MODULARITY OF GALOIS REPRESENTATIONS AND
LANGLANDS FUNCTORIALITY

JAMES NEWTON

ABSTRACT. This survey reports on some of the recent developments in the area
of Galois representations and automorphic forms, with a particular focus on
the author and Thorne’s work on symmetric power functoriality for modular
forms.
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2 JAMES NEWTON

1. INTRODUCTION

In this article, we survey some recent work on Langlands reciprocity and func-
toriality in which Galois representations play a central role. No attempt has been
made to give a comprehensive, or historically-minded account — for the recent his-
tory, Calegari’s survey of modularity lifting theorems since the proof of Fermat’s
last theorem [ | is recommended.

The main goal of the final section 5 of this article is to introduce the reader
to some of the main ideas in the author’s work with Thorne on symmetric power
functoriality [NTa, ]. For an alternative introduction to our work, see | ].

Before we get there, in sections 2—-3 we review the circle of ideas connecting Ga-
lois representations, automorphic forms and arithmetic geometry, and very briefly
discuss recent developments in this area. In Section 4 we introduce modularity
lifting theorems and the Taylor—Wiles method.
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2. AN INTRODUCTION TO (GALOIS REPRESENTATIONS AND LANGLANDS
RECIPROCITY

In this section, we introduce one of the main subjects of this article. We rec-
ommend | ] to the reader for a more detailed survey on Galois representations
and | ] for an introduction to Langlands reciprocity.

2.1. Notation and preliminaries. We will be interested in continuous finite di-
mensional representations of the profinite Galois group Gg = Gal(Q/Q), where Q,
the field of algebraic numbers, is the algebraic closure of the rational numbers.

For each prime p, we can embed Q in the algebraic closure @p of the field of p-
adic numbers. Each choice of embedding identifies Gg, = Gal(Q,/Q,) with a closed
subgroup of Gq; for any two choices of embedding we obtain conjugate subgroups.

There is a natural surjective homomorphism Gg, — GF, from Gg, to the ab-
solute Galois group of the residue field I,,. The kernel of this map is the inertia
group Ig, C Gg,- The Galois group G, is a free profinite group generated by the
p-power map Frob,(x) = zP.

If S is a finite set of primes, we can also consider the Galois group Gg s =
Gal(Q®/Q), where Q° is the maximal subfield of Q which is unramified at primes
not in . This means that the image in Gg,s of an inertia group Ig, is trivial when
p ¢ S and we have an element Frob, € Gg,s. This element depends on the choice
of embedding Q — @p, but its conjugacy class is independent of this choice. It is a
consequence of the Chebotarev density theorem that the union' of these Frobenius
conjugacy classes is dense in Gg g (for the profinite topology).

All of this generalises in a straightforward way to Galois groups of number fields,
or other global fields.

Lover p & S, or over any density one subset of these primes
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We can now say that a linear representation (p,V)? of Gq is unramified at a
prime p if the inertia subgroup Ig, acts trivially on V. Note that this notion
depends only on p, not on the choice of embedding Q — @p We say p is almost
everywhere unramified if there is a finite set of primes S such that p is unramified
at all primes p ¢ S. Equivalenty, p can be identified with a representation of Gg s.

When p is unramified at p, we have a well-defined conjugacy class of endomor-
phisms p(Frob,) and a polynomial P, ,(t) := det(1 — tp(Frob,)|V) associated to
it?. If p is continuous and almost everywhere unramified, these characteristic poly-
nomials determine the semisimplification of p (by the Brauer—Nesbitt theorem and
density of the Frobenius conjugacy classes).

At this point we should say something about the fields over which our repre-
sentations are defined. The most classical kind of Galois representation are Artin
representations. These are continuous representations of Gg on complex vector
spaces. The matrix groups GL,(C) have ‘no small subgroups’. More precisely,
there is an open neighbourhood of the identity in GL,,(C) which contains no non-
trivial subgroup (this can be seen using the exponential map from the Lie algebra,
for example). On the other hand, the identity has a neighbourhood basis of open
subgroups in the profinite topology on Gg. This means that an Artin representa-
tion necessarily has finite image and factors through the quotient Gg — Gal(F/Q)
for a finite Galois extension F/Q.

A richer theory is obtained by considering p-adic Galois representations for a
prime p. These are continuous representations of Gg on vector spaces over the p-
adic numbers Q,, (or an extension field K/Qy). Note that the p-adic matrix group
GL,,(Q,) is locally profinite (an open, profinite, subgroup is given by GL,,(Z,)), so
unlike the case of Artin representations the image of a p-adic Galois representation
can (and usually will) be infinite.

Here are some examples of Galois representations arising ‘in nature’:

(1) Finite order characters. By the Kronecker—Weber theorem, for any contin-
uous finite order character x : Gg — C* there is a positive integer NV and a
Dirichlet character x : (Z/NZ)* — C* such that x is given by composing
X with the map Gg — Gal(Q((n)/Q) = (Z/NZ)* ({n € Q is a primitive
N1 root of unity). These give all the continuous representations of Gg on
a one-dimensional complex vector space.

(2) The p-adic cyclotomic character. For any prime power p”, we have a homo-
morphism Gg — Gal(Q({pr)/Q) = (Z/p"Z)* . Taking the limit over r gives
a continuous homomorphism x, : Gg — Z,, the p-adic cyclotomic charac-
ter. It is characterised by the property that o({) = ¢x»(9) for any p-power
root of unity ¢ € Q. This gives a one-dimensional p-adic representation of
Go.

(3) Tate modules of abelian varieties. For an abelian variety A/Q of dimension
g and a prime p, the Tate module T),(A) := Hm, A(Q)[p"] defined using
the p-power division points is a free rank 2g Z,-module with a continuous
action of Gg. This gives us a 2g-dimensional p-adic Galois representation.

2We will consider various coeficient rings, including finite fields.
31t is more convenient to use this inverse characteristic polynomial when making the connection
with L-functions
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(4) Cohomology of algebraic varieties. If X is an algebraic variety defined
over Q, its p-adic étale cohomology groups H i(X@, Q) are p-adic Galois
representations.

(5) Automorphic Galois representations. We will return to this example later!

We can apply all the standard representation-theoretic constructions to obtain more
Galois representations: for example, tensor products of representations, duals, al-
ternating or symmetric powers.

2.2. p-adic and mod p Galois representations. It is often very useful to con-
sider the residual representation of a p-adic Galois representation. Suppose we start
with a continuous representation

p: Gg — GL,(Q,).

It is convenient to work with representations valued in @p, to avoid keeping track
of coefficient fields. However, one thing which is good to know is that the image of
p is necessarily contained in GL,,(E) for E/Q, a finite extension (see [Con, ]
for two different proofs). The compactness of Gg implies that it moreover stabilises
an Op-lattice in E™. So a conjugate of p has image contained in GL,(Z,), and we
can reduce this conjugate mod mz to give the residual representation

p:Gg— GLn(Fp),

whose isomorphism class is well-defined up to semi-simplification (another applica-
tion of the Brauer—Nesbitt theorem).

2.3. Compatible systems. The examples of p-adic Galois representations intro-
duced in the last section all naturally live in a family of representations, one for each
prime p. To make this a bit more precise we introduce a notion due to Taniyama
[ ] and Serre | ]*. Suppose E is a number field and we have a collection
of continuous representations (px)x of Gg on Ex-vector spaces, one for each finite
place A of E. We will write [ for the residue characteristic of A.

We say that (py)x is a compatible system (with coefficients in E) if there is a
finite set S of primes such that:

(1) For every p ¢ SU{l}, py is unramified at p and the polynomial P,, ,(t) €
E,[t] in fact has coefficients in E.
(2) Moreover, for any two finite places A\, X of E, we have P,, ,(t) = P,,, »(t)
forallp ¢ SU{l,1l'}.
We say that a compatible system is irreducible if each p) is absolutely irreducible
(i.e. remains irreducible after extending coefficients to the algebraic closure Ey).
Note that the second condition implies that the dimension of a representation
px in the compatible system is independent of .
The examples of Galois representations we listed above all give rise to compatible
systems with coeflicients in Q, with the proviso that we assume the algebraic variety
X in example (4) is proper and smooth®.

40ur version of compatible system is called strictly compatible by Serre.

5The Riemann Hypothesis over finite fields can then be used to extract the polynomials Py, p(t)
from the Zeta function of the reduction mod p of X, when p is a prime of good reduction for X,
showing that they have rational coefficients and are independent of [.
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We might ask if all (irreducible) compatible systems are of geometric origin; to
make this notion precise, we can say that a compatible system (py) is of geomnetric
origin if each py appears as a subquotient of

Hi(X,T)l = HZ(X@, Ex) ® Qe(x7)

for a proper smooth variety X/Q, a cohomological degree i, and an integer r, all
independent of A. Assuming the Tate conjecture (in the form of | , Conjecture
1.2]) this is equivalent to the existence of a subspace W of the singular cohomology
group H*(X(C), E) such that, having chosen an embedding® Q C C, for every A
the E\-subspace

W @p Ex C H(X(C), E\) = H'(Xg, Ex)

is Gg-stable and isomorphic to pxx; " as a representation of Gg.

Serre proved | | that irreducible compatible systems are indeed of geomet-
ric origin when the representations in the compatible system factor through the
abelianisation of Gg. This result doesn’t actually have much to do with compatible
systems, it applies to a single p satisfying the rationality condition (1) above and
relies on a result in transcendence theory due to Lang’.

2.4. Geometric Galois representations. Compatible systems of geometric ori-
gin satisfy an additional subtle property: for each A, the [-adic representation
prlGg, is de Rham in the sense of Fontaine. This reflects the remarkable fact that
the Hodge filtration on algebraic de Rham cohomology of a proper smooth vari-
ety X/Qg can be naturally recovered from the Galois action on the l-adic étale
cohomology using the de Rham comparison theorem | ]

Following Fontaine and Mazur | |, we will say that a p-adic representation
p of G is geometric if it is ramified at only finitely many primes and its restriction
to Go, is de Rham.® We will usually denote the set of primes at which p is ramified
by S. Similarly to the case of compatible systems, we say that p is of geometric
origin if it appears as a subquotient of

for a proper smooth variety X/Q, a cohomological degree i, and an integer r.

