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ABSTRACT
Topological persistence is, by now, an established paradigm
for constructing robust topological invariants from point-
cloud data: the data are converted into a filtered simplicial
complex, the complex gives rise to a persistence module, and
the module is described by a persistence diagram. In this
paper, we study the geometry of the spaces of persistence
modules and diagrams, with special attention to Čech and
Rips complexes. The metric structures are determined in
terms of interleaving maps between modules and matchings
between diagrams. We show that the relationship between
the Čech and Rips complexes is governed by certain ‘coher-
ence’ conditions on the corresponding families of interleav-
ings or matchings.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures, Geometrical problems and com-
putations

General Terms
Theory

Keywords
Persistent Homology; Embedding Theorem; Discrete and
Computational Geometry

1. INTRODUCTION AND MOTIVATION
The use of topological techniques to analyze large, compli-

cated, high-dimensional datasets has gained enormous trac-
tion over the last few years. The theory of persistence has
been at the vanguard of such analysis [4, 11, 9]: for instance,
the persistent homology of a point cloud provides a global
multi-scale description of the appearance and disappearance
of topological features as the points are thickened into balls
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of increasing radius. In addition to its efficient computabil-
ity and representability in the form of a persistence diagram
[20, 16, 15], the most important property of persistent ho-
mology is the celebrated stability theorem [7, 6] which guar-
antees that the persistence diagram is quantifiably robust
to fluctuations in the locations of the data points. Here is
a typical workflow in the application of persistence to point
cloud data:

Point Cloud→ Filtered Complex→ Module→ Diagram

We defer the precise definitions of persistence modules and
diagrams to a subsequent section but note here that the
success of persistent homology has led inevitably to active
investigations of the spaces of persistence modules and dia-
grams in their own right [14, 5, 2]. Our work continues this
trend but with a geometric and topological flavor and with
a particular interest in embedding theorems.

Although persistent homology has been widely used—and
continues to be used—for the analysis of static datasets, the
progress in terms of using persistence to understand trans-
formations of datasets has been comparatively sparse. Let
C2(X,Y ) denote the space of all twice continuously differ-
entiable functions between manifolds X and Y . Our work is
motivated in part by the following embedding theorem from
[17].

Theorem 1.1 (Takens). Let M be a compact mani-
fold of dimension n. Across all pairs (φ, f) where φ ∈
C2(M,M) is a diffeomorphism and f ∈ C2(M,R) is real-
valued, it is generically true that the map Θ : M → R2n+1

defined on x ∈M by

Θ(x) = (f(x), f ◦ φ(x), . . . , f ◦ φ2n(x))

is an embedding.

Although M may be unknown, it is generically possible
by Takens’ theorem to reconstruct it as a subset of R2n+1

from knowledge of the time series
(
f ◦ φk : M → R

)
k∈N.

Let Conf(m,B) be the space of all possible configurations
of m point particles in a bounded region B. Assume that
an unknown ambient force field acts on m particles in B
recurrently. That is, there exists some unknown attractor
M ′ ⊂ Conf(m,B) and a bijection φ′ : M ′ → M ′ capturing
the action of the ambient field on these m points. Although
we may not have precise information about the attractor
M ′ or the map φ′, we can measure discrete snap-shots of
the positions of the particles as φ′ is iterated. Let f ′ be a
map taking each point cloud in M ′ to the space of persis-
tence modules (or diagrams), and note that

{
f ′ ◦ φ′k

}
k∈N



generates a time series of persistence modules (or diagrams).
We would like to understand to what extent, if any, can the
attractor M ′ be generically reconstructed from such time
series as a subset of the space of persistence modules (or
diagrams) in a sense analogous to Takens’ theorem. A first
step in this direction is to develop tools which would en-
able us to recover geometry and topology in the spaces of
persistence modules and diagrams.

In this paper we consider necessary and sufficient com-
patibility conditions which guarantee the existence of a per-
sistence module (or diagram) within a given distance of a
collection of persistence modules (or diagrams). It thus be-
comes possible to construct Čech complexes in these spaces
and hence recover topology of subspaces via the nerve the-
orem [1]. It turns out that the difference between Rips sim-
plices and Čech simplices is given by a notion of coherence
between interleaving maps (of persistence modules) or be-
tween matchings (of diagrams).

2. MODULES AND DIAGRAMS
All vector spaces are taken over a fixed field k. We use R

to denote the real line.

