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The quest for low-dimensional models which approximate high-
dimensional data is pervasive across the physical, natural, and
social sciences. The dominant paradigm underlying most standard
modeling techniques assumes that the data are concentrated near
a single unknown manifold of relatively small intrinsic dimen-
sion. Here, we present a systematic framework for detecting
interfaces and related anomalies in data which may fail to sat-
isfy the manifold hypothesis. By computing the local topology
of small regions around each data point, we are able to par-
tition a given dataset into disjoint classes, each of which can
be individually approximated by a single manifold. Since these
manifolds may have different intrinsic dimensions, local topol-
ogy discovers singular regions in data even when none of the
points have been sampled precisely from the singularities. We
showcase this method by identifying the intersection of two sur-
faces in the 24-dimensional space of cyclo-octane conformations
and by locating all of the self-intersections of a Henneberg min-
imal surface immersed in 3-dimensional space. Due to the local
nature of the topological computations, the algorithmic burden of
performing such data stratification is readily distributable across
several processors.

stratification inference | singularities | persistent cohomology

The manifold hypothesis (1) forms a cornerstone of modern
data science; it assumes that the points in typical datasets

tend to cluster near some unknown manifold of dimension sub-
stantially lower than the ambient dimension of the data. Mani-
fold learning and dimensionality reduction techniques (2) rely on
this assumption in order to infer faithful low-dimensional repre-
sentations of high-dimensional data. Examples of such methods
include a) classical principal component analysis (3, 4), where the
approximating manifold is an affine subspace; b) visual percep-
tion (5), where continuous changes of configurations of an object
yield smoothly varying changes along a curved manifold; c) sub-
space clustering (6), where data are clustered into disjoint sets
that are well approximated by affine subspaces; and d) genera-
tive adversarial networks, which naturally produce data on pairs
of manifolds (7). In sharp contrast to this profusion, one encoun-
ters a remarkable dearth of techniques designed for the analysis
of data sampled from non-manifold, or singular, spaces. Among
the simplest examples of singular spaces are unions of two man-
ifolds along a common submanifold (as shown in Fig. 1); these
arise organically when more than one class of data is present in
the same set of observations. Recent techniques for the analysis
of such heterogeneous data [see, for instance, capsule networks
(8)] have focused primarily on coherently fusing together the
multiple data classes.

The present work is motivated by an antipodal philosophy—
singular regions of spaces that underlie modern datasets are
inherently interesting, they will play an increasingly impor-
tant role in the future of data analysis, and it is therefore of
paramount importance to be able to detect these singularities
directly from the data points. The task of fitting singular spaces
to data is rendered difficult by the generic lack of observa-
tions which are located exactly on the geometric anomalies. For
instance, most natural ways of sampling finitely many points from
the space in Fig. 1 will not produce even a single point lying
on the anomalous circle. Singular spaces occur quite naturally

in several areas of data science—for instance, low-rank matrix
approximation amounts to optimization over the determinan-
tal variety of bounded-rank matrices, which is not a manifold
(ref. 9, lecture 9). Moreover, even the simplest machine learning
architectures, such as the multilayer perceptron, exhibit singu-
larities in their parameter spaces (ref. 10, ch. 12.2). Here, we
describe an algorithm that can detect singular regions from
finitely many data points even when the points only lie near—
rather than precisely on—the singularities. Our approach is
based on local cohomology (11) and the theory of stratifications
(12), which form particularly rich and fruitful enterprises in the
study of singular spaces that arise in algebraic topology (13) and
geometry (14). Recent computational advances in these fields
(15, 16) have made it possible to bring this formidable the-
ory to bear on the very concrete task of analyzing data that
live on, or even near, spaces that are far more complicated
than manifolds. Most of this existing machinery requires defin-
ing equations for a space in order to construct a stratification;
in sharp contrast, here we only make use of a finite point
sample.