Conjecture 2.4.1 (Fontaine-Mazur). Suppose p : Gg — GLy,(Q,) is an irreducible
geometric Galois representation. Then p is of geometric origin.

In combination with the Tate conjecture, this also predicts that geometric Galois
representations should lie in compatible systems.

Remark 2.4.2. Naturally, one might first consider the case n = 1. In this case, it
follows from a theorem of Tate (as explained in [ , Ch. III]) that geometric
Galois representations are locally algebraic. For representations of Gg this simply
means that the composition of p with the Artin reciprocity map Q) — Ga‘; is given
by x +— 2" for r € Z and z in a sufficiently small open neighbourhood of 1 € Q.
Equivalently, x,,"p is potentially unramified at p, which means that there is a finite

6which allows us to compare étale and singular cohomology

"The same proof works for Abelian representations of G for general number fields F', using a
more general transcendence theorem of Waldschmidt.

8When we are interested in a single Galois representation, we will use p to denote the residue
characteristic of the coefficient field.



6 JAMES NEWTON

extension F'/Q such that x,"p|g, is unramified at every place of F' dividing p.
Finiteness of the class group now implies that p is the product of x;, and a finite
order character. This gives the Fontaine-Mazur conjecture in this case, since finite
order characters can be found in the cohomology of O-dimensional varieties. The
same strategy extends to one-dimensional p-adic representations of G for number
fields F', see | , Theorem 2.3.13] for details. We note that the transcendence
results used by Serre to show that rational representations are of geometric origin
are not required here.

We say more about progress on this conjecture in dimension 2 in section 3.3.

2.5. Langlands reciprocity and the Fontaine-Mazur conjecture. To con-
tinue the story, we need to say something about automorphic representations and
their connection with Galois representations. Automorphic representations (for the
algebraic group GL,, /Q) are representations of the adelic group GL,(A), where A
is the ring of adeles R x (Z ® Q). Rather than explaining the definition of a cus-
pidal automorphic representation of GL,(A), we refer to | , §3] for this, and
restrict ourselves to mentioning some important features of a cuspidal automorphic
representation m which will play a role later in this survey:

e 7 is determined by a collection of local factors mo, ™, (one for each prime p).
The latter are irreducible smooth? representations of GL,,(Q,) on complex
vector spaces.

e For all but finitely many p, the representation m, is unramified, i.e. it has a
non-zero space of invariants under GL,,(Z,). Unramified representations 7,
of GL,(Qp) are classified by semisimple conjugacy classes ¢(mp) in GL,,(C)
(Satake parameters).'® Such a conjugacy class is determined by the inverse
characteristic polynomial: Py ,(t) = det(1 — te(my)).

When ¢(7,) = [diag(aq, g, . . ., ay)], we define alocal L-factor: L(mp,t) =
[Lo1 (1 —ait)™h = Prp(t) 7"

Just as a Galois representation is determined by the characteristic poly-
nomials of Frobenius elements at unramified primes, a cuspidal automorphic
representation 7 is determined by the polynomials Py ,(¢) (or equivalently,
by the Satake parameters c¢(m,)). This follows from the strong multiplicity
one theorem of Piatetski-Shapiro, Jacquet and Shalika [ ].

e 7 has an L-function, a holomorphic function in a complex variable s defined
for Re(s) > 0 by L(m,s) =[], L(mp, p~*). We have only defined the local
L-factors at primes p where 7 is unramified, but the definition can be
extended to cover all primes.

e L(m,s) has an analytic continuation to an entire holomorphic function on
C, except if n = 1, when possibly it may have a simple pole'’.

9each vector has an open stabiliser

10Generically, this classification is given by taking the conjugacy class of diag(a1, a2, ..., an)
to the normalised parabolic induction from the Borel subgroup IndgL" (x1 ®x2 -+ ®Xn), where
xi(+) = az)”('). In general, we take the unique unramified subquotient of this parabolic induction.

For example, when 7 is the trivial representation of GL1(A), in which case L(m,s) is the
Riemann zeta function.
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A cuspidal Hecke eigenform f of weight k, level N and character € : (Z/NZ)* —
C* has an associated automorphic representation 7(f) of GL2(A)'?. For pt N, the
Satake parameter of 7(f), is given by [diag(ay,/\/P, Bp/+/P)] Where ay, 8, are the
roots of the polynomial X% — a,(f)X + e(p)p*~L.

The connection with Galois representations is that an automorphic represen-
tation 7 satisfying a certain algebraicity condition (defined by Clozel | ]) is
predicted to have an associated compatible system of geometric Galois represen-
tations. Particular examples of algebraic automorphic representations are given
by the 7(f) coming from Hecke eigenforms. As we can already see in this special
case, we need to do some kind of renormalization if we want the field of definition
of the Satake parameters to reflect the rationality properties of 7.'* So our Ga-
lois representations will be directly related to the Satake parameters of the twisted
automorphic representation 7/ := 7| det(-)| ="

More precisely, the prediction is that there is a number field F, C C containing
the coefficients of the polynomials P/ ,(t) for all unramified p and a compatible
system of semisimple Galois representations (p, ») with coefficients in E, such that

Ppﬂ,x,p(t) = Pﬂ’,p(t)

for all X and p ¢ SU {1}."*

If a compatible system of Galois representations matches up with a cuspidal
automorphic representation in this way, we will say that the compatible system is
automorphic.

Thinking about individual Galois representations rather than compatible sys-
tems, for any choice of isomorphism ¢ : @p > C we expect the existence of a geo-
metric Galois representation pr , such that the polynomials P, ;(t) match with
the Satake polynomials Py ;(t). If a p-adic Galois representation p is isomorphic
to px, for some 7 and ¢, we say that p is automorphic.'> We can also associate an
L-function to a geometric Galois representation and a choice of ¢. If p is unramified
outside .S, we have

L(P, 5) = LS(p’S) H LPp,l(lis)ila
1gsu{p}
where the factor Lg(p, s) at the ramified primes is defined in | , §2]. When
p = pr, is automorphic, we have L(p, s) = L(m, s).
Langlands’s reciprocity conjecture predicts that Galois representations of geo-
metric origin are in fact automorphic (this prediction is also made precise in | -
Combining this with the Fontaine-Mazur conjecture, we obtain:

12\We normalise things so that the central character of 7(f) is the product of a finite order char-
acter and |-|2~F. This is the natural normalization when we use the Eichler-Shimura isomorphism
to think of f as an element of H'(I'1(N), SymF—2C2).

13In the language of [ ], we, like Clozel, will focus on C-algebraic automorphic represen-
tations of GLy, (AF).

MHere S is the set of ramified primes for 7, which should also be the set of ramified primes
for the compatible system of Galois representations.

151f we can show that p is automorphic, we will also show that the coefficients of P, ;(t) are
contained in a number field E C @p, independent of [. Our somewhat disconcerting choice of
isomorphism ¢ can then, a posteriori, be replaced by a choice of embedding ¢ : E — C. Moreover,
whenever we can show the existence of the field of rationality E, for m, we can also construct
‘conjugate’ automorphic representations 77 for any o € Aut(C) so that Piroyr ;(t) = 0P (t).
This means that if p is automorphic, there is a suitable 7 for any choice of ¢.
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Conjecture 2.5.1 (Fontaine-Mazur-Langlands). Suppose p : Gg — GL,(Q,) is
an irreducible geometric Galois representation. Then p is automorphic.

In particular, the L-function L(p, s) has analytic continuation to the whole com-
plex plane (when n > 1) and a functional equation.

2.6. Potential automorphy and the Sato—Tate conjecture. Langlands reci-
procity is closely intertwined with Langlands functoriality — the transfer of au-
tomorphic representations from one group to another (along a homomorphism of
Langlands dual groups). A particular example we will be discussing in this survey is
symmetric power functoriality. For n > 1, the n'" symmetric power of the standard
representation of GLs (and a choice of basis) gives a homomorphism

Sym" : GLQ(Qp) — GLn+1(Qp).

Suppose we start with a cuspidal Hecke eigenform f. We have an associated two-
dimensional geometric Galois representation'® ps, = pr(s), and composing with
the symmetric power map, we get a geometric Galois representation Sym™ py, with
dimension n + 1.

When the eigenform f has weight at least 2 and is not a CM form'”, it follows
from a result of Ribet | | that the representations Sym" ps, are irreducible
for all n. Indeed, Ribet shows that under this assumption ps, is irreducible on
restriction to any open subgroup of Gg. It follows from the classification of algebraic
subgroups of GL; that the largest closed algebraic subgroup of GLo /@p containing
the image ps,(Gg) is GLa, and the irreducibility of Sym™ p;, is now a consequence
of the irreducibility of Sym™ as an algebraic representation of GLs.

The Fontaine-Mazur—Langlands conjecture then predicts that the symmetric
power representations are automorphic:

Conjecture 2.6.1 (Symmetric power functoriality). The Galois representation
Sym"” ps, is automorphic for every n > 1.

In other words, for each n there should be a cuspidal automorphic representation
7 of GL,41(A) with pr, = Sym” pg,. If the conjecture is proved for one choice
of p and ¢, then it holds for all choices of p and ¢, since the compatible system of
Galois representations associated to m matches the compatible system coming from
the symmetric powers.

The existence of the symmetric power lifting m was proved for n = 2 by Gel-
bart and Jacquet | ], and for n < 4 by Kim and Shahidi | ) ]
These results are proved using converse theorems and apply much more generally:
they construct symmetric power liftings for cuspidal automorphic representations
of GLy(Af) for arbitrary number fields F', without any algebraicity condition'®.

Langlands’s seminal article | | describes (in a more general context) how
symmetric power functoriality can be used to deduce the Ramanujan—Petersson
conjecture, which predicts that the roots «y, 8, of the polynomial X? — a,(f) +

16¢f. section 3 for more remarks on the existence of Galois representations associated to auto-
morphic representations.

