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Abstract. Topological persistence is, by now, an established paradigm for constructing robust topo-
logical invariants from point-cloud data: the data are converted into a filtered simplicial complex, the
complex gives rise to a persistence module, and the module is described by a persistence diagram. In
this paper, we study the geometry of the spaces of persistence modules and diagrams, with special
attention to Čech and Rips complexes. The metric structures are determined in terms of interleaving
maps between modules and matchings between diagrams. We show that the relationship between the
Čech and Rips complexes is governed by certain ‘coherence’ conditions on the corresponding families
of interleavings or matchings.

1. Introduction and Motivation

The use of topological techniques to analyze large, complicated, high-dimensional datasets has gained
enormous traction over the last few years. The theory of persistence has been at the vanguard of such
analysis [4, 11, 9]: for instance, the persistent homology of a point cloud provides a global multi-scale
description of the appearance and disappearance of topological features as the points are thickened
into balls of increasing radius. In addition to its efficient computability and representability in the
form of a persistence diagram [20, 16, 15], the most important property of persistent homology is
the celebrated stability theorem [7, 6] which guarantees that the persistence diagram is quantifiably
robust to fluctuations in the locations of the data points. Here is a typical workflow in the application
of persistence to point cloud data:

Point Cloud→ Filtered Complex→ Module→ Diagram

We defer the precise definitions of persistence modules and diagrams to a subsequent section but note
here that the success of persistent homology has led inevitably to active investigations of the spaces
of persistence modules and diagrams in their own right [14, 5, 2]. Our work continues this trend
but with a geometric and topological flavor and with a particular interest in embedding theorems.

Although persistent homology has been widely used—and continues to be used—for the analysis of
static datasets, the progress in terms of using persistence to understand transformations of datasets
has been comparatively sparse. Let C2(X, Y) denote the space of all twice continuously differentiable
functions between manifolds X and Y. Our work is motivated in part by the following embedding
theorem from [17].

Theorem 1.1 (Takens). Let M be a compact manifold of dimension n. Across all pairs (φ, f) where
φ ∈ C2(M,M) is a diffeomorphism and f ∈ C2(M,R) is real-valued, it is generically true that the
map Θ :M→ R2n+1 defined on x ∈M by

Θ(x) = (f(x), f ◦ φ(x), . . . , f ◦ φ2n(x))
1



2 VIN DE SILVA AND VIDIT NANDA

is an embedding.

Although M may be unknown, it is generically possible by Takens’ theorem to reconstruct it as a
subset of R2n+1 from knowledge of the time series

(
f ◦ φk :M→ R

)
k∈N.

Let Conf(m,B) be the space of all possible configurations of m point particles in a bounded region
B. Assume that an unknown ambient force field acts on m particles in B recurrently. That is,
there exists some unknown attractor M ′ ⊂ Conf(m,B) and a bijection φ ′ : M ′ → M ′ capturing
the action of the ambient field on these m points. Although we may not have precise information
about the attractor M ′ or the map φ ′, we can measure discrete snap-shots of the positions of the
particles as φ ′ is iterated. Let f ′ be a map taking each point cloud in M ′ to the space of persistence
modules (or diagrams), and note that

{
f ′ ◦ φ ′k

}
k∈N generates a time series of persistence modules (or

diagrams). We would like to understand to what extent, if any, can the attractor M ′ be generically
reconstructed from such time series as a subset of the space of persistence modules (or diagrams) in
a sense analogous to Takens’ theorem. A first step in this direction is to develop tools which would
enable us to recover geometry and topology in the spaces of persistence modules and diagrams.

In this paper we consider necessary and sufficient compatibility conditions which guarantee the
existence of a persistence module (or diagram) within a given distance of a collection of persistence
modules (or diagrams). It thus becomes possible to construct Čech complexes in these spaces and
hence recover topology of subspaces via the nerve theorem [1]. It turns out that the difference
between Rips simplices and Čech simplices is given by a notion of coherence between interleaving
maps (of persistence modules) or between matchings (of diagrams).

2. Modules and Diagrams

All vector spaces are taken over a fixed field k. We use R to denote the real line.