Manifolds of dimension n are characterized by the require-
ment that a small neighborhood around each point should
resemble the n-dimensional Euclidean disk (up to a standard
equivalence relation called homeomorphism). While there can
be no algorithmic procedure to determine whether two n-
manifolds are homeomorphic or not (17) for n > 4, algebraic
topology offers recourse to several rigorous descriptors for
testing weaker forms of equivalence. Among the best known
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Fig. 1. Annular neighborhood classes Ax of several points x in union of a
hemisphere with a plane (both blue) along a circle (red). Regular points,
which lie away from this red circle and from the boundaries, have Ax , which
looks like a standard annulus. All points lying in the boundary have Ax ,
which resembles a half or quarter annulus, as depicted in the central panel.
All points x on the red circle itself have neighborhoods Ax , which resem-
ble two annuli glued along two edges, as indicated in the right panel. The
dimensions of H1(Ax) count the number of independent loops in Ax , so from
left to right, these are one, zero, and three, respectively.

computable homeomorphism invariants is cohomology, which
assigns a sequence Hi(X ) of vector spaces to a given topologi-
cal space X . Although cohomology does not distinguish between
Euclidean disks of different dimensions (all of these have the
same cohomology as that of a point), it is an excellent tool for
distinguishing n-dimensional spheres Sn from each other across
different choices of n . Indeed, for all n > 0 and i > 0, we have

dimHi(Sn)=

{
1 if i =n,

0 otherwise.

Since the boundary of an n-dimensional disk is an
(n − 1) -dimensional sphere, our strategy for detecting singular
regions in a dataset P of points in Euclidean space Rn is as fol-
lows: we fix two real parameters 0< r < s , and around each point
x of P , we examine the subset of annular neighbors Ax of x—this
set consists of those points y in P whose Euclidean distance to
x satisfies r ≤‖x − y‖≤ s , and it forms a discrete proxy for the
boundary of a neighborhood around x . We then compute the
cohomology of Ax at multiple scales (often called the persistent
cohomology of Ax ) and use this information to quantify whether
or not Ax approximates a single sphere of some fixed dimen-
sion. If the answer is negative, then—provided we have made
judicious choices of r and s—the point x lies near a singular
region of X .

Results
Local persistent cohomology successfully identifies all of the
non-manifold regions in two completely different datasets whose
underlying spaces are known to admit singularities. The first
of these is the conformation space of the cyclo-octane molecule
C8H16. A single molecule consists of eight carbon atoms
arranged in a ring, with each carbon atom being bound to
two other carbon atoms and two hydrogen atoms. Under the
influence of external chemical and physical forces, cyclo-octane
assumes different forms, or conformations, in three-dimensional
(3D) space. The locations of hydrogen atoms are completely
determined by those of the carbon atoms, so each conformation
may be represented by a point in R24 (i.e., three spatial coor-
dinates for each of the eight carbon atoms). The space of all

possible conformations forms the union of a Klein bottle and a
sphere along two circles (18, 19). It is known that the confor-
mations located on the sphere component are constrained by a
specific type of symmetry, while the conformations on the Klein
bottle are not (ref. 18, section IIIC). We consider points sam-
pled from this conformation space and depict (a two-dimensional
[2D] projection of) the partition of data points by local persistent
cohomology in Fig. 2—points lying near the two singular circles
are indeed distinct from all other points.

Our second dataset is obtained by uniformly sampling points
from the nonorientable Henneberg minimal surface, which is an
immersion of the punctured 2D projective space in standard 3D
space. The results are depicted in Fig. 3: again, the points that
lie near the four self-intersections are manifestly separated from
manifold-like points and boundary points. Additional details
involving both datasets, including an explicit parameterization of
the Henneberg minimal surface, can be found in Materials and
Methods.

Discussion
The two singular circles in the cyclo-octane conformation space
were originally discovered using a local version of principal com-
ponent analysis (PCA). This method uses spectral techniques
to fit affine subspaces to local neighborhoods of data points
(18, 19). While such methods work remarkably well for detect-
ing intersections of flat manifolds (i.e., manifolds with curvature
almost zero), they tend to require extremely dense samples and
very small local neighborhood sizes in the presence of high
curvature. Our approach differs substantially from such affine
embedding techniques because cohomology, being a purely topo-
logical invariant, remains largely agnostic to the vagaries of local
geometry such as curvature. Thus, it identifies dimensionally
anomalous regions correctly even in highly curved regimes. As
another pleasant side effect of the relative coarseness of coho-
mology, one obtains a far greater degree of robustness to the
choice of neighborhood size than for local PCA. This latter
phenomenon is illustrated for the cyclo-octane dataset in Fig. 4.

