and denoted by Zm(K).
Similarly, the image of ∂m+1 in Cm(K) is known as the subspace of m-boundaries
and written as Bm(K). A routine calculation shows that ∂m ◦ ∂m+1 is the zero map on
Cm+1(K) for each dimension, so we have an inclusion of the vector spaces Bm(K) ⊂
Zm(K). The m-dimensional homology group of K is defined as the quotient space

Hm(K) = Zm(K)

Bm(K)
.

Two m-cycles are called homologous in K if their algebraic difference is a m-boundary,
and in this case they represent the same element of the m-th homology group. The
m-th Betti number of K, written βm(K), is the dimension of Hm(K) as a vector space.
We say that K is acyclic if β0(K) = 1 and βm(K) = 0 for all m > 0.

In practice, one can compute Betti numbers and presentations of homology groups
by putting the boundary operators ∂m in Smith normal form. Various algorithms [7,15]
have been implemented [28] to perform such computations efficiently.

2.2 Geometric realizations and nerves

To each simplicial complex K, one can associate a geometric object |K| embedded in
an Euclidean space. On the other hand, from each finite collection U of subsets of an
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A topological measurement of protein compressibility 5

Euclidean space, one can create a simplicial complex N (U). In this section we briefly
describe both constructions.

Let K be a simplicial complex with vertices v1, . . . , vn and associate the j-th vertex
to the j-th coordinate point p j of R

n whose coordinate expansion contains a 1 in the
j-th position and zeros elsewhere. Then, each simplex σ of K is associated with the
convex hull |σ | of the coordinate points corresponding to its vertices. For instance,
when n = 3 and σ = (v1, v2), then |σ | is precisely the line segment stretching between
(1, 0, 0) and (0, 1, 0) in R

3. The union of all such |σ | as σ ranges over the simplices
of K is called the geometric realization of K and is typically denoted by |K|. We call
a geometric object triangulable if it is homeomorphic to the geometric realization of
some simplicial complex, and remark that the homology groups of triangulable spaces
are defined to equal those of their homeomorphic simplicial counterparts.

Consider a finite collection U of non-empty triangulable subsets of R
n and let

U be their union. The nerve of U is a simplicial complex N (U) whose vertex set
is U , and whose d-dimensional simplices for d > 0 correspond precisely to those
sub-collections of U which have a non-empty intersection in R

n . The nerve theorem
from [2] states that if each non-empty intersection of sets from U is acyclic, then the
homology groups of their union U are the same as those of the nerve N (U).

The Betti numbers of a triangulable space T embedded in R
3 capture coarse proper-

ties of T. The zeroth Betti number β0(T) counts the number of connected components
of T. The first and second Betti numbers count the number of tunnels and cavities in
T respectively. For the purposes of this paper, a tunnel refers to a cylindrical structure
within T whereas a cavity corresponds to a region completely enclosed by T. For
instance, if T is a solid ball with a thickened diameter removed, then it has a single
tunnel and no cavities. On the other hand, if the entire interior of that solid ball is
removed, then the hollow shell which remains has a single cavity but no tunnels.

It follows from the nerve theorem that if a triangulable space T ⊂ R
3 is decom-

posed into a finite collection T of triangulable subsets whose non-empty intersections
are acyclic, then the geometric realization |N (T )| has precisely the same number of
connected components, tunnels and cavities as the original space T.

2.3 Filtrations, persistent homology and stability

Let K be a simplicial complex. A subcomplex K′ of K is a sub-collection of simplices
of K which is a simplicial complex in its own right. That is, if some simplex σ of
K is contained in K′, then any subset of σ is also contained in K′. We denote this
subcomplex relation by K′↪→K. It is easy to check that cycles and boundaries of K′
remain cycles and boundaries when viewed as chains of K. A filtration F with length
A ∈ R of a simplicial complex K assigns to each index a in [0, A] a subcomplex FαK
of K so that FαK↪→Fα′K whenever α ≤ α′.

It is customary to define the subcomplexes which constitute a filtration only on a
finite subset SF ⊂ [0, A] of indices1 with the understanding that FαK = FsK where
s is the largest element of SF smaller than α.