2.1. Persistence modules. Following [5], a persistence module U indexed by R—or simply a
module—is specified by the following data: a vector space Ut for each t ∈ R, and a linear map
us
t : Us → Ut whenever s 6 t, such that ut

t = 1 for all t and us
tu

r
s = u

r
t whenever r 6 s 6 t.

Certain modules are particularly well behaved. A module U is q-tame (cf. [6]) if rank(us
t) < ∞

whenever s < t. The class of q-tame modules is denoted (mod).

Let U,V be modules, and let d ∈ R. A module map Φ : U → V of degree d is specified by a
collection of linear maps φt : Ut → Vt+d such that vs+d

t+dφs = φtu
s
t whenever s 6 t. The set of

module maps from U to V of degree d is denoted Homd(U,V).

The most important module maps are the shift maps: if d > 0 then Id = IdU is the map U → U of
degree d defined by ιt = u

t
t+d. We think of these as ‘blurred’ identity maps, where d is the amount

of blur. We can then talk about ‘blurred’ isomorphisms: a d-interleaving between two modules
U,V is a pair of module maps Φ : U → V and Ψ : V → U of degree d such that ΨΦ = I2dU and
ΦΨ = I2dV . When such a pair Φ,Ψ exists, we say that U,V are d-interleaved.

We now define a pseudometric on the class of persistence modules, the interleaving distance:

di(U,V) = inf {d > 0 | ∃ a d-interleaving between U,V}
If there is no interleaving between U,V then di(U,V) = ∞. In general, the infimum need not be
attained.
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This formalism is designed to support examples of the following type. Let X be a finite polyhedron
and let f : X→ R be a continuous function. The sublevelsets of f are the subspaces of X

Xt
f = f

−1(−∞, t]

and there is an inclusion Xs
f ⊆ Xt

f whenever s 6 t. We can take homology (with coefficients in k) to
construct a persistence module U = Uf, defined by

Ut = H(Xt
f), us

t = H(Xs
f → Xt

f).

It turns out that this module is q-tame ([6], section 2.8; also [3]). Moreover, the map f 7→ Uf is
1-Lipschitz with respect to the uniform norm on the space C(X) of continuous functions on X. Indeed,
if ‖f − g‖ 6 d then there are inclusions Xt

f ⊆ Xt+d
g and Xt

g ⊆ Xt+d
f which induce a d-interleaving

between Uf,Ug.

2.2. Diagrams. Persistence modules are rather abstract objects. To visualize them concretely,
they are converted into persistence diagrams.

For our purposes, a diagram is a locally finite multiset in the extended half-plane H of pairs (p,q)
with p < q, where p ∈ {−∞} ∪ R and q ∈ R ∪ {+∞}. The space of all possible diagrams is called
(diag). We will shortly define a metric on this space.

The general principle—going back to the pioneering work of [10]—is that a sufficiently well-behaved
persistence module U can be described very nearly faithfully by its diagram dgm(U). The stability
theorem of [7] asserts (under some restrictions on the modules) that the map

(mod) (diag)

U dgm(U)

//

� //

is 1-Lipschitz; and in [13] it was shown to be an isometry. For proofs in the case of q-tame modules,
see [6].

This immediately implies, for instance, that the composite map,

C(X) (mod) (diag)

f dgm(H(Xt
f))

// //

� //

that takes a function on a polyhedron X to its sublevelset persistent homology diagram, is 1-Lipschitz.
This is why the persistence diagram is a stable invariant of (X, f).

The metric used in these assertions is the bottleneck distance on diagrams, which is defined in terms
of the metric d∞((p1,q1), (p2,q2)) = max(|p1 − p2|, |q1 − q2|) on the extended plane. Let D,E be
diagrams. A d-matching is a partial bijection ω : D→ E satisfying two conditions:

(1) If x ∈ D and y = ω(x) ∈ E then d∞(x,y) 6 d.
(2) If x ∈ D or E is unmatched, then there is a point (t, t) ∈ R2 such that d∞(x, (t, t)) 6 d.

It is convenient to think of a partial matching as a subset of D× E, that is a relation between D,E.
(One must take some care to navigate around the fact that D,E are multisets rather than sets. This
can be done by attaching arbitrary labels to distinguish multiple copies of a point.)

