List Colouring

Given: A graph G and a list $L(v)$ of available colours for each $v \in V(G)$.

Goal: To find an acceptable colouring, i.e., a colouring f of the vertices such that
1 adjacent vertices receive different colours (f is proper), and
2 $f(v) \in L(v)$ for all $v \in V(G)$.

Problem: Find the list chromatic number $\chi^\ell(G)$: $\chi^\ell(G)$ is the minimum k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu
A Proof of a Conjecture of Ohba
Given: A graph G and a list $L(v)$ of available colours for each $v \in V(G)$.
Given: A graph G and a list $L(v)$ of available colours for each $v \in V(G)$.

Goal: To find an acceptable colouring, ie. a colouring f of the vertices such that
List Colouring

Given: A graph G and a list $L(v)$ of **available** colours for each $v \in V(G)$.

Goal: To find an **acceptable colouring**, ie. a colouring f of the vertices such that

1. adjacent vertices receive different colours (f is proper), and
List Colouring

Given: A graph G and a list $L(v)$ of **available** colours for each $v \in V(G)$.

Goal: To find an **acceptable colouring**, ie. a colouring f of the vertices such that

1. adjacent vertices receive different colours (f is proper), and
2. $f(v) \in L(v)$ for all $v \in V(G)$.
Given: A graph G and a list $L(v)$ of available colours for each $v \in V(G)$.

Goal: To find an acceptable colouring, ie. a colouring f of the vertices such that

1. adjacent vertices receive different colours (f is proper), and
2. $f(v) \in L(v)$ for all $v \in V(G)$.

Problem: Find the list chromatic number $\chi_\ell(G)$:
List Colouring

Given: A graph G and a list $L(v)$ of available colours for each $v \in V(G)$.

Goal: To find an acceptable colouring, ie. a colouring f of the vertices such that
1. adjacent vertices receive different colours (f is proper), and
2. $f(v) \in L(v)$ for all $v \in V(G)$.

Problem: Find the list chromatic number $\chi_\ell(G)$:

$\chi_\ell(G)$ is the minimum k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for all $v \in V(G)$.
Famous List Colouring Conjectures

The List Colouring Conjecture: $\chi_\ell = \chi$ for line graphs.

Gravier and Maffray Conjecture: $\chi_\ell = \chi$ for claw-free graphs.
The List Colouring Conjecture: $\chi_\ell = \chi$ for line graphs.
The List Colouring Conjecture: $\chi_\ell = \chi$ for line graphs.

Gravier and Maffray Conjecture: $\chi_\ell = \chi$ for claw-free graphs.
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem 1 (Erdős, Rubin, Taylor, 1979).

$$\chi_\ell \left(K_{2, 2, \ldots, 2} \right) = k.$$
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem 1 (Erdős, Rubin, Taylor, 1979).

$$\chi_\ell \left(\begin{array}{c} K_{2,2,\ldots,2} \\ k \end{array} \right) = k.$$

Theorem 2 (Gravier and Maffray, 1998).

$$\chi_\ell \left(\begin{array}{c} K_{3,2,\ldots,2} \\ k \end{array} \right) = k.$$

Note: In Theorem 2, $|V(G)| = 2\chi(G) + 1$.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu
A Proof of a Conjecture of Ohba
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If \(|V(G)| \leq 2\chi(G) + 1\), then \(\chi_{\ell}(G) = \chi(G)\).

Theorem (Ohba, 2002). If \(|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}\), then \(\chi_{\ell}(G) = \chi(G)\).
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Ohba, 2002). If $|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Reed and Sudakov, 2005). If $|V(G)| \leq \frac{5}{3}\chi(G) - \frac{4}{3}$, then $\chi_\ell(G) = \chi(G)$.
With Stronger Hypotheses

Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Ohba, 2002). If $|V(G)| \leq \chi(G) + \sqrt{2\chi(G)}$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Reed and Sudakov, 2005). If $|V(G)| \leq \frac{5}{3}\chi(G) - \frac{4}{3}$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Reed and Sudakov, 2002). If $|V(G)| \leq (2 - o(1))\chi(G)$, then $\chi_\ell(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem (He, Li, Shen, Zheng, 2009).
If $|V(G)| \leq 2\chi(G) + 1$ and $\alpha(G) \leq 3$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Kostochka, Stiebitz, Woodall, 2011).
If $|V(G)| \leq 2\chi(G) + 1$ and $\alpha(G) \leq 5$, then $\chi_\ell(G) = \chi(G)$.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu

A Proof of a Conjecture of Ohba
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem (He, Li, Shen, Zheng, 2009). If $|V(G)| \leq 2\chi(G) + 1$ and $\alpha(G) \leq 3$, then $\chi_\ell(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem (He, Li, Shen, Zheng, 2009). If $|V(G)| \leq 2\chi(G) + 1$ and $\alpha(G) \leq 3$, then $\chi_\ell(G) = \chi(G)$.

Theorem (Kostochka, Stiebitz, Woodall, 2011). If $|V(G)| \leq 2\chi(G) + 1$ and $\alpha(G) \leq 5$, then $\chi_\ell(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.
The General Case

Ohba’s Conjecture (2002)

If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.

Theorem (N., Reed, Wu, 2012). If $|V(G)| \leq 2\chi(G) + 1$, then $\chi_\ell(G) = \chi(G)$.
An Observation

Observe: Ohba’s Conjecture is true if and only if it is true for complete k-partite graphs.

Let $n := |V(G)|$, $k := \chi(G)$, $|L(v)| \geq k$ for all $v \in V(G)$, $C := \bigcup v \in V(G) L(v)$.