17A CM form is one which is equal to its twist by some quadratic Dirichlet character. On the
Galois side, this means that the representation p;, is induced from a character of an index two
subgroup of Gg.

18WWe have used Galois representations to characterise the symmetric power lifting, which only
makes sense in the algebraic case, but it can be described purely automorphically, for example by
specifying the Satake parameters of the symmetric power lifting.
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e(p)p*~! have complex absolute values p(*~1/2. This was, of course, proved by
Deligne as a consequence of the Riemann hypothesis over finite fields (with an
idea inspired by Langlands’s method). Moreover, it was explained by Serre | ,
Appendix to Chapter 1] that symmetric power functoriality can also be used to
prove an equidistribution result for the Satake parameters (o, 8,), the Sato—Tate
conjecture.

The Sato—Tate conjecture (for modular forms) was proved by Barnet-Lamb, Ger-
aghty, Harris and Taylor | ] (see also [ , , , D,
by proving something a little weaker than the symmetric power functoriality con-
jecture — potential automorphy of symmetric powers:

Theorem 2.6.2 (] ). For each m > 1, there is a Galois totally real
number field F/Q and a cuspidal automorphic representation wp of GL,11(Ap)
such that Sym” ps,|cp = Prp,. s automorphic.

The proof of this theorem involved significant developments in modularity lifting
theorems, in the construction of automorphic Galois representations, and in the
trace formula (including Laumon and Ngé’s work on the fundamental lemma) —
we discuss the first two topics in a little more detail over the next few pages, but
we refer the reader to [ | for a much more extensive survey of what goes into
the proof of Theorem 2.6.2. The latter part of the present article will review part
of the author’s proof with Thorne of Conjecture 2.6.1.

More recent developments in modularity lifting theorems | ] and the con-
struction of automorphic Galois representations [ , ] have broadened
the scope of the methods used to prove potential automorphy results. Using a cru-
cial geometric breakthrough of Caraiani and Scholze | |, it has been possible
to establish potential automorphy of symmetric powers of certain two-dimensional
representations of G when F is a CM number field ' | ]. This gives a proof
of the Sato—Tate conjecture for elliptic curves over CM fields. In this work, we also
use Langlands’s method directly to prove the Ramanujan—Petersson conjecture for
certain automorphic representations of GLa(Ap) (again for a CM field F).

Another recent breakthrough, again using the work of Calegari and Geraghty
[ ], is the proof of the potential automorphy of the p-adic Galois representa-
tions given by the p-adic Tate modules of Abelian surfaces over totally real fields

[ J

3. AUTOMORPHIC GALOIS REPRESENTATIONS

We now say a little more about the construction of compatible systems of Galois
representations associated to algebraic automorphic representations. We under-
stand best the case of reqular algebraic cuspidal automorphic representations. These
are automorphic representations which contribute to the cohomology of arithmetic
groups, or equivalently to the cohomology of arithmetic locally symmetric spaces
which are quotients of contractible symmetric spaces by arithmetic groups.

What this means in practice is that for a regular algebraic cuspidal automorphic
representation 7 of GL, (A), we have the following objects which capture the Satake
parameters of m:

191.6., a totally imaginary quadratic extension of a totally real field
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A locally symmetric space Y, a real manifold which is a disjoint union of
quotients
Yr =T\ (SLy(R)/SO(n))

for finite index subgroups I" of SL,,(Z).

e A local system of abelian groups V on Y determined by an algebraic rep-
resentation of SL,(Q) (for the trivial representation, we get the trivial
coefficient system Z).

e A commutative ring T of endomorphisms of the finitely generated abelian
group H*(Y,V) := @; H (Y, V) (the ring of Hecke operators).

e Explicit polynomials Pr;(t) € T[t] for the primes [ where 7 is unramified.*’

o A T-stable direct summand H*(Y,V)[r] C H*(Y,V) ® C on which there is

an identity Pr;(t) = P ;(t) for all primes [ where 7 is unramified.

We can rephrase the final point as saying that the coefficients of the P,/ ;(t) appear
as eigenvalues of Hecke operators. A nice algebraicity result follows immediately;
there is a number field E; which contains the coefficients of Py ;(t) for all unramified
l. Indeed, these coefficients are eigenvalues of a commuting family of operators on
H*(Y,V) ® C which preserve the rational structure H*(Y,V) ® Q.

When n = 2, the situation is quite classical. The locally symmetric spaces Y are
modular curves, and Eichler and Shimura explained the relationship between the
cohomology of these curves and modular forms of weight at least 2. This amounts
to computing the cohomology groups H*(Y,V) ® C in terms of differentials on
Y. Moreover, the action of SLy(R) on P*(C) by Mébius transformations identifies
SL2(R)/SO(2) with the complex upper half-plane. The manifolds Y can therefore
be equipped with a complex structure and moreover they can naturally be viewed
as the set of complex points of an algebraic curve defined over Q. This means
that the construction of Galois representations can be done using the machinery
of étale cohomology | . If we fix ¢ : @p = C, then we have an isomorphism

H*(Y,V)® C idge, H*(Y,V) ® Q, and the right hand side is equipped with

a continuous action of Gg. The subspace H*(Y,V)[n] is stable under the Galois
action and this is the Galois representation py ,.

When n > 2 the construction of Galois representations is much more difficult,
since the symmetric spaces have no natural complex structure. When 7 is essentially
self-dual®® it is possible, with a lot of work, to transfer the problem to automorphic
representations of a unitary group. In this setting, there are complex structures
and algebraic models (Shimura varieties) for the relevant locally symmetric spaces.
This leads to the construction of Galois representations in the essentially self-dual
case (which is due to many people, beginning with Clozel and Kottwitz, cf. the
survey paper [ D).

More recently, amazing progress was made on the construction of Galois repre-
sentations in the general regular algebraic case. Harris, Lan, Taylor and Thorne
[ ] constructed these representations - in fact their work extends to the case
of automorphic representations of GL,(Ar) for any totally real or CM field F.
Scholze gave a different, but related, construction | | which goes further; if

201 reality we may have to choose to either omit one of these primes or to replace Y by an
orbifold.

2lor at least a direct sum of copies of this Galois representation
22¢his is equivalent to asking that each Satake parameter (viewed as a conjugacy class in

PGL,(C)) is equal to its own inverse
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H*(Y,V)®TF, contains a non-zero simultaneous eigenvector for all the Hecke oper-
ators, with eigenvalues given by a homomorphism 6 : T — IF,,, then he constructs a
continuous semisimple representation

Po : GQ — GLn(?p)

with the characteristic polynomial of Frobenius det(1 —tpg(Frob;)) given by apply-
ing 6 to the polynomial Pr;(t) € T[t] for each prime [. The existence of such Galois
representations had been conjectured by Ash | ], and forms an essential input
to Calegari and Geraghty’s extension of the Taylor—Wiles method | ]. The
existence of the Galois representations pg cannot be deduced directly from the con-
struction of (characteristic 0) automorphic Galois representations, since in general
the cohomology groups H*(Y,V) contain torsion elements whose Hecke eigenvalues
are not the ‘reduction mod p’ of systems of Hecke eigenvalues in H*(Y,V) ® C.

When 7 is not essentially self-dual, the strategy to construct the representation
Pr,. is to first construct the essentially self-dual representation p,, &1 ® pX’L as a
p-adic limit of Galois representations pr, with II an automorphic representation of
GL2p+1(A). The summand p,, can then be extracted from this larger representa-
tion. One point worth noting is that the representations pry, can often be found
in the étale cohomology of Shimura varieties, but the representation p,, cannot
(except in certain degenerate situations) — this was observed by Clozel and Harris,
and is expanded on in | ]

The representations p, , are expected to be geometric. This has been verified in

many cases | ]. Work in progress of the author and Caraiani extends these
methods to cover more cases, and there is also unpublished work of Varma using
the construction of | ]. This gives us many geometric Galois representations

which are known to be automorphic, but we seem very far from showing that they
are of geometric origin - once we have left the world of Shimura varieties we have no
systematic supply of algebraic varieties whose cohomology can be directly related
to automorphic representations. At this point it seems fair to say that the evidence
for the Fontaine-Mazur—Langlands conjecture is stronger than the evidence for the
Fontaine-Mazur conjecture.

3.1. Reciprocity for more general p-adic Galois representations? One fea-
ture which makes the world of geometric Galois representations more flexible than
the world of algebraic varieties and their cohomology is that, for a chosen prime p,
we can consider geometric Galois representations inside the larger ambient category
of p-adic Galois representations (we will always assume that our representations are
unramified at almost all primes). A question which lies at the heart of the p-adic
Langlands programme is to describe a comparable larger category of p-adic auto-
morphic representations which contains the algebraic automorphic representations.

There isn’t yet a satisfactory definition of a p-adic automorphic representation,
but there is a natural way to enlarge the p-adic part H*(Y,V) ® Z,, of the coho-
mology groups which we considered above; this is Emerton’s theory of completed
cohomology.

The interested reader will find an excellent introduction to this topic in Emerton’s
ICM proceedings article | ]. We will be very brief here. The definition involves
a tower Y, 11 — Y, — Y, _; of locally symmetric spaces whose limit Y, = yilr Y.
has an action of GL,(Q,) and is a GL,,(Z,)-torsor over the base locally symmetric
space Y = Yy. The mod p™ coeflicient systems V ® Z/p™Z become trivial at some
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level in the tower, so for each m the group
H' (Yo, Z/p"Z) = lim H' (Y, Z/p™Z)

is a smooth representation of GL,(Q,) which interpolates the finite cohomology
groups with varying coefficient systems.

Finally, the completed cohomology groups are defined by taking an inverse limit:

H (Yoo, Zp) = lim H' (Yoo, Z/p™ ).
m

All these cohomology groups get a natural action of the ring of Hecke operators
T. It was proved by Scholze that the mod p or p-adic systems of Hecke eigenvalues
0:T—Fporf:T— @p appearing in completed cohomology have associated mod
p or p-adic Galois representations py. In general, the p-adic Galois representations
will not be geometric, as we can see in the following simple (but perhaps instructive)
example:

Example 3.1.1. In the case of GL1, examples of the spaces Y, are the finite sets
(Z/p"Z)*. We then have HO(Yoo, Z/p™Z) = Cets(Z), Z/p™Z) and HO (Yoo, Z,) =
Ccts(Z; ,Zy), where both source and target in the latter space of continuous func-
tions have the profinite topology.