The bottleneck distance between diagrams is defined to be

db(D,E) = inf {d > 0 | ∃ a d-matching between D,E} .
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If there is no d-matching for finite d then db(D,E) = ∞. Since we are working with locally finite
multisets, a compactness argument can be used to show that the infimum, when finite, is attained
([6], section 4.3). It follows that db is a true metric rather than a pseudometric: if db(D,E) = 0 then
D = E.

2.3. Interleavings and matchings. The isometry theorem of [7, 13, 2, 6] amounts to the
following specific assertions about q-tame modules and their diagrams:

(1) For every locally finite multiset D there exists a module U with dgm(U) = D.
(2) Given a d-interleaving between U,V there exists a d-matching between dgm(U), dgm(V).
(3) Given a d-matching between dgm(U), dgm(V), there exists a (d + ε)-interleaving between

U,V for all ε > 0.

The construction for assertion 1 uses interval modules. Let A ⊆ R be an interval. Then J = JA is
defined to be the persistence module with:

Jt =

{
k if t ∈ A
0 if t 6∈ A

jst =

{
1 if s, t ∈ A
0 otherwise

To each point (p,q) in the extended half-plane H we associate the half-open interval [p,q), and
therefore the interval module J[p,q). To any multiset D in H, we can define U to be the direct sum
of the interval modules corresponding to the points in D. If D is locally finite, then U is q-tame and
dgm(U) = D. It is equally good to use closed or open intervals, so there are many choices.

Assertion 3 is easy to prove when U,V are direct sums of interval modules. The d-matching between
the persistence diagrams can be interpreted as a matching between the interval summands of U,V so
the interleaving can be constructed separately on each matched pair of summands. The d∞-metric
in R2 precisely governs the interleaving distance between two interval modules (except when both
modules are near the diagonal, in which case we still get an upper bound). For the general case, it
turns out that every q-tame module can be approximated by modules that decompose into intervals
([6], section 4.5; using a result of [18]). This is good enough to deduce the full result.

Assertion 2 is the most subtle and requires a clever argument, even under the strong hypotheses
of [7]. The most general proof is based on the following lemma of [5, 6], which inspires some of our
later results:

Lemma 2.1 (The interpolation lemma). Let U and V be a pair of persistence modules which are
d-interleaved. Then there is a 1-parameter family Ut, where t ∈ [0,d], such that Us,Ut are |s − t|-
interleaved for all s, t and where U0 = U and Ud = V. �

By tracking the persistence diagram as it varies along this 1-parameter family (cf. the theory of
vineyards [8]), one shows that the d-matching exists. However, the proof does not uniquely specify a
matching, even when the interpolation maps Φ,Ψ are given explicitly. It is important to keep this in
mind, to avoid certain natural errors in understanding the relationship between (mod) and (diag).

The interpolation lemma essentially asserts that (mod) is a length space: between any two modules
U,V there exist connecting paths of length di(U,V) + ε for every ε > 0.

There is also an interpolation lemma for (diag), with a straightforward proof: given two diagrams and
a d-matching between them, one constructs an interpolating family of diagrams by moving each point
linearly towards its matched partner (or towards the closest point on the diagonal, if not matched).
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Since the infimum in the definition of db is attained, this gives the stronger conclusion that (diag) is
a geodesic space: any two diagrams D,E are connected by a path of length db(D,E).

3. Čech and Rips complexes

3.1. Definitions. Let M be any metric space. Given a finite data set in M, it is standard
practice in topological data analysis to represent the topology of the data by a nested family of
simplicial complexes, indexed by a scale parameter d. The persistent homology of this family is then
used as a topological descriptor for the data.

Two typical constructions are the Čech and the Vietoris–Rips complexes. Each is defined by a rule
which specifies for each abstract simplex [x0, x1, . . . , xn] the value of d at which it enters the complex:

[x0, . . . , xn] ∈ Rips(M,d) ⇔ dM(xi, xj) 6 d for all i, j

[x0, . . . , xn] ∈ Čech(M,d) ⇔ some y ∈M satisfies

dM(xi,y) 6 d for all i

In the second definition, we call y a d-witness for the simplex [x0, x1, . . . , xn].