The enormous quantities of heterogeneous data being gen-
erated by modern experimental tools demand a concordant
increase in the variety and sophistication of available geometric
models. The procedure described here enables us to transcend
the ubiquitous manifold hypothesis by allowing us to fit singu-
lar spaces to datasets. Aside from the data-dependent choice of
radius parameters r and s , which determine the sizes of annu-
lar neighborhoods Ax , the method described here is entirely
unsupervised. Moreover, it enjoys three remarkably convenient
properties for our purposes. First, it can be iterated to discover
more refined singularities of lower dimension: for instance, had
the red points from Fig. 2 formed a singular space of their
own (such as a figure eight rather than disjoint circles), we
could have repeated our cohomological clustering operation on
the subset of red points to isolate the points lying near the
lower singularities. Second, the local cohomology computations
that form the backbone of this procedure are easily distributed
across a host of processors: the persistent cohomology of annu-
lar neighborhoods Ax and Ay for distinct points x and y in
a dataset can—and should—be computed in parallel. Third,
since persistent cohomology is stable with respect to bounded
noise (20), the clustering produced by this method inherits a
degree of robustness to perturbations of the original dataset.
Similarly, local cohomology may be useful for the detection of
bifurcations and phase transitions in certain high-dimensional
dynamical systems.

Materials and Methods
Detailed accounts of the first three topics described below may be found
in the textbooks of Hatcher (21), Oudot (22), and Kirwan and Woolf (12),
respectively.
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CSFig. 2. Two-dimensional depiction of the 3D IsoMAP projection (4) of points sampled from the 24-dimensional conformation space of cyclo-octane. Points
x for which dim H1(Ax)> 1 have been colored red, and these clearly appear to cluster near the two embedded circles where the two surfaces intersect. We
show the full set of points in A and B and additionally highlight the intersection points identified by our method separately in C and D, using the same
perspectives as A and B, respectively. The perspective in B and D corresponds to a counterclockwise rotation around the z axis (< 90◦) and a counterclockwise
rotation around the x axis (< 45◦) of the perspective in A and C.

The Cohomology of Simplicial Complexes. A simplicial complex K is a collec-
tion of subsets of a finite set V (usually called the set of vertices) satisfying
the following condition: if σ⊂V is in K and τ ⊂σ, then τ is also in K.
The dimension of a simplex σ is one less than its cardinality, and the
set of all i-dimensional simplices in K is denoted K(i). The most familiar
simplicial complexes are graphs, where K(0) and K(1) correspond to ver-
tices and edges, respectively. For each i-dimensional simplex σ, denote by
1σ : K(i)→R the characteristic function, which evaluates to 1 on σ and 0 on
all other simplices. The vector space obtained by treating all such character-
istic functions as an orthonormal basis is written Ci(K) and called the space
of i-cochains. It is possible to construct a sequence of coboundary operators
δi : Ci(K)→ Ci+1(K) with the following matrix representation in our chosen
basis: the entry in 1σ ’s column and 1τ ’s row equals ±1 if σ⊂ τ and is 0
otherwise. It is always possible to choose signs of the nonzero entries con-
sistently so that the kernel of δi contains the image of δi+1, and the i-th
cohomology of K is the quotient vector space Hi(K) = ker δi/img δi−1.

Cohomology is an extremely well-studied (21) descriptor of simplicial
complexes and related spaces; it enjoys many wonderful properties, but
only two of them are relevant to our purposes here. First, it is a homeo-
morphism invariant, meaning that any two different triangulations of the
same space X will produce identical cohomologies even though the cochain
spaces and coboundary operators might be wildly different. For instance,
the cohomology vector spaces of an n sphere depend neither on geomet-
ric intricacies (such as its radius or its embedding in Euclidean space) nor on
the combinatorics of a particular choice of simplicial decomposition. Second,
cohomology is functorial with respect to the subcomplex relation among
simplicial complexes. A subset L of simplices in K is called a subcomplex if
it happens to be a simplicial complex in its own right. Whenever L is a sub-
complex of K, there are well-defined linear maps Hi(K)→Hi(L) induced on
the associated cohomology vector spaces.

The Persistent Cohomology of Data. Given a finite dataset P embedded in
Euclidean space Rn and a scale parameter t≥ 0, the Vietoris–Rips simplicial
complex VRt(P) contains as its i-dimensional simplices all subsets {p0, . . . , pi}
of P whose pairwise Euclidean distances ‖pj − pk‖ are no larger than t.
It follows that VRt(P) is a subcomplex of VRu(P) whenever t≤ u. By the
functoriality of cohomology, in each dimension i≥ 0 we obtain not only
a one-parameter family of cohomology vector spaces

V(t) = Hi (VRt(P)
)

but also, a compatible family of induced linear maps V(u)→V(t) for all
pairs of real numbers t≤ u. Such collections of vector spaces and lin-
ear maps indexed by the positive real numbers are called persistence
modules, and their systematic study—which forms the theoretical core of
topological data analysis—has been greatly facilitated by three miraculous
properties.