The Hecke operators are given by ({I)f) (z) = f(lz) for primes [ # p, and their
simultaneous eigenvectors in Ccts(Z;,Zp) ® @p are scalar multiples of continuous

homomorphisms x : Z; — @; . These homomorphisms are all of the form y(z) =

xo(2) (2/[2))", where g is a finite order character, t € Z, and [z] denotes the finite
order element of Z; which is congruent to z modulo p.

Each such character x has a corresponding Galois representation p, : Gg — @;

which is the product of a finite order character corresponding to o and (Xp / [Yp])t.
Here [x,] : Gg — Z,; is the finite order character which is congruent to y, modulo
p. The p-adic Galois representation p, is geometric if and only if ¢ is an integer.

There seem to be only two restrictions on the Galois representations py : Gg —

GL,(Q,) associated to Hecke eigenvalues appearing in completed cohomology:
(1) The py are continuous and unramified at all except finitely many primes.
(2) If ¢ € Gg is a complex conjugation®’, then trpg(c) = 0 if n is even and
trpg(c) € {—1,+1} if n is odd®*. We call representations satisfying this
condition odd (as in, e.g., | , §6]).
The fact that the second condition holds is a theorem of Caraiani and Le Hung
[ ] (and was proved by Taylor [ ] and Taibi | ] in most essentially
self-dual cases). The following version of p-adic Langlands reciprocity seems rea-
sonable (and is suggested by [ ]): all irreducible p-adic Galois representations
satisfying conditions (1) and (2) are associated to Hecke eigenvalues appearing in
completed cohomology. This is essentially completely known for n < 2, but is wide
open beyond that.
How might one approach this kind of reciprocity conjecture? We can first con-
sider what kind of structure we can give to the collection of p-adic Galois rep-
resentations. Looking back at the one-dimensional example, we have a discrete

23
24

i.e. it is the restriction of complex conjugation under an embedding Q — C
in other words the number of +1 and —1 eigenvalues of ¢ are as close as possible
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parameter, the finite order character yg, and for each x( a continuous p-adic family
in the variable ¢ given by multiplying by (x,/ [Xp])t.

A similar parametrisation, which works well in general, is to first fix a semisimple
residual mod p Galois representation (continuous and unramified away from a finite
set of primes S)

p:Gg— GLn(Fp)
and then consider the continuous representations
p: GQ — GLn(Zp)

which lift the fixed p mod my and which are also unramified away from S. Mazur’s
fundamental work on the deformation theory of Galois representations shows that

these lifts biject with local homomorphisms R%’ — Z,, of local W(Fp)—algebras
(W(F,) is a DVR with residue field F,). The lifting ring RE is a complete Noe-

therian local W (IF,)-algebra. We can therefore think of lifts as being parametrised
by a geometric object: the formal scheme Spf (RFD) or, if we prefer, its rigid analytic
generic fibre.

To give a little more feeling for these lifting rings, we mention that the reduced

tangent space at the closed point of Spec(R%’)7 (mPE/(moE —&—m?@)) , can be
4 P

identified with the group of continuous cocycles Z1(Gg,g,ad(p)) valued in the ad-
joint representation ad(p).%°

3.2. Deformations of Galois representations. It may seem more natural to
parametrise isomorphism classes of representations, rather than matrix valued ho-
momorphisms. This is perfectly reasonable, but the corresponding functor is not
always representable by an affine formal scheme. Essentially, we want to take the
quotient of Spf (RﬁD) by the action of PGL,, corresponding to conjugation of lifts.
When p is reducible, this action will usually have non-trivial stabilisers, and so
this quotient is naturally a (formal algebraic) stack. On the other hand, if p is
irreducible, the action is free and the quotient is representable by an affine for-
mal scheme, Spf(R7). The ring Rj; is Mazur’s deformation ring. Its reduced tan-

gent space (m R,/ (Mo + m%%;)) can be identified with the continuous cohomology

group H'(Gq,s,ad(p)).

In the residually reducible setting, an important role is played by pseudorepre-
sentations®® which describe ‘representations up to semisimplification’ with general
coefficient rings (in particular, there is a well-defined characteristic polynomial for
every element of the group being pseudorepresented). The idea goes back to Wiles
[ | and Taylor [ ] and has been generalised by Chenevier | | and
V. Lafforgue | ]. For a fixed p, there is an associated pseudodeformation ring
P parametrising pseudorepresentations which lift the pseudorepresentation associ-
ated to (the semi-simplification of) p. The pseudodeformation ring is closely related
to the ring of invariants (RE)PGL" [ ].

25; e. End(?;?n) equipped with the Gg action given by p and conjugation.
263ometimes known as pseudocharacters or determinants.
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3.3. Fontaine—-Mazur—Langlands and p-adic reciprocity in dimension two.
Now we could try to establish p-adic Langlands reciprocity in two steps. The
first is to show that each p is isomorphic to the residual representation of p, , for
an automorphic representation 7. Such a statement would be a generalization of
Serre’s conjecture, proven by Khare and Wintenberger | ], that when n = 2
every odd p arises from a modular form. The second step is to show that if one lift
of p is automorphic, then every suitable lift of p is associated to Hecke eigenvalues
appearing in completed cohomology. In the case n = 2, this is also known in most
cases, using work of Bockle [ | in the residually irreducible case, and work of
Pan [ ] in the residually reducible case.

Emerton went further and proved many cases of the Fontaine-Mazur—Langlands
conjecture using completed cohomology [ ]. He is able to compare the con-
dition that the lift is geometric with the condition that its associated system of
Hecke eigenvalues appears in the cohomology of a modular curve at finite level (not
just in the limit which defines the completed cohomology groups). This uses work
of Berger, Breuil and Colmez on the p-adic local Langlands correspondence. An
alternative method, proving a similar result (with slightly different technical con-
ditions), and also using the p-adic local Langlands correspondence, is due to Kisin
[ I

Recently, Pan | | carried out a (very extensively) modified version of Emer-
ton’s strategy using Paskiinas’s work on p-adic local Langlands | ], which in-
cludes the residually reducible case. This enables him to prove the Fontaine-Mazur—
Langlands conjecture for all odd two-dimensional geometric p-adic representations
p of G with distinct Hodge-Tate weights (this means that they will be associated
to Hecke eigenforms of weight at least 2), when p > 5. Recent work of Paskunas
and Tung [ ] should permit the extension of this result to small values of p.

The case of equal Hodge—Tate weights deserves its own survey, and is closely re-
lated to the strong Artin conjecture for two-dimensional complex representations of
Gq. There are three different approaches here which have yielded almost complete
results. First, Buzzard and Taylor’s approach using overconvergent modular forms
{l ], more recent developments are surveyed in | ]), second Calegari and
Geraghty’s application of their modified Taylor-Wiles method | ], and most
recently Pan using a description of the contribution of weight 1 overconvergent
modular forms to completed cohomology | .

3.4. Beyond the regular algebraic case. Beyond the regular algebraic case we
only know how to construct automorphic Galois representations in limited situa-

tions. The most classical is the case of weight 1 modular forms | ]. Generalising
this, Galois representations have been associated corresponding to Hecke eigenval-
ues appearing in the coherent cohomology of Shimura varieties | , ]. This

relies on finding congruences to Hecke eigenvalues for regular algebraic automorphic
representations.

The simplest cases where a general construction of automorphic Galois represen-
tations is not known are for Maass wave forms (non-holomorphic modular forms).
A certain family of these forms generate algebraic automorphic representations,
conjecturally with algebraic Hecke eigenvalues and associated (geometric) Galois
representations. In fact they should have associated even’’ Artin representations.

27complex conjugation acts with determinant 1
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4. MODULARITY LIFTING THEOREMS

First introduced as part Wiles’s proof of Fermat’s last theorem, modularity lifting

theorems and the Taylor—-Wiles method | , ] provide a robust technique
for proving that geometric Galois representations are automorphic. The method
was modified and significantly extended by Calegari and Geraghty [ ], so that

now it can, in principle, be applied whenever the target automorphic representations
contribute to the cohomology of a locally symmetric space, or to the coherent
cohomology of a Shimura variety (note that the Maass forms mentioned in section
3.4 do not fall into either of these families of cases). We recommend the recent
survey | ] to the reader who is interested in the development of modularity
lifting theorems and the Taylor-Wiles method since the proof of Fermat’s last
theorem.

In this section, we will sketch what a modularity lifting theorem looks like,
together with an outline of how the proofs of such theorems go. We incorporate
ideas of Diamond, Fujiwara and Kisin which made the Taylor—Wiles method more
flexible.

4.1. A prototype statement. The typical shape of a modularity lifting theorem
is as follows:

Theorem 4.1.1 (Theorem prototype). Suppose p: Gg — GL,(Q,) is a geometric
Galois representation with residual representation p : Gg — GL,(F,). Suppose
moreover that there exists an automorphic representation ™ and ¢ : @p = C with
residual representation p,. , isomorphic to p.

Assume various things about p,p, T, . ..

Then p is automorphic: there exists an automorphic representation o of GL, (A)
with py,, = p.

The ‘lifting’ part of the theorem is that we start from the assumption that the
residual representation p is automorphic and then lift this to deduce automorphy
of the p-adic representation p.

4.2. Modularity lifting and ‘R = T’. In this subsection and the next, we try
to explain the essence of the Taylor-Wiles method (as revised by Diamond and
Fujiwara). For simplicity, we restrict to two-dimensional Galois representations,
but the same ideas can be applied to higher dimensional cases with the proviso
that we restrict to self-dual (up to twist>®) Galois representations [ ]. As we
have mentioned, Calegari and Geraghty extended the scope of the method to go
beyond the self-dual case. We will also assume that p is irreducible, so we have a
deformation ring R;. It is now useful to fix a finite extension E/Q, as a coefficient
field. F is chosen so that the images of p and p,, in Theorem 4.1.1 are contained
in GL,,(Og) (this is possible, at least after conjugating the representations) and
reduction modulo the maximal ideal mg gives the same representation p : Gg —
GL,(kg).