We alter this slightly in the case of (mod) because the interleaving distance di is defined as an
infimum which is not always attained. For a simplex σ = [U0,U1, . . . ,Un] of persistence modules:

σ ∈ Rips((mod),d)⇔ every pair Ui,Uj is d-interleaved

σ ∈ Čech((mod),d)⇔ some V is d-interleaved with all Ui

Remark. When a metric is defined as an infimum over some family of comparison objects (such as
interleavings), it makes sense to define Čech and Vietoris–Rips complexes in terms of the comparison
objects rather than the infimum. When the infimum is guaranteed to be attained, such as for db on
(diag), then it makes no difference which we use.

For topological data analysis, a finite data set S ⊂ M may be represented by the restriction of
Rips(M,d) or Čech(M,d) to the vertex set S.

3.2. Sandwiching ratio. It is well known that Vietoris–Rips and Čech complexes are nested
in the following way:

Čech(M,d) ⊆ Rips(M, 2d) ⊆ Čech(M, 2d)

For the first inclusion, if y is a d-witness then dX(xi, xj) 6 dX(xi,y) + dX(y, xj) 6 2d. For the
second inclusion, if every dX(xi, xj) 6 2d then any xi is a 2d-witness for the simplex.

In general, the ratio 2 between the parameters d and 2d, for the Čech complexes that sandwich the
Vietoris–Rips complex, is best possible. We will show that under certain conditions this ratio can be
tightened to 1.

If M is a geodesic space then the left-hand inclusion cannot be tightened: if [x0, x1] ∈ Rips(M, 2d)
then the midpoint of a minimal geodesic from x0 to x1 serves as a d-witness for [x0, x1]. Thus the
1-skeleta of Čech(M,d) and Rips(M, 2d) are equal so one cannot increase the Čech parameter d and
still get an inclusion. The same conclusion holds more generally for length spaces, using the same
argument with added ε.
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Figure 1. Three overlaid persistence diagrams D1 (•), D2 (M), and D3 (×). There
exist incoherent pairwise 1-matchings obtained by associating each point in one diagram
to the nearest point in any other diagram. However, there is no coherent 1-matching
across all three diagrams. Note that there is no 1

2
-witness for the collection {D1,D2,D3}

and indeed, the best one obtains is a 1-witness.

Thus, in order to tighten the ratio for a length space—such as a normed vector space, or (mod)
or (diag)—we seek the smallest e such that Rips(M, 2d) ⊆ Čech(M, e).

It is well known that if M = Rn with the `∞-norm, then Rips(M, 2d) = Čech(M,d), so in that case
the sandwiching ratio is 1. More generally, this is true for function spaces with the supremum norm:

Proposition 3.1. For any topological space X, we have Rips(C(X), 2d) = Čech(C(X),d).

Proof. Indeed, if f0, f1, . . . , fn satisfy ‖fi − fj‖ 6 2d for all i, j then

g(x) =
maxi fi(x) + mini fi(x)

2

is continuous and satisfies ‖g− fi‖ 6 d for all i. �

In contrast, for (mod) and (diag) the ratio 2 cannot be improved without further hypotheses. See
Figure 1 for three diagrams spanning a triangle in Rips((diag), 1) which is not in Čech((diag), e) for
any e < 1.

The same example can be lifted to (mod) by virtue of the isometry theorem.

3.3. Coherent interleavings of modules. Suppose we are given a collection U1, . . . ,Un of
modules which are pairwise 2d-interleaved; that is, suppose we are given a simplex in Rips((mod), 2d).
What is its Čech radius? That is, for what e does there exist an e-witness?

Theorem 3.2. Let U1, . . . ,Un be modules. Then the following are equivalent:

(i) There exists a module V which is d-interleaved with each Ui.
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(ii) There exists a collection of module maps

Φi
j ∈ Hom2d(Ui,Uj) all i, j distinct.

such that

Φj
iΦ

i
j = I

4d
i all i, j distinct (†)

Φj
kΦ

i
j = Φ

i
kI

2d
i all i, j,k distinct (‡)

(Here Iri denotes the shift map on Ui of degree r.)

Statement (i) asserts that the simplex [U1, . . . ,Un] belongs to Čech((mod),d).

Statement (ii) without condition (‡) asserts that the simplex [U1, . . . ,Un] belongs to Rips((mod), 2d).
The full statement, including condition (‡), asserts that the interleaving maps between the modules
can be chosen to commute with each other (up to shift operators, which are needed to make the
degrees of the maps agree).