2.1 Persistence modules
Following [5], a persistence module U indexed by R—or

simply a module—is specified by the following data: a vec-
tor space Ut for each t ∈ R, and a linear map us

t : Us → Ut

whenever s ≤ t, such that ut
t = 1 for all t and us

tu
r
s = ur

t

whenever r ≤ s ≤ t.
Certain modules are particularly well behaved. A module

U is q-tame (cf. [6]) if rank(us
t ) <∞ whenever s < t. The

class of q-tame modules is denoted (mod).
Let U,V be modules, and let d ∈ R. A module map Φ :

U→ V of degree d is specified by a collection of linear maps
φt : Ut → Vt+d such that vs+d

t+dφs = φtu
s
t whenever s ≤ t.

The set of module maps from U to V of degree d is denoted
Homd(U,V).

The most important module maps are the shift maps: if
d ≥ 0 then Id = IdU is the map U → U of degree d de-
fined by ιt = ut

t+d. We think of these as ‘blurred’ identity
maps, where d is the amount of blur. We can then talk
about ‘blurred’ isomorphisms: a d-interleaving between
two modules U,V is a pair of module maps Φ : U → V
and Ψ : V → U of degree d such that ΨΦ = I2dU and
ΦΨ = I2dV . When such a pair Φ,Ψ exists, we say that U,V
are d-interleaved.

We now define a pseudometric on the class of persistence
modules, the interleaving distance:

di(U,V) = inf {d ≥ 0 | ∃ a d-interleaving between U,V}

If there is no interleaving between U,V then di(U,V) = ∞.
In general, the infimum need not be attained.

This formalism is designed to support examples of the
following type. Let X be a finite polyhedron and let f :
X → R be a continuous function. The sublevelsets of f are
the subspaces of X

Xt
f = f−1(−∞, t]

and there is an inclusion Xs
f ⊆ Xt

f whenever s ≤ t. We
can take homology (with coefficients in k) to construct a
persistence module U = Uf , defined by

Ut = H(Xt
f ), us

t = H(Xs
f → Xt

f ).

It turns out that this module is q-tame ([6], section 2.8;
also [3]). Moreover, the map f 7→ Uf is 1-Lipschitz with
respect to the uniform norm on the space C(X) of contin-
uous functions on X. Indeed, if ‖f − g‖ ≤ d then there
are inclusions Xt

f ⊆ Xt+d
g and Xt

g ⊆ Xt+d
f which induce a

d-interleaving between Uf ,Ug.

2.2 Diagrams
Persistence modules are rather abstract objects. To vi-

sualize them concretely, they are converted into persistence
diagrams.

For our purposes, a diagram is a locally finite multiset in
the extended half-plane H of pairs (p, q) with p < q, where
p ∈ {−∞}∪R and q ∈ R∪{+∞}. The space of all possible
diagrams is called (diag). We will shortly define a metric on
this space.

The general principle—going back to the pioneering work
of [10]—is that a sufficiently well-behaved persistence mod-
ule U can be described very nearly faithfully by its diagram
dgm(U). The stability theorem of [7] asserts (under some
restrictions on the modules) that the map

(mod) (diag)

U dgm(U)

//

� //

is 1-Lipschitz; and in [13] it was shown to be an isometry.
For proofs in the case of q-tame modules, see [6].

This immediately implies, for instance, that the composite
map,

C(X) (mod) (diag)

f dgm(H(Xt
f ))

// //

� //

that takes a function on a polyhedron X to its sublevelset
persistent homology diagram, is 1-Lipschitz. This is why the
persistence diagram is a stable invariant of (X, f).

The metric used in these assertions is the bottleneck dis-
tance on diagrams, which is defined in terms of the metric
d∞((p1, q1), (p2, q2)) = max(|p1 − p2|, |q1 − q2|) on the ex-
tended plane. Let D,E be diagrams. A d-matching is a
partial bijection ω : D→ E satisfying two conditions:

1. If x ∈ D and y = ω(x) ∈ E then d∞(x, y) ≤ d.

2. If x ∈ D or E is unmatched, then there is a point
(t, t) ∈ R2 such that d∞(x, (t, t)) ≤ d.

It is convenient to think of a partial matching as a subset
of D × E, that is a relation between D,E. (One must take
some care to navigate around the fact that D,E are multisets
rather than sets. This can be done by attaching arbitrary
labels to distinguish multiple copies of a point.)