1 From the finiteness of K, we have a natural choice of SF for any filtration F of K since there are only
finitely many indices in [0, A] where new simplices get introduced.
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6 M. Gameiro et al.

Fig. 1 A length 4 filtration F of the simplicial complex K consisting of two 2-dimensional simplices joined
at a common vertex. Since SF = {0, 1, 2, 3, 4}, it is assumed for instance that FαK = F1K whenever
1 ≤ α < 2

Fig. 2 The 1-dimensional
persistence diagram dgm1(F) of
the filtration F from Fig. 1. The
point (1, 4) corresponds to the
hollow triangle on the left
whereas the point (2, 3)

corresponds to that on the right

Persistent homology is to filtrations what homology is to simplicial complexes. Fix
a dimension m and choose an index s in the finite set SF . To each vector z in the
homology group Hm(FsK), we associate an interval (bz, dz) as follows. The birth
index bz ≤ s is the smallest r ∈ SF for which there is some cycle x in Zm(Fr K)

homologous to a representative cycle of z in Zm(FsK). Similarly, the death index
dz > s is the smallest index t ∈ SF so that any representative cycle of z is a boundary
in Bm(Ft K) – with the understanding that dz = ∞ if this never happens.

Definition 1 The m-dimensional persistence diagram dgmm(F) of the filtration F is
the multi-set of points (bz, dz) where z ranges over homologically independent cycles
in Zm(FsK) for s ∈ SF .

The m-th Betti number βm(FsK) of any intermediate subcomplex in the filtration F
can be recovered simply by counting all those intervals in dgmm(F) which contain
s. One often depicts a persistence diagram as a set of points in the plane (see Fig. 2)
where the vertical distance dz − bz of each point (bz, dz) from the diagonal measures
the lifespan of the feature z. Algorithms [26] and highly optimized implementations
[30] for computing persistence diagrams of filtrations are freely available.

We now turn to the issue of comparing persistence diagrams. Recall that the 	∞-
distance between any pair of points u = (x, y) and u′ = (x ′, y′) in the plane is given
by

‖u − u′‖∞ = max
{|x − x ′|, |y − y′|} .

Let dgm and dgm′ be a pair of persistence diagrams and let ε > 0 be a positive number.
An ε-matching between dgm and dgm′ is a subset � of the product dgm × dgm′ for
which the following three conditions hold:
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A topological measurement of protein compressibility 7

Fig. 3 Two overlaid persistence
diagrams whose points are
shown in red and blue. The
optimal matching between these
diagrams is depicted by gray
line segments which either
match points across the two
diagrams or with the diagonal

– each point u = (b, d) ∈ dgm appears as the first component of at most one element
in �, and each point u′ = (b′, d ′) ∈ dgm′ appears as the second component of at
most one element in �,

– if (u, u′) ∈ � then ‖u − u′‖∞ < ε,
– if a point in dgm or dgm′ does not appear in � at all, then it is within 	∞ distance

ε of a point on the diagonal.

The bottleneck distance dbot(dgm, dgm′) between dgm and dgm′ is defined to be
the smallest ε for which there exists an ε-matching between dgm and dgm′. Figure
3 illustrates a matching which realizes the bottleneck distance between two simple
persistence diagrams.

Let ε > 0 be a real number, and assume that F and G are length-A filtrations
of the same simplicial complex K. We say that F and G are ε-interleaved if there
are subcomplex relations FαK↪→Gα+εK and GαK↪→Fα+εK for each α in [0, A − ε].
The following result is a consequence of the stability theorem [4,5] for persistence
diagrams.

Theorem 1 If two filtrations F and G are ε-interleaved, then the bottleneck distance
dbot(dgmm(F), dgmm(G)) is smaller than ε for each m.

It follows from this theorem that the lifespan of a given point in a persistence diagram
measures the robustness of the corresponding feature to changes in the filtration.

3 Persistence diagrams of protein molecules

A simple geometric representation of an atom is the three-dimensional solid ball

B(c; w) =
{

x ∈ R
3 : ‖x − c‖ < w

}
,

where c is the center of that atom, w is its van der Waals radius (see Table 1) and
‖ · ‖ is the usual Euclidean distance in three dimensions. A molecule, then, may be
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8 M. Gameiro et al.