In other words, a 2d-Rips simplex is d-Čech if and only if the interleaving maps between the modules
can be chosen to be a commuting family (up to shift operators). This suggests the following definition
and restatement of the theorem.

Definition 3.3. A coherent 2d-interleaving between modules U1, . . . ,Un is a family of maps Φj
i

satisfying the conditions in statement (ii) of Theorem 3.2.

Theorem 3.2 ′. A collection U1, . . . ,Un of modules has a d-witness if and only if it has a coherent
2d-interleaving.

The proof of the theorem is similar in spirit to the proof of the interpolation lemma given in [6].
We adopt the notation used in that paper for suspensions (i.e. shifts): given a module U and a real
number r, let U[r] denote the module with U[r]t = Ut+r together with the natural maps. In other
words U[r] is U ‘shifted down’ by r.

of Theorem 3.2. Suppose some persistence module V admits d-interleaving maps Ψi ∈ Homd(V,Ui)
and Υi ∈ Homd(Ui,V) for each i. It is readily seen that the desired commuting family of d-
interleaving maps is obtained by setting Φi

j = ΨjΥi ∈ Hom2d(Ui,Uj).

Conversely, suppose there exists a coherent family of maps Φi
j ∈ Hom2d(Ui,Uj). To define V, we

consider the following two persistence modules:

V− = U1[−d]⊕ U2[−d]⊕ · · · ⊕ Un[−d]

V+ = U1[+d]⊕ U2[+d]⊕ · · · ⊕ Un[+d]

There is a map Γ ∈ Hom0(V−,V+) defined by the following matrix:

Γ =


I2d1 Φ2

1 · · · Φn
1

Φ1
2 I2d2 · · · Φn

2
...

...
...

Φ1
n Φ2

n · · · I2dn


Since the image of a module map is itself a module, we can define V = im(Γ).
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We now show that V is d-interleaved with U1 (and hence, by symmetry, with each Ui). To do this,
we represent U1 in an unusual way. We consider the modules

W− = U1 ⊕ U2[−2d]⊕ · · · ⊕ Un[−2d]

W+ = U1 ⊕ U2[+2d]⊕ · · · ⊕ Un[+2d]

and the map ∆ ∈ Hom0(W−,W+) defined by the matrix

∆ =


I01 Φ2

1 · · · Φn
1

Φ1
2 I4d2 · · · I2dn Φ

n
2

...
...

...
Φ1

n I2d2 Φ
2
n · · · I4dn


and set W = im(∆).

The proof is completed by establishing two claims:

Claim 1: V,W are d-interleaved.

Proof. We first observe that V−,W− are d-interleaved through the maps:

Ψ− = I2d1 ⊕ I02 ⊕ · · · ⊕ I0n ∈ Homd(V−,W−)

Υ− = I01 ⊕ I2d2 ⊕ · · · ⊕ I2dn ∈ Homd(W−,V−)

and V+,W+ are d-interleaved through the maps:

Ψ+ = I01 ⊕ I2d2 ⊕ · · · ⊕ I2dn ∈ Homd(V+,W+)

Υ+ = I2d1 ⊕ I02 ⊕ · · · ⊕ I0n ∈ Homd(W+,V+)

One can readily verify that Ψ+Γ = ∆Ψ− and Υ+∆ = ΓΥ−, and hence Ψ± and Υ± determine maps:

Ψ ∈ Homd(im(Γ), im(∆)) = Homd(V,W)

Υ ∈ Homd(im(∆), im(Γ)) = Homd(W,V)

Moreover, Υ+Ψ+ = I2d and Ψ+Υ+ = I2d imply that ΥΨ = I2d and ΨΥ = I2d so we have a d-
interleaving. �

Claim 2: W is isomorphic to U1.