The bottleneck distance between diagrams is defined
to be

db(D,E) = inf {d ≥ 0 | ∃ a d-matching between D,E} .

If there is no d-matching for finite d then db(D,E) = ∞.
Since we are working with locally finite multisets, a com-
pactness argument can be used to show that the infimum,
when finite, is attained ([6], section 4.3). It follows that db

is a true metric rather than a pseudometric: if db(D,E) = 0
then D = E.



2.3 Interleavings and matchings
The isometry theorem of [7, 13, 2, 6] amounts to the fol-

lowing specific assertions about q-tame modules and their
diagrams:

1. For every locally finite multiset D there exists a mod-
ule U with dgm(U) = D.

2. Given a d-interleaving between U,V there exists a d-
matching between dgm(U), dgm(V).

3. Given a d-matching between dgm(U), dgm(V), there
exists a (d+ ε)-interleaving between U,V for all ε > 0.

The construction for assertion 1 uses interval modules.
Let A ⊆ R be an interval. Then J = JA is defined to be the
persistence module with:

Jt =

{
k if t ∈ A
0 if t 6∈ A

jst =

{
1 if s, t ∈ A
0 otherwise

To each point (p, q) in the extended half-plane H we asso-
ciate the half-open interval [p, q), and therefore the interval
module J[p,q). To any multiset D in H, we can define U
to be the direct sum of the interval modules corresponding
to the points in D. If D is locally finite, then U is q-tame
and dgm(U) = D. It is equally good to use closed or open
intervals, so there are many choices.

Assertion 3 is easy to prove when U,V are direct sums
of interval modules. The d-matching between the persis-
tence diagrams can be interpreted as a matching between the
interval summands of U,V so the interleaving can be con-
structed separately on each matched pair of summands. The
d∞-metric in R2 precisely governs the interleaving distance
between two interval modules (except when both modules
are near the diagonal, in which case we still get an upper
bound). For the general case, it turns out that every q-tame
module can be approximated by modules that decompose
into intervals ([6], section 4.5; using a result of [18]). This is
good enough to deduce the full result.

Assertion 2 is the most subtle and requires a clever ar-
gument, even under the strong hypotheses of [7]. The most
general proof is based on the following lemma of [5, 6], which
inspires some of our later results:

Lemma 2.1 (The interpolation lemma). Let U and
V be a pair of persistence modules which are d-interleaved.
Then there is a 1-parameter family Ut, where t ∈ [0, d], such
that Us,Ut are |s−t|-interleaved for all s, t and where U0 = U
and Ud = V.

By tracking the persistence diagram as it varies along
this 1-parameter family (cf. the theory of vineyards [8]), one
shows that the d-matching exists. However, the proof does
not uniquely specify a matching, even when the interpola-
tion maps Φ,Ψ are given explicitly. It is important to keep
this in mind, to avoid certain natural errors in understand-
ing the relationship between (mod) and (diag).

The interpolation lemma essentially asserts that (mod) is
a length space: between any two modules U,V there exist
connecting paths of length di(U,V) + ε for every ε > 0.

There is also an interpolation lemma for (diag), with a
straightforward proof: given two diagrams and a d-matching
between them, one constructs an interpolating family of di-
agrams by moving each point linearly towards its matched

partner (or towards the closest point on the diagonal, if not
matched). Since the infimum in the definition of db is at-
tained, this gives the stronger conclusion that (diag) is a
geodesic space: any two diagrams D,E are connected by a
path of length db(D,E).

3. ČECH AND RIPS COMPLEXES

3.1 Definitions
Let M be any metric space. Given a finite data set in M ,

it is standard practice in topological data analysis to repre-
sent the topology of the data by a nested family of simplicial
complexes, indexed by a scale parameter d. The persistent
homology of this family is then used as a topological descrip-
tor for the data.

Two typical constructions are the Čech and the Vietoris–
Rips complexes. Each is defined by a rule which specifies
for each abstract simplex [x0, x1, . . . , xn] the value of d at
which it enters the complex:

[x0, . . . , xn] ∈ Rips(M,d) ⇔ dM (xi, xj) ≤ d for all i, j

[x0, . . . , xn] ∈ Čech(M,d) ⇔ some y ∈M satisfies

dM (xi, y) ≤ d for all i

In the second definition, we call y a d-witness for the sim-
plex [x0, x1, . . . , xn].