The first property is algebraic—although persistence modules appear
to involve an infinite amount of information prima facie, any V arising
from the Vietoris–Rips cohomology of a finite dataset P⊂Rn is com-
pletely determined by a finite collection Bar(P) comprising certain half-open
subintervals of R, called the barcode of P. The second property is com-
putational; barcodes can be extracted via elementary matrix algebra, and
there are several software packages dedicated to their efficient computa-
tion (23). The third crucial property of persistence modules is geometric
and takes the form of a stability theorem (20). Roughly, this result asserts
that if the points of P are perturbed by an amount ε> 0, then the inter-
vals in Bar(P) also have their end points shifted by no more than ε. As
a consequence, one can conclude that Vietoris–Rips persistent cohomol-
ogy barcodes are robust to the presence of bounded noise in the original
dataset.

Stratified Spaces. Singular spaces, such as algebraic varieties and quotients
of group actions on manifolds, are often analyzed via their stratifications.
We remark that most stratifications are derived from algebraic or ana-
lytic equations, rather than data. Each stratification Y• of an n-dimensional
space Y is an ascending sequence of closed subspaces

∅= Y−1⊂Y0⊂Y1⊂ · · ·⊂Yn−1⊂Yn = Y ,

where the connected components of successive differences Yi −Yi−1, called
the i-strata, are open i-dimensional submanifolds of Y . Every simplicial com-
plex, for instance, admits a natural stratification whose i strata are precisely
the i-simplices. It is customary to impose two additional constraints on the
strata in order to render the study of stratified spaces tractable. The first
requirement, called the frontier axiom, ensures that the set of all strata
is partially ordered by the boundary relation σ≤ τ whenever the closure
of τ intersects σ (this mirrors the ordering on simplices given by the con-
tainment relation σ⊂ τ ). The second requirement, called equisingularity or
normal triviality, imposes severe topological constraints on intersections of
small neighborhoods in Y around various points of a single i-stratum with
the higher strata Yj for j≥ i.
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Fig. 3. Two-dimensional projections of points sampled from Henneberg’s
minimal surface immersed in 3D space. Points x for which dim H1(Ax)> 1 are
shown in red, and these lie along the four self-intersections. Similarly, points
x for which dim H1(Ax) = 0 have been colored cyan and appear near the
boundary. The perspective in B corresponds to a counterclockwise rotation
around the z axis (< 90◦) and a counterclockwise rotation around the x axis
(90◦) of the perspective in A; we indicate the x, y, and z axes to facilitate
comparison.

As a consequence of equisingularity, to each i-stratum σ one can assign
a single (n− i− 1) -dimensional stratified space L•, called the link of σ, so
that the following property holds. For each point y in σ and all choices of
small neighborhoods Uy ⊂Y of y, the intersection of Uy with higher strata
Yj admits a tangent × normal decomposition of the form

Uy ∩Yj =Ri × Cone(Lj−i−1),

where Cone(L•) is the quotient of L•× [0, 1) obtained by identifying all
pairs of the form (`, 0) with a single point. When j = i, we have Uy ∩σ=Ri ,
thus guaranteeing that σ is an i-dimensional manifold. Additionally, for
j = n, we have Uy =Ri × Cone(L), so it follows that the homeomorphism
type—and hence, the cohomology—of the boundary ∂Uy is independent
of the choice of y in σ. This is the key property of stratified spaces, which
is used in our algorithm to identify singular regions within datasets. In
this discrete setting, we have no direct access to ∂Uy for a given data
point y; however, we are able to approximate its cohomology via the
persistent cohomology of all of the data points lying within an annular
neighborhood Ay of y.

Datasets. The cyclo-octane dataset, which was introduced by Martin et al.
(18), consists of 6,040 points in R24 subsampled from a far larger dataset

containing over a million cyclo-octane conformations. This dataset is pub-
licly available as part of the JAVAPLEX software package (24). The Henneberg
surface dataset was provided by Martin and Watson (19); it consists of
5,456 points sampled from the Henneberg surface using the following
parametrization:

x =
2(β2− 1) cos(φ)

β
−

2(β6− 1) cos(3φ)

3β3
,

y =−
6β2(β2− 1) sin(φ) + 2(β6− 1) sin(3φ)

3β3
,

z =
2(β4 + 1) cos(2φ)

β2
,

where β ∈ [0.4, 0.6] and φ∈ [0, 2π]. In this range of β values, the surface
does not have triple intersections.