Proof. For this we observe that there is a matrix factorization

∆ =


I01
Φ1

2
...
Φ1

n

 [ I01 Φ2
1 · · · Φ2

n

]
because of the properties (†) and (‡) of the coherent family. This means that ∆ can be written as a
composite

W− −→ U1 −→W+

where the first map is surjective, thanks to its I01 term; and the second map is injective, thanks to its
I01 term. (We are using the fact that I01 is the identity map of U1.) It follows that im(∆) is isomorphic
to U1. �

The two claims complete the proof of the theorem. � �
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3.4. Coherent matchings of diagrams. Let D = (D1, . . . ,Dn) be a collection of n persistence
diagrams. Given d > 0, we say that a persistence diagram E is a d-witness of D if there exist d-
matchings γi : E → Di for each i. The construction of Čech complexes in the space of persistence
diagrams reduces to solving the following fundamental problem: what is the smallest d > 0 such that
there exists an d-witness of D? We answer this question with a necessary and sufficient condition
intrinsic to D which guarantees the existence of a witness diagram.

Definition 3.4. A subset Ω ⊂ D1 × · · · × Dn is called a coherent d-matching of the family
D = (Di) if the following conditions hold:

(1) diameter: each P = (p1, . . . ,pn) ∈ Ω has d∞ diameter at most d;
(2) partition: each point p ∈ Di appears in the i-th component of at most one P ∈ Ω; and
(3) diagonal: each p ∈ Di not appearing in any P ∈ Ω lies within d∞-distance d of the diagonal.

Here is our main result for Čech constructions in the space of persistence diagrams.

Theorem 3.5. D has a d-witness E if and only if it admits a coherent 2d-matching Ω.

Proof. Assume the existence of a witness E along with d-matchings ωi : E → Di. For each
point e ∈ E, the n-tuple Pe = (ω1(e), . . . ,ωn(e)) of points in the upper half plane has diameter at
most 2d. Either Pe contains a point on the diagonal, or it does not. Let Ω consist of all Pe which do
not contain a diagonal point as e ranges over the points of E. It is easily seen that this constructs a
coherent 2d-matching.

On the other hand, assume that D admits a coherent 2d-matching Ω. For each P ∈ Ω of diameter
2d, there exists some point uP in the upper half plane so that ‖uP − p‖∞ 6 d for each p ∈ P. Let
Q be the multiset of all points in all the diagrams in D which do not appear in any P ∈ Ω. Each
q ∈ Q lies within distance 2d of the diagonal, so there exists a point vq within distance d of both the
diagonal and of q. Let E consist of the union of all points uP and vq as P ranges over the elements
of Ω and q ranges over the points in Q. Construct the matching ωi : E→ Di as follows: each point
of Di belonging to some P ∈ Ω is matched with uP, and each point q of Di within 2d of the diagonal
is matched with vq. By construction, all matched pairs have d∞-distance smaller than d. �

Note that a coherent d-matching Ω of D = (Di) induces pairwise matchings between each pair Di,Dj

via projection. In particular, one can define ωij : Di → Dj as follows. For each P ∈ Ω, match the
point of Di in the i-th component of P with the corresponding point of Dj in the j-th component of P.
Any points not matched in this fashion are d-close to the diagonal. If one restricts attention to the
set of points not matched to the diagonal, one obtains a coherence condition among these pairwise
matchings. That is, ωjk ◦ωij(p) = ωik(p) for any p ∈ Di which appears inside an element of Ω.
The reader is encouraged to compare this to the definition of coherent interleavings in Section 3.3.

3.5. Computational complexity. Given a collection of N points in a metric space and a
scale d > 0, a näıve construction of the 1-skeleton of the associated Vietoris–Rips complex incurs
a quadratic cost in N: one must test whether each possible pair of points is distance d apart or
not. Depending on whether this 1-skeleton is almost disconnected or almost the complete graph
on N vertices, the total number of simplices in the Rips complex can vary from N to 2N. Thus,
the complexity of constructing a Rips complex may vary dramatically even for a fixed number of
vertices. On the other hand, various good approximations may be used for constructing the 1-
skeleton, typically involving landmark or nearest-neighbor estimates. The reader is invited to consult
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[19] for a survey of the most common approximation techniques as well as three practical algorithms
for constructing Vietoris–Rips complexes from a given 1-skeleton.

Although interleaving maps between persistence modules form an integral part of stability analysis,
there is little occasion in practical situations to actually compute optimal interleaving maps (coherent
or otherwise). In sharp contrast, measuring the proximity of persistence diagrams is crucial to
topological data analysis and consequently some care must be taken in establishing the worst-case
algorithmic burden of computing distances in (diag). With this in mind, we provide a brief description
of the computational cost of finding the smallest d for which there exists a d-witness to a collection
of persistence diagrams.