Table 1 van der Waals radii of
atoms commonly found in
protein molecules

Atom C N O P S

Radius (Å) 1.70 1.55 1.52 1.80 1.80

modeled as the union of such balls corresponding to its constituent atoms. In [19]
this static model was employed to estimate surface areas and the volumes of various
protein molecules. The key tool used in their analysis is the alpha filtration [8], which
we briefly describe below.

Let P = (P, w) be a pair where P is a finite set of points in R
3 and w assigns to

each p in P a non-negative weight wp. The weighted distance from x in R
3 to p is

given by

dp(x) = ‖x − p‖ − wp,

and the Voronoi cell Vp associated to p is the collection of those points in R
3 which

are nearer to p than to any other point of P under this weighted distance. That is,

Vp =
{

x ∈ R
3 | dp(x) ≤ dp′(x) for each p′ �= p in P

}
.

For each scale α ≥ 0 and point p in P , define

wp(α) =
√

α + w2
p,

noting that wp(0) coincides with the assigned weight wp of p, and that wp(α) is
a strictly increasing function of the scale α. Consequently, the α-indexed family of
solid balls B(p;wp(α)) centered at p has radii which increase with α. Define the
intersections

Up(α) = B(p;wp(α)) ∩ Vp,

of these balls with the Voronoi cell corresponding to p to produce a new increasing
family of convex sets around each p in P . At each scale α, the union over all points
p of Up(α) equals the union of balls B(p;wp(α)) because the Voronoi cells partition
the latter union into the former (Fig. 4).

Let KP be the complete simplicial complex with vertex set P , i.e., all possible
subsets of P constitute simplices of KP .

Definition 2 The alpha filtration G around P is a filtration of KP defined as follows:
the subcomplex GαKP ↪→KP is the nerve of the sets Up(α) where p ranges over the
points in P .

Whenever α ≤ α′, we have the desired subcomplex relation GαKP ↪→Gα′KP because
Up(α) is a subset of Up(α

′) for each point p in P . Moreover, it follows from the
finiteness of P that there are only finitely many values of the scale α at which new
simplices get introduced into the filtration G.
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A topological measurement of protein compressibility 9

Fig. 4 A union of scale α balls
in the plane. The dashed lines
indicate partitions by Voronoi
cells and the associated
subcomplex of the alpha
filtration is overlaid
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Fig. 5 dgm1 (left) and dgm2 (right) of 1OVA

It is an immediate consequence of the nerve theorem that at each scale α ≥ 0, the
homology groups of the subcomplex GαKP are the same as those of the union of balls
B(p, wp(α)) where p ranges over the points in P .

Definition 3 Let P = (P, w) be a pair consisting of finitely many points P in R
3 which

represent positions of atom-centers and weights wp equaling the van der Wall radii of
the corresponding atoms. The m-th persistence diagram of P—denoted dgmmP—is
the m-dimensional persistence diagram associated to the alpha filtration G around P.

Figure 5 shows the 1 and 2-dimensional persistence diagrams of ovalbumin, which is
identified in the PDB as 1OVA. For the computations of alpha filtrations, we use CGAL
[27]. In practice, we do not build the filtration past α = 12 Å because no interesting
topological features are observed in protein molecules at higher scale values.

4 Compressibility from persistence diagrams

Experimentally, the compressibility of a protein molecule is determined from mea-
surement of the ultrasonic wave velocities in both its solution and solvent [12]. A
pressure wave in a fluid causes alternating compressions and rarefactions. Because
the period is short compared with the time required for thermal equilibrium of the
solution, the process is reversible and adiabatic. In general, the experimentally deter-
mined adiabatic compressibility of a protein would be mainly due to the contributions
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Fig. 6 Topological compressibility � plotted against experimental compressibility for several proteins.
Every point represents a protein and is labeled with its corresponding PDB ID

of cavities and hydration [11]. Since the hydration of globular proteins is proportional
to the volume of the protein, it can be concluded that the compressibility (per unit
volume) of globular proteins is determined by the cavities in the protein.