We start out with a module M, finite free over Op, equipped with an action of
a Hecke algebra T C End(M ), generated as an Og-algebra by a commuting family
of Hecke operators. The set up will be such that applying ¢ to the eigenvalues of

28When we talk about ‘self-dual’ Galois representations, we always mean up to twist by a
character, but we will usually suppress this.
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T on M ®op, @p gives (complex) Hecke eigenvalues for a collection of automorphic
representations. For example, we could take M = H'(Y, Zy) for a modular curve Y,
and we would then see Hecke eigenvalues for holomorphic modular forms of weight
two and a fixed level.

We are assuming that we have a fixed residual Galois representation p, which is
automorphic, so it corresponds to a system of Hecke eigenvalues 6 : T — k. We
therefore have a maximal ideal m = ker(#) C T. We can take the localisation My,
which is a direct summand of M. The systems of Hecke eigenvalues in My, @0, @p
come from automorphic representations whose residual Galois representation is iso-
morphic to p. The existence of Galois representations associated to each of these
automorphic representations gives a homomorphism R — Ty, from a deformation
ring (in this case, a complete Noetherian local Og-algebra), which is necessarily
surjective because the characterising property of the automorphic Galois represen-
tations (prescribed characteristic polynomials of Frobenius elements) implies that
the Hecke operators which generate T appear in the image of Rjp.

Moreover, we know (or assume) that the Galois representations associated to
Hecke eigensystems in M, are geometric?’. This means that the map R; = Ty
will factor through a certain quotient RI® of R having the property that homo-
morphisms R%eo — @p correspond to geometric p-adic Galois representations®’.
The quotient is defined using work of Kisin | ].

To prove a modularity lifting theorem, we need only to show that every such ho-
momorphism factors through T,,. Indeed, the Galois representations corresponding
to homomorphisms R%eo — @p are geometric representations p which lift p and sat-
isfy some other conditions going into the definition of R*’. The statement that
every such representation is associated to a Hecke eigensystem 6 : T, — @p, or in
other words to an automorphic representation contributing to My,, is precisely the
statement of a modularity lifting theorem.

So we can re-phrase Theorem 4.1.1 as:

Theorem 4.1.1%*. The Og-algebra homomorphism R%eo — Ty induces a bijection
between Op-algebra homomorphisms RY — Op and Ty, — Og.

We immediately see that to prove this result it is sufficient to show that the map
R¥* — Ty is an isomorphism. We can get by with something a little weaker, for
example that R%eo — T has nilpotent kernel. This is equivalent to asking for the
support of My, as an R2°-module (R™ acts via Tw) to be all of Spec(R2™).

In general, it seems hopeless to directly analyse RJ™ and compare it with Ty
By construction, the Hecke algebra Ty, is a finite local Og-algebra. On the other
hand, at the moment the only general way to show that RZ°” has Krull dimension
1 (as it should, if it is to have a chance of being isomorphic to Ty,) is to first prove
a modularity lifting theorem and then deduce this as a consequence.

4.3. The Taylor—Wiles method. In a sentence, the goal of the Taylor—Wiles
method is to ‘smoothen out’ the deformation ring R2“” by allowing ramification at
auxiliary sets of primes. In favourable circumstances, we will then be able to make
a comparison with a similarly smoothened out version of the Hecke algera Ty,. We

291y practice, we will need more precise p-adic Hodge-theoretic information about these
representations.
30T be more precise, we also need to fix Hodge—Tate weights and an inertial type.
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will give a brief sketch of some of the details here. For the reader who has not
previously been exposed to these ideas, two more recent texts we recommend are
Gee’s Arizona Winter School notes [Gee] and Calegari’s CDM lecture | ].

We recall that R%eo classified geometric representations that are unramified out-
side a finite set of primes S. So for any finite set of primes @, disjoint from .S, we
have a deformation ring B2, which admits R2* as a quotient and classifies the
same representations as R%eo, except for allowing ramification at primes in Q.

In good situations, we will be able to choose sets of primes () such that:

e The deformation rings RS’ admit a surjective map from a fixed ring Roo
(independent of Q).
e Varying the set @), we can ‘fill out’ all of R

The first point is arranged by choosing primes @ so that a ‘dual Selmer group’,
related to the reduced tangent space of RJC by global Tate duality, vanishes.
This allows the dimension of the reduced tangent space to be computed by a local
calculation. Being able to choose suitable primes requires an assumption that the
image p(Gyyc,)) is sufficiently large (usually it suffices for p|c,, ., tobe irreducible).

The second point is achieved by choosing different sets of primes @Q = @,, for
every n > 1 which satisfy

e ¢ =1mod p"
p(Frobg) has distinct eigenvalues

for each ¢ € @,,, and then taking a limit over n to obtain a ring which we will call
RP2t<h - The limit has to be taken in a rather unnatural way, since there are no
natural maps between the Q as n varies. Scholze re-interpreted this in terms of
ultraproducts | ] Smce each RS is quotient of Ru, RP* is too. To show
that we do indeed fill out all of R, requires a lower bound on the size of RPtch —
this is deduced from an input from the side of automorphic forms, which we will
come back to.

The conditions on each set of Taylor Wiles primes @, make it easy to under-
stand the difference between RS 5.0, AN nd Rg . For each ¢ € @, when we restrict
a representation lifting p to the local decompomtlon group G, , we obtain a direct
sum of characters x1 @ x2 and the restriction to the inertia subgroup I, C G,
factors through the tame fundamental character I, — F; . This means we can
equip R, with the structure of a Su, = Op[[Z}]]-algebra, where r = 2|Q,|; this
structure depends on a choice of generator of (the maximal p-primary quotient of)
F for each ¢ € Q. The Og-algebra S, (isomorphic to a power series ring over
Op) comes with an augmentation S, — O, and quotienting out by the kernel of
the augmentation gives an Op-algebra RY, ®s., Op which is isomorphic to RZ*.

On the automorphic side, we can also allow ramification at auxiliary primes by
modifying the level structure at these primes. It can be arranged that we have
Hecke modules Mg, , for each n, which are simultaneously S..-modules and R g, -
modules (the latter ring acts via a Hecke algebra, S, acts via Hecke operators at
the primes ¢ € Q). In parallel to the isomorphism RS0 ®s._ Op = RS on the
Galois side, we have Mg, ®g._ Op = My. A crucial property of our Hecke modules
is that when we take the limit over n, we get a finite free Soo-module M,. This

limit also has an action of RP**“", coming from the action of RS’ on Mg, for each
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n. There is an isomorphism RP¥*! @g  Op = RZ? and a commutative diagram:

Rpatch Ends_ (M)

| J

R%eo E— EndoE (Mm) = EndoE (Moo XS OE)

Now the crucial numerical coincidence we will need to arrange is
dim(Re) = dim(S)-

Assuming this, we note that both the depth and dimension of M, as an S,.-module
are equal to dim(Ss) = dim(Rs ). The depth and dimension are unchanged by
viewing M., as an R, module (the action is via RP*M). So M, is a maximal
Cohen—Macaulay R..-module. In particular, it follows from | , Chapter 0,
Proposition 16.5.4] that its support in Spec(R+) is a union of irreducible compo-
nents.

Suppose we know that Spec(R) is irreducible. Then M, has full support in
Spec(R+.) and the quotient map R, — RP*! has nilpotent kernel. We can deduce
that M ®g,, Op = My has full support in Spec(RJ™).

The situation is even better if R, is a regular local ring. We can then deduce
from the Auslander—Buchsbaum theorem that M is free over R, therefore M, is
free over Ro ®s,, Op. Since this ring acts on My, via its quotient B3, we deduce
that My is free over R2®. In particular, we have an isomorphism RJ® = Ty,
and we deduce that My, is free over the Hecke algebra Ty,. If Roo[1/p] is a regular
domain, a similar argument shows that R2“[1/p] 2= Tw[1/p].

4.4. Presenting R’°) as a quotient of R. We didn’t say anything about what
we take for the ring R.,. For the original version of the Taylor—Wiles method, it
is a power series ring Og[[z1, ... z,]], with g equal to (an upper bound for) the di-
mension of the reduced tangent space of R2). Controlling the size of these tangent
spaces, which are subspaces of the Galois cohomology group H'(Gg,suq,ad(p)), re-
quires setting up the correct local conditions at primes in S and using the Greenberg—
Wiles formula | , Proposition 1.6]. This is particularly delicate at p.

Kisin introduced a more flexible method in [ ], which instead considers
RJ) as an algebra over a local deformation ring and considers the relative tangent
space.

For example, assume for simplicity that p, := ﬁ|G@p is absolutely irreducible.
We have a local deformation ring R; which classifies lifts of p), up to isomorphism,
and a natural map R; — Rj corresponding to restricting representations to Gq,-

The relative tangent space (mRﬁ /(m Ry, T m%ﬁ)) can be identified with the kernel
of the map
H'(Gg,s,ad(p)) — H'(Gy,,ad(p,))-
Supposing this kernel has dimension g,, we deduce that R; is a quotient of the
ring Ry [[x1,...,2g,]]. By definition, RZ™ is a tensor product Ry ®R;, R, and
P
therefore R is a quotient of Re = RY°[[x1,...,24,]]. We can then hope to
p
deduce modularity lifting theorems from knowledge about R%eo. In particular, if
P

Spec(R%io) is irreducible, then Spec(R) is irreducible and we are in good shape
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to apply the argument sketched in the previous subsection. This variant of the
Taylor-Wiles method looks like some kind of ‘local-to-global’ principle.