Let D = (D1, . . . ,Dn) be the finite collection of persistence diagrams in question. The following
notions from graph theory will be useful in our complexity analysis. Recall that a graph Γ is n-
partite if its vertex set may be divided into n non-empty subsets called bins so that there are no
edges between two vertices in the same bin. Such a graph is called complete if in addition there exists
an edge between any pair of vertices in different bins. A clique of the complete n-partite graph Γ
is a collection of n vertices, one from each bin. If the edges of Γ are weighted then the weight of a
clique is defined to be the maximum weight encountered between any pair of vertices in that clique.
Finally, a clique-decomposition of Γ is a partition of the vertex set into cliques.

Note that one may construct a complete weighted n-partite graph ΓD associated to D as follows. For
each i ∈ {1, . . . ,n} the i-th vertex bin ΓD(i) consists of all the points in the persistence diagram Di.
The edge from a vertex in ΓD(i) to a vertex in ΓD(j) for i 6= j is weighted by the ∞-norm distance
between the corresponding points.

In light of Theorem 3.5, it suffices to find the smallest d > 0 such that D admits a coherent d-
matching. But this is equivalent to the following graph theoretic problem: what is the smallest
d > 0 such that ΓD admits a decomposition by cliques of weight less than d? This problem has been
well-studied in graph theory and is known to be NP-complete. Fortunately, it is not hard to find
reasonable polynomial-time approximations. For instance, see [12] for a cubic-time algorithm which
approximates the optimal clique decomposition problem.

4. A Lipschitz extension theorem

The Interpolation Lemma 2.1 and Theorem 3.2 turn out to be special cases of a very general result,
Theorem 4.1, about Lipschitz extensions of maps into (mod).

Let X = (X,d) be a metric space, and let f : X→ (mod). We say that f is a coherent embedding
if f is 1-Lipschitz and there exists a family of module maps

Φx
y ∈ Homd(x,y)(f(x), f(y)) for x,y ∈ X

such that Φx
x is the identity on f(x) for every x ∈ X, and Φy

zΦ
x
y = Φx

zI
e(x,y,z)
x for every x,y, z ∈ X.

Here e(x,y, z) = d(x,y) + d(y, z) − d(x, z), the shift required to get the degrees to match.

Theorem 4.1 (Lipschitz extension). Let X be a metric space and let A be a subpace. Then any
coherent embedding of A in (mod) extends to a coherent embedding of X.

The proof involves a category theory argument that is beyond the scope of the present paper. Coher-
ent embeddings can be thought of as functors on a category with objects X × R, and the extension
problem then has a known solution. The details will appear in a future paper with Peter Bubenik.
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We finish with some easy corollaries of the theorem.

Example 4.2. Let X be the real interval [0,d] and let A be the two-point subspace {0,d}. We recover
the Interpolation Lemma.

Example 4.3. Let e1, e2, . . . , en denote the standard basis of Rn with the `1-metric. Let X =
{0, e1, . . . , en} and let A = {e1, . . . , en}. We recover Theorem 3.2 (after scaling by d).

Example 4.4. Let U,V,W be modules which are pairwise a-, b- and c-interleaved (in the natural
cyclic order). Suppose that a,b, c satisfy the triangle inequality, so that the quantities

α =
b+ c− a

2
, β =

c+ a− b

2
, γ =

a+ b− c

2
are all nonnegative. Then there exists a module G which is α-interleaved with U, β-interleaved
with V, and γ-interleaved with W if and only if the interleavings between U,V,W can be chosen to
be a coherent family.

Proof. In one direction, one can construct the coherent family of interleavings directly from the
interleaving maps of G with U,V,W. In the other direction, let X be a tree consisting of three edges
of lengths α,β,γ meeting at a point, and let A be the three outer endpoints of these edges; then
apply the theorem. �

The theorem indicates that algebraic coherence of interleaving maps is closely related to the geometric
question of finding 1-Lipschitz extensions. More generally, we conjecture that there are versions of
this last example which relate approximate algebraic coherence to δ-hyperbolicity.
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