In this section, we associate to each protein a topological quantity which is mea-
surable directly from crystallography data, and linearly correlated with experimental
compressibility values of proteins from [11].

Let dgm be a persistence diagram. Given an open interval I = (x, y) and a real
number ε > 0, we denote by |dgm(I; ε)| the number of points of dgm whose birth
b lies in I and whose lifespan exceeds ε. More precisely, |dgm(I; ε)| counts those
(b, d) in dgm which satisfy the inequalities x < b < min {y, d − ε}.

Definition 4 The topological compressibility of a protein P is given by

�P := |dgm2P(I2; δ)|
|dgm1P(I1; δ)| , (1)

where δ = 1.25, I1 = (4.8, 7.6) and I2 = (4.6, 7.6).

Figure 6 shows a clear linear correlation between � and the experimental compress-
ibility of most proteins for which both X-ray crystallography data and experimental
compressibility data are available. The rest of this section is dedicated to the con-
sideration of physical and geometric factors which motivate Definition 4 along with
providing an experimental justification for the explicit choices of parameters δ, I1 and
I2.
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A topological measurement of protein compressibility 11

Fig. 7 Longitudinal section of a
short tunnel whose thickening
forms a single cavity

Fig. 8 Longitudinal section of a long tunnel whose thickening forms three cavities

4.1 Compressibility as a ratio

At its core, the topological compressibility �P of a protein P is a ratio of the number
of certain types of cavities to the number of certain types of tunnels present in the
alpha filtration around P. Before investigating specifically which cavities and tunnels
contribute to this ratio, we provide a geometric justification for using a ratio in the first
place.

We propose that a fundamental geometric quantity that determines compressibility
is the presence of long tunnels in the alpha filtration around P. Although the length of
any given tunnel is not directly encoded by its birth and death coordinates in dgm1P,
we can extract useful metric information by focusing on how the tunnels evolve on
average as the scale α increases. Increasing α increases the radius of balls whose
union forms the walls of each tunnel, and eventually leads to the formation of cavities
as the expanded walls get pinched together. In general, longer tunnels correspond to
more undulant surface regions, and hence generate a larger number of cavities upon
thickening. This phenomenon is illustrated in Figs. 7 and 8.

4.2 The parameters δ, I1 and I2

In this section we provide a justification for the chosen values of various parameters
involved in Definition 4.

It follows from Theorem 1 that points in a persistence diagram which happen to
be near the diagonal are unstable to changes in the underlying filtration. Therefore,
we introduce a parameter δ > 0 and restrict our attention to only those points in the
persistence diagrams of a given protein which are at least δ away from the diagonal.

Consider the two cavities whose cross sections have been shown in Fig. 9. We
conjecture that the sparse cavity on the right is deformable to a much larger extent
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12 M. Gameiro et al.

Fig. 9 Dense hole (left) and
sparse hole (right). Solid balls
correspond to the van der Waals
radii and dashed balls have radii
slightly larger than the birth
scale

Fig. 10 Death scale and size.
Note that the larger cavity to the
right has a larger death scale
than the smaller one to the left

than the dense one on the left, and hence assume that a larger number of sparse holes
leads to greater compressibility. This distinction between dense and sparse topological
features is readily captured by persistence diagrams: the denser the cavity, the smaller
its birth scale. This heuristic argument is our justification for counting only those
topological features whose birth scales are sufficiently large. To this end, we introduce
thresholds xm > 0 for m = 1, 2 and restrict attention to those points (b, d) in dgmmP

for which b > xm .
We do not introduce similar thresholds to control the death scales of features. The

death scale of a hole is closely related to the size of that hole as shown in Fig. 10.
Introducing such bounds on the size would remove large holes from consideration and
compromise the analysis of compressibility.