We alter this slightly in the case of (mod) because the
interleaving distance di is defined as an infimum which is
not always attained. For a simplex σ = [U0,U1, . . . ,Un] of
persistence modules:

σ ∈ Rips((mod), d)⇔ every pair Ui,Uj is d-interleaved

σ ∈ Čech((mod), d)⇔ some V is d-interleaved with all Ui

Remark. When a metric is defined as an infimum over
some family of comparison objects (such as interleavings),
it makes sense to define Čech and Vietoris–Rips complexes
in terms of the comparison objects rather than the infimum.
When the infimum is guaranteed to be attained, such as for
db on (diag), then it makes no difference which we use.

For topological data analysis, a finite data set S ⊂M may
be represented by the restriction of Rips(M,d) or Čech(M,d)
to the vertex set S.

3.2 Sandwiching ratio
It is well known that Vietoris–Rips and Čech complexes

are nested in the following way:

Čech(M,d) ⊆ Rips(M, 2d) ⊆ Čech(M, 2d)

For the first inclusion, if y is a d-witness then dX(xi, xj) ≤
dX(xi, y)+dX(y, xj) ≤ 2d. For the second inclusion, if every
dX(xi, xj) ≤ 2d then any xi is a 2d-witness for the simplex.

In general, the ratio 2 between the parameters d and 2d,
for the Čech complexes that sandwich the Vietoris–Rips
complex, is best possible. We will show that under certain
conditions this ratio can be tightened to 1.

If M is a geodesic space then the left-hand inclusion can-
not be tightened: if [x0, x1] ∈ Rips(M, 2d) then the mid-
point of a minimal geodesic from x0 to x1 serves as a d-
witness for [x0, x1]. Thus the 1-skeleta of Čech(M,d) and
Rips(M, 2d) are equal so one cannot increase the Čech pa-
rameter d and still get an inclusion. The same conclusion



Figure 1: Three overlaid persistence diagrams
D1 (•), D2 (M), and D3 (×). There exist incoherent
pairwise 1-matchings obtained by associating each
point in one diagram to the nearest point in any
other diagram. However, there is no coherent 1-
matching across all three diagrams. Note that there
is no 1

2
-witness for the collection {D1,D2,D3} and in-

deed, the best one obtains is a 1-witness.

holds more generally for length spaces, using the same ar-
gument with added ε.

Thus, in order to tighten the ratio for a length space—
such as a normed vector space, or (mod) or (diag)—we seek
the smallest e such that Rips(M, 2d) ⊆ Čech(M, e).

It is well known that if M = Rn with the `∞-norm, then
Rips(M, 2d) = Čech(M,d), so in that case the sandwiching
ratio is 1. More generally, this is true for function spaces
with the supremum norm:

Proposition 3.1. For any topological space X, we have
Rips(C(X), 2d) = Čech(C(X), d).

Proof. Indeed, if f0, f1, . . . , fn satisfy ‖fi− fj‖ ≤ 2d for
all i, j then

g(x) =
maxi fi(x) + mini fi(x)

2

is continuous and satisfies ‖g − fi‖ ≤ d for all i.

In contrast, for (mod) and (diag) the ratio 2 cannot be
improved without further hypotheses. See Figure 1 for three
diagrams spanning a triangle in Rips((diag), 1) which is not
in Čech((diag), e) for any e < 1.

The same example can be lifted to (mod) by virtue of the
isometry theorem.

3.3 Coherent interleavings of modules
Suppose we are given a collection U1, . . . ,Un of modules

which are pairwise 2d-interleaved; that is, suppose we are
given a simplex in Rips((mod), 2d). What is its Čech radius?
That is, for what e does there exist an e-witness?

Theorem 3.2. Let U1, . . . ,Un be modules. Then the fol-
lowing are equivalent:

(i) There exists a module V which is d-interleaved with
each Ui.

(ii) There exists a collection of module maps

Φi
j ∈ Hom2d(Ui,Uj) all i, j distinct.

such that

Φj
iΦ

i
j = I4di all i, j distinct (†)

Φj
kΦi

j = Φi
kI

2d
i all i, j, k distinct (‡)

(Here Iri denotes the shift map on Ui of degree r.)

Statement (i) asserts that the simplex [U1, . . . ,Un] belongs
to Čech((mod), d).