4.5. Adjoint Selmer groups. If p : Gg — GL,(F) is a geometric Galois repre-
sentation with absolutely irreducible residual representation p, it defines a prime
ideal p, of the deformation ring RZ*, and the tangent space ((po/p2) ® n(pp))*
is a finite dimensional FE-vector space, which can be identified with a subspace
H; (Gg.s,adp) C H'(Gg.s,adp) of the Galois cohomology group. This subspace,
defined by Bloch and Kato, corresponds to extensions of the trivial representation
by adp which are geometric. In fact, this subspace is expected to vanish: conjec-
tures of Bloch and Kato predict that the dimension of this Selmer group is equal to
the order of vanishing of an adjoint L-function at s = 1. When p is automorphic,
this L-function is non-vanishing at s =1 | , Proposition 3.6].

Moreover, a non-split geometric extension of the trivial representation by adp
is also ruled out by the ‘yoga of motives’ (since there should be no non-trivial
extensions between motives of the same weight).

If we can prove RZ’[1/p] = Tw[1/p] (as discussed above, this can be proved
using the Taylor-Wiles method in certain cases), then it follows that RZ“[1/p] is
a finite F-algebra, and the tangent space H, gl(GQS, adp) vanishes for all represen-
tations corresponding to homomorphisms RZ* — E. Allen [ | was able to
generalise this to prove vanishing of an adjoint Bloch-Kato Selmer group for self-
dual automorphic Galois representations p with just an assumption that the image
of p(Gyyc,)) is sufficiently large.?! The author and Thorne recently proved a sim-
ilar vanishing result replacing this large image assumption with a (much milder)
large image assumption on the characteristic 0 representation p itself | ]. We
use an idea due to Lue Pan (it appears in the work we have already mentioned on
the Fontaine-Mazur conjecture in the residually reducible case) which allows us to
carry out a version of the Taylor—Wiles method up to a bounded p-power torsion
error term, which disappears when we invert p. Thorne subsequently improved our
result to only require irreducibility of plg,, ¢yoo) [ ]. Vanishing of adjoint Selmer
groups is an essential input to the two different approaches to proving automorphy
of Galois representations which appear in [ , ], and which are discussed in
the next section.

5. SYMMETRIC POWER FUNCTORIALITY

In what remains of this survey, we will discuss some of the ideas of the works
[NTa, ] which establish symmetric power functoriality (Conjecture 2.6.1) for
holomorphic modular forms. Crucial inputs come from | L ] and | ].

We recall that for a Hecke eigenform f (of weight > 2 and without CM), we
want to show that Sym" ps, is automorphic for some choice of p and «. Modu-
larity lifting theorems (e.g. from | ]) can be used to prove automorphy if
we know that the residual representation Sym” p, , is automorphic, as long as this
residual representation has big enough image. There is some tension here, because
we have no idea how to prove that a ‘generic’ (n + 1)-dimensional mod p represen-
tation of Gg is automorphic. Potential automorphy (e.g. Theorem 2.6.2) involves

31The Selmer group has to be modified so that it is equal to the tangent space for a self-dual
deformation space.
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dealing with this by finding an extension field F//Q over which a particular residual
representation becomes automorphic.
However, often the representation Sym™ Py, will not have big image. For exam-
ple, when p < n, it is always reducible®. In a series of three papers | , ,
], Clozel and Thorne were able to exploit this reducibility to prove:

Theorem 5.0.1 (Clozel-Thorne). Sym" py, is automorphic for n < 8.
For example, if we let p = 7 then we have an isomorphism

Sym8 ﬁf,b = (Upf,L & pf,L) @ (det pf,L)2 02y Sym4 pf,b'
Here the subscript ¢ denotes composition with the Frobenius automorphism on the
coeflicients of the representation.

Tensor product functoriality (in this case due to Ramakrishnan), the Sym* lift-
ing, and Langlands’s theory of Eisenstein series now implies the automorphy of this
residual representation. It is then possible to apply a modularity lifting theorem
for a residually reducible representation, such as the main result of [ ] (this
was later generalised in | ). To apply such a theorem, Clozel and Thorne
must construct a congruence to a cuspidal automorphic representation (satisfying
a ramification condition at an auxiliary place — this is the level raising congruence
alluded to in their title). The strategy explained in | | establishes symmetric
power functoriality as a consequence of a family of (still conjectural) cases of tensor
product functoriality and the existence of suitable level raising congruences.

5.1. Relative modularity lifting. In each of [NTa, ] we introduce a new
method for proving the automorphy of a symmetric power representation Sym” py,, .
Crucially, neither method requires the (n + 1)-dimensional residual representation
Sym"p;, to be irreducible. We will start by explaining the method in [ 1,
because the main technical result of that paper can be stated as a modularity
lifting theorem following the template of Theorem 4.1.1 and the idea of proof is a
variation of the Taylor—Wiles method. We first state a version of this main technical
result, for representations of Gg (a similar statement for representations of Gp with
F totally real is proven in [ D.

Theorem 5.1.1 (N-Thorne). Suppose f, f' are two cuspidal Hecke eigenforms of
weight 2. Fiz a prime p, an integer n > 1 and an isomorphism ¢ : Q, — C, and
suppose the following conditions hold:

(1) There is an isomorphism p;, = Py .

(2) Neither f nor f’ has CM and neither of the Hecke eigenvalues ™ (a,(f)), ™ (ap(f"))

18 a p-adic unit.

(8) For each prime | dividing the level of f or f', w(f); is a character twist of
the Steinberg representation if and only if w(f'); is.

(4) There exists a > 1 such that p* > 2n — 1 and there is a sandwich

PSLy(Fpe) C Proj 7, (Gg) C PGLy(Fype),
up to conjugacy in PGLy(F,).**

32since Sym” ?127 is a reducible representation of GL2(Fp)
33Proj Pr,.(Gg) denotes the image of p;,(Gg) in PGL2 (Fp). Tt follows from Dickson’s classi-
fication of finite subgroups of PGL2(F,) | , Theorem 2.47] that if Projp; ,(Gg) contains a

conjugate of PSLa(F ;) for some p® > 2n — 1, then condition (4) is satisfied.
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(5) Sym"™ py:, is automorphic.

Then Sym" py,, is automorphic.

Note that although this theorem includes the ‘big image’ condition (4) which
depends on n, the representation Sym™ Py, will be reducible for all n > p. Let’s
indicate where each of the assumptions in this theorem comes from:

e Condition (1) is what we expect in any modularity lifting theorem. It also
implies that Sym" p;, = Sym" p,. ,.

e Condition (2) allows us to work with a local deformation or lifting ring R%:O
which is a domain (thanks to a theorem of Kisin [ D.

e Condition (3) ensures that we can work with deformation rings for p-adic
representations of [-adic Galois groups which are also domains.

e Condition (4) ensures that Sym" p,, (Gg) contains a regular semisimple
element of GL,,+1(F,). This is used when choosing sets of Taylor-Wiles
primes.

e Condition (5) is again what we expect in any modularity lifting theo-
rem. We are propagating automorphy along the congruence Sym" py, =
Sym" pp, mod p.

To prove this theorem, we avoid applying the patching method directly to the
(n + 1)-dimensional representations lifting Sym" 5 . Instead, we patch in the
two-dimensional case, constructing a quotient RP*M of R, and a finite free S.-
module M, as described in §4.3. However, at the same time as doing this we take
compatible limits for deformation rings and modules of automorphic forms in the
(n + 1)-dimensional setting.

For the deformation rings, since Sym” Py, may be reducible, we have to work
with a pseudodeformation ring Pg> . Bp. (parametrising self-dual geometric pseu-
dodeformations). Going from a two-dimensional representation to its nth symmet-
ric power naturally induces a map

. pgeo geo

n
Sym Sym™py, Py’

The output of our ‘relative’ patching method is the following:

(1) Soc-algebras Pratch RPa*h with isomorphisms PP*" @5 Op = P40, 7,
and RP?*M @g  Op = R%io.

(2) A surjection Ry — RPaéCh, where R is a domain with dim(R.) =

dim(Ss).
(3) A Pra*hmodule, N, and a RP*°M_module M, both finite free over
S. The PI*° -module N, ®gs. Op is isomorphic to a Hecke mod-

Sym™ by,
ule Ngymn» m Which contains the Hecke eigenvalues of certain self-dual auto-
morphic representations of GL,,1(A). The R%io -module My, ®s._ Op is

isomorphic to M, as before.
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(4) The maps PPt — P{0 ., 5,, and Rpateh RZ"° coming from (1) fit into

a commutative square of Og-algebra maps:

(5.1.1) ppatch ______, ppatch

!

Psmop,, — 15,

Note that we do not attempt to find a surjection from P,, — PP°h with

dim(Ps) = dim(Ss). This would involve controlling the dimension of the re-

duced tangent space of a pseudodeformation ring for Sym"p;, (e.g by allowing

ramification at auxiliary primes to force vanishing of a dual Selmer group), which
is what we are trying to avoid.

We have z, 2’ € Spec(R%joL) prime ideals corresponding to the Galois represen-

tations py,, psr,.. Pulling back by Sym”, we get y,y" € Spec(Pg;, ﬁfL)' Since
Sym” ps , is assumed automorphic, we will be able to arrange things so that y/ is
in the support of the ‘automorphic module’ Ngym» m.

The localisation P, of P{0. 5,, af y' is a Noetherian local E-algebra whose
tangent space at the closed pointﬁis a subspace of a Galois cohomology group,
and the main theorem of | ] shows that this tangent space vanishes. In other
words, P, is simply E!' Of course this is what we expect if P70 . By is isomor-
phic to a Hecke algebra which acts semisimply on characteristic 0 vector spaces of
automorphic forms.

These preparations leave us ready to explain the (rather simple) technical heart
of the proof of Theorem 5.1.1. In a few words, we prove that the support of N
in Spec(PP**I) contains the image of every irreducible component of Spec(RP*<h)
passing through 2’ (thought of as a point of Spec(RP**“I) using the closed immersion
Spec(R%‘;oL) < Spec(RPath)). In fact, the usual Taylor-Wiles method shows that

Spec(RP*h) is irreducible, so we can move from 2’ to z and deduce that y is also
in the support of No. This shows that Sym™ p;, is automorphic.

The key step in the proof is to use vanishing of an adjoint Selmer group | ]
to show that y’ defines a regular point of Spec(PPat<h).

Proposition 5.1.2. The prime ideal y € Spec(PSg;;nﬁf ) is in the support of

Ngymnm. As a consequence, Sym" py,, is automorphic.