Algorithm and Implementation. The procedure Geometric Anomaly Detec-
tion discovers intersections of dimension (k− 1) from points sampled on
k-dimensional submanifolds of Rn for n> k. The key step, as indicated
previously, is the calculation of persistent cohomology of annular neigh-
borhoods around data points and testing whether the number of suf-
ficiently long intervals in the barcode for dimension (k− 1) is 0, 1, or
larger. The partition produced by Geometric Anomaly Detection decom-
poses the original dataset P into the k-manifold points Pman, the boundary
points Pbnd, and the desired intersection points Pint. We have imple-
mented this procedure in MATLAB for surfaces (i.e., for the case k = 2)
using the inbuilt function RANGESEARCH to compute the annuli Ay . The
persistent cohomology calculations are performed using the RIPSER soft-
ware package (25). The annulus parameters (r, s) equal (0.4, 0.25) for the
cyclo-octane data and (2, 1.5) for the Henneberg surface data. The projec-
tions of Fig. 2 were obtained by initializing IsoMAP (4) with five nearest
neighbors.

Algorithm: Geometric Anomaly Detection.
In: Finite point set P⊂Rn, real parameters 0< r< s.
Out: A partition of P into subsets Pman, Pbnd, and Pint.

01 initialize Pma n, Pbnd , and Pint to ∅
02 for all y ∈ P
03 find Ay = {x∈ P satisfying r≤‖x− y‖≤ s}
04 compute Bark−1(Ay ), the (k− 1) -dim barcode of Ay
05 calculate Ny =#{[a, b)∈ Bark−1(Ay ) with (b− a) >(s− r)}
06 if Ny is 0
07 add y to Pbnd
08 else if Ny is 1
09 add y to Pman
10 else
11 add y to Pint
12 end if
13 end for
14 return

This algorithm as written will also cast points lying in certain non-
generic intersections of k manifolds into Pint. For instance, consider the
union of paraboloids ±z = x2 + y2, which is singular at z = 0. The nonsin-
gular subsets {z> 0} and {z< 0} share a limiting tangent plane at the
origin and hence, do not intersect transversely. Given a sufficiently dense
point sample lying on this paraboloid (say for x and y constrained within
the square [−1, 1]2), points near the origin will admit annular neighbor-
hoods that resemble two disjoint circles, one in each nonsingular subset.
Therefore, such points will have at least two prominent bars in their one-
dimensional local persistent cohomology barcode and hence, will be cor-
rectly flagged as lying in Pint. In practice, one does not expect to encounter
such nongeneric singularities precisely because they are not robust to per-
turbation. Small fluctuations in the defining equation of this paraboloid
may, for example, either turn the singular set into a circle or make it
disappear entirely.

More relevant for practical applications is the fact that this algorithm
can be suitably iterated in order to also detect certain lower-dimensional
singularities as follows. Since the subset of points Pman⊂ P is expected to lie
on a union of k-dimensional manifolds, removing them produces a subset
of points lying on a union of manifolds, all of which have dimension strictly
smaller than k. Thus, we may apply Geometric Anomaly Detection a second
time, with P being replaced by (P− Pman) and k by (k− 1) throughout. This
allows us to discover singular strata of dimension ≤ (k− 2) and so forth.
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A B C

D E F

Fig. 4. Robustness with respect to the choice of local neighborhood size for the cyclo-octane dataset using local persistent cohomology (PCoh; purple line)
and local PCA (orange). The horizontal axis represents local neighborhood size, while the vertical axis corresponds to the Hausdorff distance between the
intersection points Sr selected by each method with neighborhood radius r on one hand and a set of ideal reference points R⊂ Sr on the other. This distance
is defined to be the smallest ε> 0 so that the union of radius ε balls around points in R contains all of the points in Sr . A–F illustrate the singularities detected
at neighborhood radii corresponding to points a–f, respectively. The extreme points responsible for the steep increase in the Hausdorff distance for each
method are indicated with black arrows.

The partition of P obtained in this manner may not produce points lying
on a genuine stratified space since the algorithm does not check for normal
triviality. To obtain such a stratification, more sophisticated methods (11)
are needed.

Data Availability. Both the cyclo-octane and the Henneberg datasets
have been made available at https://github.com/stolzbernadette/Geometric-
Anomalies/tree/master/Data Sets. Our MATLAB implementation of the Geo-
metric Anomaly Detection algorithm is available at https://github.com/
stolzbernadette/Geometric-Anomalies.
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