Statement (ii) without condition (‡) asserts that the sim-
plex [U1, . . . ,Un] belongs to Rips((mod), 2d). The full state-
ment, including condition (‡), asserts that the interleaving
maps between the modules can be chosen to commute with
each other (up to shift operators, which are needed to make
the degrees of the maps agree).

In other words, a 2d-Rips simplex is d-Čech if and only if
the interleaving maps between the modules can be chosen to
be a commuting family (up to shift operators). This suggests
the following definition and restatement of the theorem.

Definition 3.3. A coherent 2d-interleaving between
modules U1, . . . ,Un is a family of maps Φj

i satisfying the
conditions in statement (ii) of Theorem 3.2.

Theorem 3.2′. A collection U1, . . . ,Un of modules has a
d-witness if and only if it has a coherent 2d-interleaving.

The proof of the theorem is similar in spirit to the proof
of the interpolation lemma given in [6]. We adopt the nota-
tion used in that paper for suspensions (i.e. shifts): given a
module U and a real number r, let U[r] denote the module
with U [r]t = Ut+r together with the natural maps. In other
words U[r] is U ‘shifted down’ by r.

Proof of Theorem 3.2. Suppose some persistence mod-
ule V admits d-interleaving maps Ψi ∈ Homd(V,Ui) and
Υi ∈ Homd(Ui,V) for each i. It is readily seen that the de-
sired commuting family of d-interleaving maps is obtained
by setting Φi

j = ΨjΥi ∈ Hom2d(Ui,Uj).
Conversely, suppose there exists a coherent family of maps

Φi
j ∈ Hom2d(Ui,Uj). To define V, we consider the following

two persistence modules:

V− = U1[−d]⊕ U2[−d]⊕ · · · ⊕ Un[−d]

V+ = U1[+d]⊕ U2[+d]⊕ · · · ⊕ Un[+d]

There is a map Γ ∈ Hom0(V−,V+) defined by the following
matrix:

Γ =


I2d1 Φ2

1 · · · Φn
1

Φ1
2 I2d2 · · · Φn

2

...
...

...
Φ1

n Φ2
n · · · I2dn


Since the image of a module map is itself a module, we can
define V = im(Γ).

We now show that V is d-interleaved with U1 (and hence,
by symmetry, with each Ui). To do this, we represent U1 in



an unusual way. We consider the modules

W− = U1 ⊕ U2[−2d]⊕ · · · ⊕ Un[−2d]

W+ = U1 ⊕ U2[+2d]⊕ · · · ⊕ Un[+2d]

and the map ∆ ∈ Hom0(W−,W+) defined by the matrix

∆ =


I01 Φ2

1 · · · Φn
1

Φ1
2 I4d2 · · · I2dn Φn

2

...
...

...
Φ1

n I2d2 Φ2
n · · · I4dn


and set W = im(∆).

The proof is completed by establishing two claims:

Claim 1: V,W are d-interleaved.

Proof. We first observe that V−,W− are d-interleaved
through the maps:

Ψ− = I2d1 ⊕ I02 ⊕ · · · ⊕ I0n ∈ Homd(V−,W−)

Υ− = I01 ⊕ I2d2 ⊕ · · · ⊕ I2dn ∈ Homd(W−,V−)

and V+,W+ are d-interleaved through the maps:

Ψ+ = I01 ⊕ I2d2 ⊕ · · · ⊕ I2dn ∈ Homd(V+,W+)

Υ+ = I2d1 ⊕ I02 ⊕ · · · ⊕ I0n ∈ Homd(W+,V+)

One can readily verify that Ψ+Γ = ∆Ψ− and Υ+∆ = ΓΥ−,
and hence Ψ± and Υ± determine maps:

Ψ ∈ Homd(im(Γ), im(∆)) = Homd(V,W)

Υ ∈ Homd(im(∆), im(Γ)) = Homd(W,V)

Moreover, Υ+Ψ+ = I2d and Ψ+Υ+ = I2d imply that ΥΨ =
I2d and ΨΥ = I2d so we have a d-interleaving. �

Claim 2: W is isomorphic to U1.

Proof. For this we observe that there is a matrix factor-
ization

∆ =


I01
Φ1

2

...
Φ1

n

 [ I01 Φ2
1 · · · Φ2

n

]

because of the properties (†) and (‡) of the coherent family.
This means that ∆ can be written as a composite

W− −→ U1 −→W+

where the first map is surjective, thanks to its I01 term; and
the second map is injective, thanks to its I01 term. (We are
using the fact that I01 is the identity map of U1.) It follows
that im(∆) is isomorphic to U1. �

The two claims complete the proof of the theorem.