Proof. By the arguments we explained in section 4.3, since R, is a domain, we
know that M, has full support in Spec(Rs) and the quotient map Ro, — RP¥h
is an isomorphism.

The same argument tells us that N, is a Cohen-Macaulay PP**P'-module. This
means that its support in Spec(PP*h) is equidimensional of dimension dim(S,.).
Writing 3/ for the image of 3’ in Spec(PP*h), we know that v/ is in the support
of No. We are going to show that (PpatCh)yéo is a regular local ring of dimension
dim(Ss) — 1. On the one hand, we have a lower bound for the Krull dimension of
(PpatCh)y:X), as we now explain. Since y/_ is in the support of N it is contained in
an irreducible subset of Spec(PPal) of dimension at least dim(Sx,), corresponding
to a minimal prime p,,;, € Spec(PPatch),

As PP¥h g a catenary local ring (it is a quotient of a power series ring over
Og), we deduce that there is a chain of prime ideals refining P, C y5, C Mppaten
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of length at least dim(Ss). Since y/, has height 1, it follows that there is a chain
of prime ideals joining p,,;, and y. with length at least dim(S,) — 1. This shows
that (PP#*h) , has dimension at least dim(S) — 1.

On the other hand, quotienting out by the augmentation ideal of S, in (PPatCh)yéo
(i.e. quotienting out by dim(S.) — 1 variables) brings us to P, which, as we re-
marked above, is just the coefficient field E. So the maximal ideal in (PP**h),,
can be generated by dim(S.,) — 1 elements. This shows that (PP*"),, is a regular
local ring of dimension dim(Ss) — 1.

It follows that there is a unique irreducible component of Spec(P containing
ylo, and it has dimension dim(Ss). Since the support of Ny is equidimensional
of dimension dim(Ss), this irreducible component is contained in the support of
Noo. Because Spec(Rs) = Spec(RP*) is irreducible, the image of Spec(RP*!) in
Spec(PP*h) " which contains 3/, is contained in the support of N,,. This implies
that the image yo, of y in Spec(PP*h) is contained in the support of N. By
Nakayama’s lemma, this is equivalent to y being in the support of Ngym» m. ([l

patch)

5.2. The eigencurve. Our second method for proving automorphy of symmetric
power representations is formally similar to Theorem 5.1.1, but propagates auto-
morphy of symmetric powers along finite slope p-adic families of modular forms.
We have already seen one way to p-adically interpolate systems of Hecke eigenvalues
for modular forms — Emerton’s completed cohomology. Earlier work of Hida and
Coleman used different methods to interpolate (respectively) ordinary and finite
slope modular forms. A Hecke eigenform f is ordinary if a,(f) is a p-adic unit and
finite slope if a,(f) # 0.**

Coleman and Mazur | ], and, in more generality, Buzzard | ] con-
structed p-adic analytic spaces called eigencurves, interpolating Hecke eigenvalues
arising from finite slope modular forms.

Fix a level N and a prime p 1 N. An eigencurve is a p-adic analytic space
Ep(N), equidimensional of dimension 1, containing a Zariski-dense set of points
corresponding to pairs (f,ap), f € Sp(I'1(IV)) a Hecke eigenform, «,, one of the
roots of X2 — a,(f)X +ep(p)p*~1L.

More generally, if f € Si(I'1(INp")) is a Hecke eigenform, for some r > 1, with
non-zero U, eigenvalue a,, = a,(f), there is a corresponding point (f, a,,) of E,(N).
We call all these points coming from modular forms the classical points of E,(N).
The space &,(N) comes with a map w : £,(N) — W to a weight space W which
parametrises p-adic characters of Z;. The image w(f,ap) of a classical point is
determined by weight and the p-part of the character of f:

w(f,0p)(x) = 2" Zep,p (@),

The space W is very simple: it is a finite disjoint union of p-adic open unit
discs. When p is odd the connected components correspond to the restriction of
the character to p,—1 C Z and a co-ordinate on the disc is given by evaluating a
character at 1 + p.

To explain more about the eigencurve, we’ll describe its construction using de-
formation rings of Galois representations. We fix a mod p (semisimple) Galois
representation p : Gg — GL2(F,) which we assume arises from a Hecke eigenform
of level N.

34The slope is the p-adic valuation of ap(f)-



24 JAMES NEWTON

We have a pseudodeformation ring P, parametrising pseudodeformations of p
which are unramified at primes not dividing Np, and we can construct from this a
p-adic analytic space X7 (the construction is due to Berthelot and is described in
[ ]?9). Considering a pair (f,a,) as above, we get a ‘classical point’

(pr,w(f,ap),0p) € X5 X W X Gy

if py has mod p reduction isomorphic to p. Taking the Zariski-closure®® of the
classical points gives a closed analytic subspace £,(N); C X5 X W x G,,. Taking
a disjoint union of the &£,(NN); over modular (level NV) residual representations p
gives one construction of the eigencurve &,(V). It is entirely unclear from this con-
struction that £,(N) has dimension one! This is proved using Coleman’s theory of
families of overconvergent modular forms, which gives an automorphic construction
of the space £,(N) and in particular proves that £,(NN) is quasi-finite and flat over
W.

Each point z € £,(N)5 C X5xW x Gy, has an associated Galois pseudorepresen-
tation, coming from the image of z in X5. Supposing that this pseudorepresentation
is irreducible, we get a continuous representation

p. 1 Gg — GLy(C,).

Kisin proposed an extension of the Fontaine-Mazur conjecture which would char-
acterise those Galois representations coming from points of the eigencurve. In
particular, they should be points where the local Galois representation pZ|GQp is
trianguline.

5.3. Trianguline representations and the eigencurve. To say something about
these trianguline representations and their connection with the eigencurve, we first
consider the p-adic analytic space X5, associated to the pseudodeformation ring
P; of the local residual representation p, = p|g,,. Each classical point (f, ay) of
Ep(IN)5 gives us a point of X5 X W x Gy, where a, is an eigenvalue of the Frobenius
operator on the crystalline Dieudonné module Deis(pfla,,) and w(f, ;) can be
read off from det(py|g,, ) using local class field theory. This means we can define
(purely locally) a subset of points in X5, X W x G,,, coming from certain de Rham
lifts p of Py and a non-zero eigenvalue of Frobenius on D.s(p); this subset will
contain the image of all the classical points in £,(N)5. Taking a Zariski-closure, we
obtain a closed analytic subspace X%Zi C X5, x WxGyy, with a map E,(N)z — Xg:.

As with the eigencurve, the definition of the space X%’: by a closure construc-
tion is not especially illuminating. With much more work the points of X%:i can be
intrinsically characterised as representations which are trianguline (in the sense of
Colmez | ]); this follows from a result of Kisin | | on analytic continuation
of crystalline periods. The simplest family of trianguline two-dimensional repre-
sentations are those which are reducible. More generally, there are representations
which are irreducible but which become reducible when passing to a category of
(¢, T')-modules over a Robba ring.

35For example, the p-adic analytic space associated to the formal power series ring Z[[t]] is
the open unit disc.
36T hat is, the smallest closed analytic subspace containing these points.
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Having constructed the local trianguline space, we can define a global version
using a fibre product:

tri . tri
X7 = (X5 x W x G) X X5 xWXGr, Xﬁp .

We then have a closed immersion £,(N); — X%”. This is the analogue of the
closed immersion Spec(Tw) < Spec(R5™) which we consider when thinking about
modularity lifting.

Kisin’s extension of the Fontaine-Mazur conjecture implies that £,(N) is es-
sentially isomorphic to X%” — more precisely, it will be a union of irreducible
components in X%” which we can describe by imposing extra conditions on the
ramification at primes dividing N in the Galois representations parametrised by
X5. Emerton’s approach to the Fontaine-Mazur conjecture also proves this state-
ment in many cases [ ].

5.4. Analytic continuation of modularity. In this subsection we will sketch
the strategy used in [N'Ta] to prove the following:

Theorem 5.4.1 (N-Thorne). Suppose f,f' are two cuspidal Hecke eigenforms,
both with weight at least two and a common level N. Fiz a prime p 1 N and let
ap and o, be roots of X? —ay(f)X +p* "tep(p) and X2 — ap(f)X +pFr e (p)
respectively. Fix an integer n > 1 and an isomorphism ¢ : @p = C, and suppose the
following conditions hold:

(1) (f,ap) and (f',a;) lie on a common irreducible component of E,(N).

(2) Neither f nor f' has CM and neither of the Hecke eigenvalues t=(a,(f)), ™ (ay(f"))
s a p-adic unit.

(3) The conjugacy classes Sym™ (w(f),) and Sym™ (w(f'),) are regular (i.e. there
are n + 1 distinct eigenvalues).

(4) Sym" ps , is automorphic.

Then Sym" py¢,, is automorphic.

A few remarks on the theorem:

(1) The first condition automatically implies that p;, =5 ,. So we can view
this theorem as another ‘relative modularity lifting theorem’, but with a
stronger condition on the relationship between ps, and py,. One signifi-
cant gain, in comparison to Theorem 5.1.1, is that we have no condition on
the image of py,.

(2) To make condition (3) more explicit, note that Sym" (7 (f),) is regular if and
only if, writing a;, and 3, for the two roots of X2 —a,(f)X +p* ~Les(p), we
have (a,/Bp)" # 1 fori=1,...,n. An amusing argument with congruences
mod 5 and 7 shows that a level 1 Hecke eigenform satisfies this condition
for all n when p =2 | , Lemma 3.4].

(3) The precise statement in our paper corresponding to this result ([ , The-
orem 2.33]) is a bit more general, allowing classical points with p dividing
the level®’”. We also prove a version of the theorem where f and f’ are
t-ordinary, in other words when ¢! (a,(f)) and t~!(a,(f)) are p-adic units.