Performing a simple least-squares computation reveals that there are no values
of δ, x1 and x2 for which the ratio of corresponding points in dgm2P to those in
dgm1P yields a good approximation to the experimental compressibility of P. This
is perhaps not surprising. One can imagine that tunnels or cavities are created on a
scale exceeding those that are relevant to compressibility, e.g. cavities in polymers
created by the monomer subunits. For this reason we introduce new parameters ym

for m = 1, 2 with y1 ≤ y2 and further restrict the birth scales of points in dgmmP to
quantities smaller than ym . Performing the least-squares computation with these five
parameters instead of the first three, the linear correlation from Fig. 6 emerges for the
following optimal values:

δ = 1.25,

I1 = (x1, y1) = (4.8, 7.6), and

I2 = (x2, y2) = (4.6, 7.6).

Thus, the parameter values in Definition 4 arise from a mixture of hypothesis and
experiment. These parameters carve out those regions of 1 and 2-dimensional per-
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Fig. 11 The topological compressibility �1OVA is a ratio of number of red points in dgm2 (left) to the
number of red points in dgm1 (right). The green points are excluded because of δ while the blue points are
excluded because of I1 (left) and I2 (right)

sistence diagrams whose points are relevant to compressibility calculations. These
regions are shown in Fig. 11 for the protein 1OVA.

At the time of writing, there are only a handful of proteins for which experimental
compressibility data is available. We expect that the availability of such data for more
proteins will provide opportunities to further refine the parameters δ, I1 and I2.

5 Stability of topological compressibility

In this section we use Theorem 1 to show that �P is invariant to small errors in
measurement of atom positions P as well as in the values of van der Waal radii.

Let P = (P, w) be the usual pair consisting of atom positions and van der Waal
radii. Consider another pair Q = (Q, v) which is to be understood as a perturbation
of P in the following sense. There exist some distances λ,μ > 0 so that each p in P
corresponds bijectively to some q in Q with the Euclidean distance ‖p − q‖ smaller
than λ; moreover, the maximum difference |wp − vq | of van der Waal radii over all
points p in P is smaller than μ.

We prove the following stability theorem, establishing that topological compress-
ibility remains unchanged when we replace P by a sufficiently small perturbation Q.

Theorem 2 �P = �Q if λ and μ are small enough.

In the course of proving this theorem, we derive an explicit inequality which constrains
how small λ and μ must be in order for the conclusion to hold. For now, we treat these
distances as free parameters.

Define α to be the largest value of α encountered in the alpha filtration built around
P and note that for all our diagrams we have α = 12 Å. Also define

ω = max
p∈P

{
wp

} + μ,
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14 M. Gameiro et al.

and note that this quantity is an upper bound on the van der Waal radii of atoms across
both P and Q. The next lemma uses the notation introduced in Sect. 3

Lemma 1 For each p in P, we have the containment of open balls

B(p;wp(α)) ⊂ B(q; vq(α + ε))

for any ε ≥ λ2 + 2λ
√

α + ω2 + 2ωμ.

Proof The desired containment relation holds whenever vq(α+ε) exceeds ‖p −q‖+
wp(α). Using the formulas for wp and vq along with the assumption that ‖p−q‖ < λ,
the following inequality gives a sufficient condition:

√
(α + ε) + v2

q ≥ λ +
√

α + w2
p.

Squaring both sides, we require

ε ≥ λ2 + 2λ

√
α + w2

p +
(

w2
p − v2

q

)
.

It is easy to see that the right side of this inequality is bounded above by λ2 +
2λ

√
α + ω2 + 2ωμ as desired. 
�

In light of this lemma, it is convenient to define the function

�(λ,μ) = λ2 + 2λ
√

α + ω2 + ωμ.

By interchanging the roles of P and Q in the lemma, we see that if ε ≥ �(λ,μ) then
the containment of B(q; vq(α)) in B(p;wp(α + ε)) is also guaranteed. Consequently,
the alpha filtration around P is �(λ,μ)-interleaved with the alpha filtration around Q.
By Theorem 1, we have the following result.

Proposition 1 The bottleneck distance between dgmmP and dgmmQ is smaller than
�(λ,μ) for m = 1, 2.