3.4 Coherent matchings of diagrams
Let D = (D1, . . . ,Dn) be a collection of n persistence dia-

grams. Given d ≥ 0, we say that a persistence diagram E is
a d-witness of D if there exist d-matchings γi : E → Di for
each i. The construction of Čech complexes in the space of
persistence diagrams reduces to solving the following funda-
mental problem: what is the smallest d ≥ 0 such that there
exists an d-witness of D? We answer this question with a
necessary and sufficient condition intrinsic to D which guar-
antees the existence of a witness diagram.

Definition 3.4. A subset Ω ⊂ D1 × · · · × Dn is called a
coherent d-matching of the family D = (Di) if the follow-
ing conditions hold:

1. diameter: each P = (p1, . . . , pn) ∈ Ω has d∞ diame-
ter at most d;

2. partition: each point p ∈ Di appears in the i-th com-
ponent of at most one P ∈ Ω; and

3. diagonal: each p ∈ Di not appearing in any P ∈ Ω
lies within d∞-distance d of the diagonal.

Here is our main result for Čech constructions in the space
of persistence diagrams.

Theorem 3.5. D has a d-witness E if and only if it ad-
mits a coherent 2d-matching Ω.

Proof. Assume the existence of a witness E along with
d-matchings ωi : E→ Di. For each point e ∈ E, the n-tuple
Pe = (ω1(e), . . . , ωn(e)) of points in the upper half plane
has diameter at most 2d. Either Pe contains a point on the
diagonal, or it does not. Let Ω consist of all Pe which do not
contain a diagonal point as e ranges over the points of E. It
is easily seen that this constructs a coherent 2d-matching.

On the other hand, assume that D admits a coherent 2d-
matching Ω. For each P ∈ Ω of diameter 2d, there exists
some point uP in the upper half plane so that ‖uP−p‖∞ ≤ d
for each p ∈ P . Let Q be the multiset of all points in all
the diagrams in D which do not appear in any P ∈ Ω. Each
q ∈ Q lies within distance 2d of the diagonal, so there exists
a point vq within distance d of both the diagonal and of q.
Let E consist of the union of all points uP and vq as P ranges
over the elements of Ω and q ranges over the points in Q.
Construct the matching ωi : E → Di as follows: each point
of Di belonging to some P ∈ Ω is matched with uP , and each
point q of Di within 2d of the diagonal is matched with vq.
By construction, all matched pairs have d∞-distance smaller
than d.

Note that a coherent d-matching Ω of D = (Di) induces
pairwise matchings between each pair Di,Dj via projection.
In particular, one can define ωij : Di → Dj as follows. For
each P ∈ Ω, match the point of Di in the i-th component
of P with the corresponding point of Dj in the j-th com-
ponent of P . Any points not matched in this fashion are
d-close to the diagonal. If one restricts attention to the set
of points not matched to the diagonal, one obtains a coher-
ence condition among these pairwise matchings. That is,
ωjk ◦ωij(p) = ωik(p) for any p ∈ Di which appears inside an
element of Ω. The reader is encouraged to compare this to
the definition of coherent interleavings in Section 3.3.

3.5 Computational complexity
Given a collection of N points in a metric space and a scale

d > 0, a näıve construction of the 1-skeleton of the associ-
ated Vietoris–Rips complex incurs a quadratic cost in N :
one must test whether each possible pair of points is dis-
tance d apart or not. Depending on whether this 1-skeleton
is almost disconnected or almost the complete graph on N
vertices, the total number of simplices in the Rips complex
can vary from N to 2N . Thus, the complexity of construct-
ing a Rips complex may vary dramatically even for a fixed
number of vertices. On the other hand, various good ap-
proximations may be used for constructing the 1-skeleton,



typically involving landmark or nearest-neighbor estimates.
The reader is invited to consult [19] for a survey of the most
common approximation techniques as well as three practical
algorithms for constructing Vietoris–Rips complexes from a
given 1-skeleton.

Although interleaving maps between persistence modules
form an integral part of stability analysis, there is little oc-
casion in practical situations to actually compute optimal
interleaving maps (coherent or otherwise). In sharp con-
trast, measuring the proximity of persistence diagrams is
crucial to topological data analysis and consequently some
care must be taken in establishing the worst-case algorithmic
burden of computing distances in (diag). With this in mind,
we provide a brief description of the computational cost of
finding the smallest d for which there exists a d-witness to
a collection of persistence diagrams.