3TThis generality is important when we apply the theorem to establish automorphy of sym-
metric powers of level 1 eigenforms.
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Proof. The idea of proof is formally similar to the proof of Theorem 5.1.1. How-
ever, we do not (directly) use Taylor-Wiles patching at all.*® Instead the role of
the patched deformation ring RP2*? is played by the space of trianguline Galois
representation XX t”L and the patched module M, is replaced by the eigenvariety

Ep(N)z e . The ring S, controlling ramification at auxiliary primes is replaced by
the Weight space W.

In other words, instead of allowing ramification at auxiliary Taylor—Wiles primes
and mapping the Galois representations pf, and ps, to points of an irreducible
scheme Spec(R, ), we enlarge the class of local Galois representations we permit at
the prime p and map pr. and py, (with the extra data coming from the choice of
refinements «a,,, a;,) to points of X5 tri - Assumption (1) in the theorem means that
these points lie in a common 1rreduc1ble subspace.

We need versions of &,(N)g, , and X “;i which will interpolate self-dual auto-
morphic representations and Galois representations lifting Sym™ P, We denote
these by &, symn s e and Xégfmn Br. respectiely. They fit into a commutative dia-
gram with closed immersions for the vertical maps from the automorphic to Galois
spaces:

5P(N)ﬁf,L Ep,Symn Pro
[ b
. Sym™ .
tri tri
Xﬁf,L XSym" Pi..

There are several different ways to construct the eigenvariety &, symns o For
example, using Hansen’s general construction for cohomological automorphic rep-
resentations of reductive groups | ]. The construction which was most con-
venient for us was to change contexts so that we are working with automorphic
forms on definite unitary groups of rank 2 and n + 1, and then use Emerton’s
representation-theoretic eigenvariety construction | ] as in the work of Breuil,
Hellmann and Schraen | ]

The trianguline space Xsymn parametrises n + 1-dimensional, (self-dual) p-

P
adic representations of G, llftlngffhe fixed pseudorepresentation Sym" p,,. It is a
closed analytic subspace of a product of spaces Xsymn» 5, X7, where T parametrises
characters of the diagonal torus in GL,,1(Q,).*” Its construction and the existence
of a closed immersion from the eigenvariety in this higher rank case has been es-
tablished in different contexts by people including Bellaiche and Chenevier | 1,
Hellmann | ], Kedlaya, Pottharst, and Xiao | ] and R. Liu [ ]. In
fact, this is usually done under the assumption that Sym" p;, is irreducible (al-
though Hellmann’s preprint | ] does not include this assumption). For this
reason, we don’t literally use a space Xé;inn Br. in | ], and instead work with an

tre

open neighbourhood of X&ymn 5, at a point with an irreducible associated Galois

representation. This means that the difference between pseudorepresentations and

38We do crucially use our results [ | on vanishing of adjoint Selmer groups which in turn
are proved using the Taylor—Wiles method.

39Note that the W x Gy, which appears in the two-dimensional case can be viewed as pareme-
terizing characters of Q.
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representations can be safely ignored. The idea of the argument is easier to explain
with a global space Xé;imn 7, SO we will do this here.

To complete the proof, foilowing the pattern of the proof of Theorem 5.1.1, we
first need to show:

(REG) X& 7, is regular of dimension equal to dim (& symn 5, ,) at the point y’

associated to Sym" pys, and the refinement a,.

We will come back to the proof of this later. A consequence of (REG) is that
there is a unique irreducible component C' of Xéryzmn Br. passing through ¢, and
it has dimension equal to dim(&, symn f) It contains an irreducible component
of & symn 5, ,, and since the eigenvariety is equidimensional we see that the closed

tre

Sym" 7,., identifies C' with an irreducible component of

Proo the
is also contained in the irreducible component C'. We

immersion &, symnp, > X

&Ep,symn 3, ,- Since x and 2’ are points of an irreducible subspace of £,(N)

tri
Sym™p;,

deduce that y is a point of the eigenvariety &, symn 5 5o To conclude, we need to
show that y is in fact a classical point. If the slope v,(cy,) is sufficiently small,
this follows from a ‘small slope implies classical’ theorem generalising Coleman’s
theorem for overconvergent modular forms. However, since we are assuming f is
non-ordinary, for big enough n we will not be able to apply this result. Instead
we use a slightly more precise classicality theorem which follows from ideas of Ch-
enevier and Breuil-Hellmann—Schraen | , ], and shows that a point of
Ep.Symn 5 I with a de Rham associated Galois representation which is sufficiently
generic (‘every refinement in non-critical’) is classical. The idea goes back to Cole-
man, who proved that an overconvergent eigenform f of weight & > 2 which is not
classical has a ‘companion form’ in weight 2 — k with Hecke eigenvalues equal to a
twist of those of f — more precisely, the eigenvalue of T} for I { Np is I**a;(f).
Supposing that p; is de Rham, the existence of the companion form forces the
representation ps to have a special property: the local representation pf|G@p is a
direct sum of two characters.

Finally we go back to the proof of (REG). This follows an idea due to Kisin in
the two-dimensional case | ], which was generalised by Bellaiche and Chenevier
[ ]. Again the vanishing of a Bloch-Kato adjoint Selmer group is crucial. This

is used to give an upper bound for the dimension of the tangent space of Xé;lmn By
£40

at a classical point™. On the other hand, the existence of the closed immersion j
gives a lower bound on the dimension of the local ring at this point. Since these
bounds coincide, we get regularity. d

image y of x in X

5.5. Symmetric power functoriality: the rest of the proof. Theorems 5.1.1
and 5.4.1 combine to allow us to prove:

Theorem 5.5.1. Let n > 2 be an integer and suppose that the nth symmetric
power lifting exists for at least one cuspidal Hecke eigenform of level 1. Then the
nth symmetric power lifting exists for every cuspidal Hecke eigenform without CM
and of weight k > 2.

Proof. The argument proceeds in three steps. Firstly we show that automorphy of
the nth symmetric power for one level 1 cuspidal Hecke eigenform implies automor-
phy of the nth symmetric power for all level 1 cuspidal Hecke eigenforms. To prove

40satisfying the regularity assumption 3
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this, we are going to apply Theorem 5.4.1, but for this to be of any use we need
some information about the irreducible components of an eigencurve. For this rea-
son, we take p = 2 and use a beautiful explicit description, due to Buzzard—Kilford
[ |, of a large part of the eigencurve (1). This allows us to show that any two
classical points on the eigencurve £(1) can be connected by a sequence of moves
of two types:

e moving along an irreducible component

e jumping from a classical point (f,«) to (f,3) when f has level 1 and «, 3
are the two roots of X2 —ax(f)X +e€7(2)2*~1; more generally, we can jump
from (f, @) to its ‘twin’ point (f’,5) where f’ is a character twist of f. In
either case, vy() + vp(8) = k — 1, where k is the weight of f.

It is clear that the second kind of move preserves automorphy of symmetric
powers. Moving along irreducible components preserves automorphy of symmetric
powers by Theorem 5.4.1. So these moves allow us to propagate automorphy of the
nth symmetric power to all level 1 eigenforms.

For the second step, we apply a version of Theorem 5.4.1 where p is allowed to
divide the level N of the modular forms. This allows us to extend automorphy
of the nth symmetric power to eigenforms of squarefree level, or more generally to
those eigenforms whose associated automorphic representation has no supercuspidal
local factor. These are precisely the eigenforms which (after possible twisting by
a Dirichlet character) appear as classical points of eigencurves. A technical point
arising here is that we need to deal with a version of the regularity condition in
Theorem 5.4.1 — in general it is not known if the polynomial X? — a,(f)X +
p*7~les(p) has distinct roots (cf. [ ). To do this, we use the Taylor-Wiles
method to construct a congruence modulo a large auxiliary prime to an eigenform
which does satisfy this regularity condition and then use the automorphy lifting

theorem of | ] to reduce to the regular case.
Finally, for the third step, we need to deal with eigenforms with supercuspidal
local factors. We can reduce to the case of weight 2 using | ]. Suppose

p is a prime where our eigenform f has a supercuspidal local factor. We find a
congruence mod p between f and a non-ordinary eigenform g with a (ramified)
principal series factor at p. Using the modularity lifting Theorem 5.1.1 we can then
deduce automorphy of Sym™ ps, from the automorphy of Sym™ p,,. This time we
need to ensure that the condition on the image of our mod p Galois representation in
Theorem 5.1.1 is satisfied. To do this, we follow an idea of Khare and Wintenberger
which they apply to deduce Serre’s conjecture in general from the level 1 case,
using congruences (modulo a prime [ # p) to modular forms with ‘good dihedral’
ramification at auxiliary primes which forces them to have large image. O

With this theorem in hand, it remains to find one example (for each n) of a
level 1 cuspidal Hecke eigenform for which the nth symmetric power exists. The
strategy here is similar to Clozel and Thorne’s, but instead of using reducibility of
the mod p Galois representations for small p, the idea (suggested by Clozel) is to
consider modular forms which are congruent to a CM form # mod p, which means
that the associated mod p Galois representations are dihedral (induced from Gg
for K/Q the imaginary quadratic field relevant for ). In particular, the symmetric
powers of these Galois representations decompose into 1- and 2-dimensional pieces,
so it follows from Langlands’s theory of Eisenstein series that they are associated to
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a (non-cuspidal) automorphic representation 7, (6). There is a great deal of work
needed to complete the proof from here, but the ingredients include:

Modularity lifting theorems allowing residually reducible Galois represen-
tations from [ | and its sequel | ].

A construction of congruences between the Eisenstein series 7, (0) and cus-
pidal automorphic representations with appropriate ramification at an aux-
iliary prime. These level raising congruences are needed in order to apply

the lifting theorem of | ]. One family of level raising congruences
comes from the work of Anastassiades and Thorne | ].
Another kind of level raising result is established in [NTa], and takes up a

significant part of that paper. The construction is founded on the unipotent
cuspidal representation of a finite unitary group in three variables, and a lot
of results from the local and global theory of automorphic forms are applied,
including Moeglin’s classification of discrete series representations of p-adic
unitary groups [ |, base change for automorphic representations of
unitary groups (proved using Arthur’s simple trace formula | ]) and
results of Lust and Stevens | ] which allow us to understand some of
the local behaviour of this global base change in terms of Moeglin’s classi-
fication.
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