It is clear that �(λ,μ) can be made as small as desired by shrinking the distances λ

and μ which separate P from its perturbation Q. We therefore turn our attention to prov-
ing the conclusion of Theorem 2 when the bottleneck distances dbot(dgmmP, dgmmQ)

for m = 1, 2 are sufficiently small.
Proof of Theorem 2 Recall from Definition 4 that the parameters δ and Im =

(xm, ym) identify those regions of dgmmP which are relevant to the computation of
�P. The confidence νP in the measurement of �P is the minimum 	∞ distance by
which a point in dgmmP must be moved in order to change the value of �P. More
precisely, for each point u = (b, d) in dgmmP define

νu = min {|b − xm |, |b − ym |, |(d − b) − δ|} ,

so νP equals the minimum νu encountered as u ranges over the points in dgmm for
m = 1, 2.
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Fig. 12 Least-square errors
plotted against the || · ||2-norm
of parameters I1, I2, and δ. The
red point corresponds to the
optimal parameters
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By construction, dbot(dgmmP, dgmmQ) < νP implies �P = �Q for any per-

turbation Q of P. Combining this fact with Proposition 1 shows that whenever the
distances λ and μ associated to the perturbation Q of P are small enough to guarantee
�(λ,μ) < νP, we have �P = �Q. This concludes the proof of Theorem 2. 
�

We note that the confidence νP introduced in the proof provides us with a rigorous
bound which guarantees that �P remains unchanged for the optimal parameters shown
in Definition 4. The stability with respect to changes of the parameters I1, I2, and δ

follows from Theorem 2, and the explicit bound to satisfy this stability from the optimal
parameters is given by minP{νP}.

The fitting errors of the least-square computations obtained by changing the para-
meters I1, I2, and δ beyond the above bound are shown in Fig. 12, where the red point
corresponds to the optimal parameters.

Finally, we provide evidence that no overfitting has occurred in our least-squares
analysis. Since available experimental compressibility data is limited to only 16 pro-
teins, we apply the delete-2 jackknife method to experimentally validate our para-
meter fitting. Let P be the set of the proteins listed in Fig. 6, and consider the 120
subsets Ri ⊂ P which contain 14 proteins. For each Ri , denote the line of best fit
by y = ai x + bi . Figure 13 shows the plots of means (blue) and variances (red) of
ai (filled) and bi (empty) across i values. From this figure we note that overfitting
is unlikely since the means are almost stationary while the variances are almost zero
throughout.

6 Conclusions and further analysis

Figure 6 clearly indicates that the topological measurement successfully extracts some
of the essential structural features which determine protein compressibility. On the
other hand, it is unclear why the three exceptional proteins 1A4V, 1E7I, and 1BUW
deviate from the main correlation line. One possible source of this discrepancy is
that there were significant differences in the experimental conditions under which
their crystallography and compressibility were measured. Regardless of the causes,
we would like to stress that our analysis in this paper is a first approximation and that
there is considerable room for improvement. For instance, our geometric models of
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16 M. Gameiro et al.

Fig. 13 Plots of means (blue)
and variances (red) of ai (filled)
and bi (empty) against the
numbers of resamplings based
on the delete-2 jackknife method

the proteins are derived entirely from the atom locations and do not take into account
chemical aspects such as the types of chemical bonds involved. Also, the parameters
which define significant regions of persistence diagrams will be amenable to further
refinements as more experimental compressibility data becomes available. We expect
that modifications of � obtained by aggregating geometric, chemical and experimental
factors, will yield much better fits to experimental compressibility.

The points in persistence diagrams dgmmP which contribute towards the topological
compressibility �P may be regarded as tunnels and cavities having significant impact
on the compressibility of the protein represented by P. Recall that each point in dgmmP

is given by a vector z in Hm(Gα K P ) = Zm(Gα K P )/Bm(Gα K P ) which is represented
by some cycle x ∈ Zm(Gα K P ). Let ||x ||0 be the 	0-norm, i.e., the number of the
nonzero elements in the vector x . Then, a solution of the following optimization
problem

Minimize ||x̄ ||0, subject to x̄ = x + b, b ∈ Bm(Gα K P )

is a minimum representative of z and gives us geometric locations of tunnels or cav-
ities (e.g., [6,22]). Hence, by solving the optimizations on the points in dgmmP used
for the computations of �P, we can specify regions in the protein inducing high com-
pressibility, and may obtain further insights of the relationship between geometry and
compressibility.
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