Let D = (D1, . . . ,Dn) be the finite collection of persistence
diagrams in question. The following notions from graph the-
ory will be useful in our complexity analysis. Recall that a
graph Γ is n-partite if its vertex set may be divided into
n non-empty subsets called bins so that there are no edges
between two vertices in the same bin. Such a graph is called
complete if in addition there exists an edge between any
pair of vertices in different bins. A clique of the complete
n-partite graph Γ is a collection of n vertices, one from each
bin. If the edges of Γ are weighted then the weight of a
clique is defined to be the maximum weight encountered
between any pair of vertices in that clique. Finally, a clique-
decomposition of Γ is a partition of the vertex set into cliques.

Note that one may construct a complete weighted n-partite
graph ΓD associated to D as follows. For each i ∈ {1, . . . , n}
the i-th vertex bin ΓD(i) consists of all the points in the per-
sistence diagram Di. The edge from a vertex in ΓD(i) to a
vertex in ΓD(j) for i 6= j is weighted by the∞-norm distance
between the corresponding points.

In light of Theorem 3.5, it suffices to find the smallest
d ≥ 0 such that D admits a coherent d-matching. But this
is equivalent to the following graph theoretic problem: what
is the smallest d > 0 such that ΓD admits a decomposition
by cliques of weight less than d? This problem has been well-
studied in graph theory and is known to be NP-complete.
Fortunately, it is not hard to find reasonable polynomial-
time approximations. For instance, see [12] for a cubic-time
algorithm which approximates the optimal clique decompo-
sition problem.

4. A LIPSCHITZ EXTENSION THEOREM
The Interpolation Lemma 2.1 and Theorem 3.2 turn out

to be special cases of a very general result, Theorem 4.1,
about Lipschitz extensions of maps into (mod).

Let X = (X, d) be a metric space, and let f : X → (mod).
We say that f is a coherent embedding if f is 1-Lipschitz
and there exists a family of module maps

Φx
y ∈ Homd(x,y)(f(x), f(y)) for x, y ∈ X

such that Φx
x is the identity on f(x) for every x ∈ X, and

Φy
zΦx

y = Φx
zI

e(x,y,z)
x for every x, y, z ∈ X. Here e(x, y, z) =

d(x, y)+d(y, z)−d(x, z), the shift required to get the degrees
to match.

Theorem 4.1 (Lipschitz extension). Let X be a met-
ric space and let A be a subpace. Then any coherent embed-
ding of A in (mod) extends to a coherent embedding of X.

The proof involves a category theory argument that is be-
yond the scope of the present paper. Coherent embeddings
can be thought of as functors on a category with objects
X ×R, and the extension problem then has a known solu-
tion. The details will appear in a future paper with Peter
Bubenik.

We finish with some easy corollaries of the theorem.

Example 4.2. Let X be the real interval [0, d] and let A
be the two-point subspace {0, d}. We recover the Interpola-
tion Lemma.

Example 4.3. Let e1, e2, . . . , en denote the standard ba-
sis of Rn with the `1-metric. Let X = {0, e1, . . . , en} and
let A = {e1, . . . , en}. We recover Theorem 3.2 (after scaling
by d).

Example 4.4. Let U,V,W be modules which are pair-
wise a-, b- and c-interleaved (in the natural cyclic order).
Suppose that a, b, c satisfy the triangle inequality, so that
the quantities

α =
b+ c− a

2
, β =

c+ a− b
2

, γ =
a+ b− c

2

are all nonnegative. Then there exists a module G which is
α-interleaved with U, β-interleaved with V, and γ-interleaved
with W if and only if the interleavings between U,V,W can
be chosen to be a coherent family.

Proof. In one direction, one can construct the coherent
family of interleavings directly from the interleaving maps
of G with U,V,W. In the other direction, let X be a tree
consisting of three edges of lengths α, β, γ meeting at a point,
and let A be the three outer endpoints of these edges; then
apply the theorem.

The theorem indicates that algebraic coherence of inter-
leaving maps is closely related to the geometric question of
finding 1-Lipschitz extensions. More generally, we conjec-
ture that there are versions of this last example which relate
approximate algebraic coherence to δ-hyperbolicity.
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