Note: $n \leq 2k + 1$.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu
A Proof of a Conjecture of Ohba
Observe: Ohba’s Conjecture is true if and only if it is true for complete k-partite graphs.

Observe: Ohba’s Conjecture is true if and only if it is true for complete k-partite graphs.
Observe: Ohba’s Conjecture is true if and only if it is true for complete k-partite graphs.

Let

- $n := |V(G)|$,
- $k := \chi(G)$,
- $|L(v)| \geq k$ for all $v \in V(G)$,
- $C := \bigcup_{v \in V(G)} L(v)$.

Note: $n \leq 2k + 1$.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu
A Proof of a Conjecture of Ohba
Key Definitions

Def: A colour $c \in C$ is frequent if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is near-acceptable if for every $v \in V(G)$ either $f(v) \in L(v)$, or $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.
Def: A colour $c \in C$ is *frequent* if it is contained in at least $k + 1$ lists.
Def: A colour $c \in C$ is *frequent* if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is *near-acceptable* if for every $v \in V(G)$ either
- $f(v) \in L(v)$, or
Def: A colour $c \in C$ is frequent if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is near-acceptable if for every $v \in V(G)$ either

- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.
Def: A colour \(c \in C \) is frequent if it is contained in at least \(k + 1 \) lists.

Def: A proper colouring \(f \) of \(G \) is near-acceptable if for every \(v \in V(G) \) either

- \(f(v) \in L(v) \), or
- \(f(v) \) is frequent and \(f^{-1}(f(v)) = \{v\} \).

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.

Lemma 2: If there are at least \(k \) frequent colours, then there is a near-acceptable colouring.

Lemma 3: If Ohba's Conjecture is false, then there is a counterexample with at least \(k \) frequent colours.
Def: A colour $c \in C$ is *frequent* if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is *near-acceptable* if for every $v \in V(G)$ either

- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.
Def: A colour $c \in C$ is frequent if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is near-acceptable if for every $v \in V(G)$ either
- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.

Lemma 2: If there are at least k frequent colours, then there is a near-acceptable colouring.
Def: A colour $c \in C$ is *frequent* if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is *near-acceptable* if for every $v \in V(G)$ either

- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.

Lemma 2: If there are at least k frequent colours, then there is a near-acceptable colouring.

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least k frequent colours.
Proof Outline

Def: A colour $c \in C$ is *frequent* if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is *near-acceptable* if for every $v \in V(G)$ either
- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.

Lemma 2: If there are at least k frequent colours, then there is a near-acceptable colouring.

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least k frequent colours.
Proof of Lemma 1

Let f be a near-acceptable colouring. We construct an acceptable colouring f' with the same colour classes as f.

Let $V_f := \{ f^{-1}(c) : c \in f(V(G)) \}$.

Let B_f be the bipartite graph with bipartition (V_f, C) where each $f^{-1}(c) \in V_f$ is joined to the colours of $\cap_{v \in f^{-1}(c)} L(v)$.

If there is a matching in B_f that saturates V_f, then we are done.

Otherwise, by Hall’s Theorem, there is a set $S \subseteq V_f$ such that $|N_{B_f}(S)| < |S|$.
Proof of Lemma 1

Let f be a near-acceptable colouring.
Proof of Lemma 1

Let f be a near-acceptable colouring.

We construct an acceptable colouring f' with the same colour classes as f.
Proof of Lemma 1

Let f be a near-acceptable colouring.

We construct an acceptable colouring f' with the same colour classes as f.

Let $V_f := \{ f^{-1}(c) : c \in f(V(G)) \}$.
Proof of Lemma 1

Let \(f \) be a near-acceptable colouring.

We construct an acceptable colouring \(f' \) with the same colour classes as \(f \).

Let \(V_f := \{ f^{-1}(c) : c \in f(V(G)) \} \).

Let \(B_f \) be the bipartite graph with bipartition \((V_f, C)\) where each \(f^{-1}(c) \in V_f \) is joined to the colours of \(\cap_{v \in f^{-1}(c)} L(v) \).
Proof of Lemma 1

Let f be a near-acceptable colouring.

We construct an acceptable colouring f' with the same colour classes as f.

Let $V_f := \{ f^{-1}(c) : c \in f(V(G)) \}$.

Let B_f be the bipartite graph with bipartition (V_f, C) where each $f^{-1}(c) \in V_f$ is joined to the colours of $\bigcap_{v \in f^{-1}(c)} L(v)$.

If there is a matching in B_f that saturates V_f, then we are done.
Proof of Lemma 1

Let f be a near-acceptable colouring.

We construct an acceptable colouring f' with the same colour classes as f.

Let $V_f := \{ f^{-1}(c) : c \in f(V(G)) \}$.

Let B_f be the bipartite graph with bipartition (V_f, C) where each $f^{-1}(c) \in V_f$ is joined to the colours of $\cap_{v \in f^{-1}(c)} L(v)$.

If there is a matching in B_f that saturates V_f, then we are done.

Otherwise, by Hall’s Theorem, there is a set $S \subseteq V_f$ such that $|N_{B_f}(S)| < |S|$.

Def: A colour $c \in C$ is *frequent* if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is *near-acceptable* if for every $v \in V(G)$ either
- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.

Lemma 2: If there are at least k frequent colours, then there is a near-acceptable colouring.

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least k frequent colours.
Proof of Lemma 2

(For simplicity, assume $n \leq 2^k$). Let F be a set of k frequent colours.

Phase 1: For each colour $c \in C - F$, in turn, we use c to colour the largest stable set which has not yet been coloured and for which c is available.

For each part P of G, let R_P be the set of uncoloured vertices in P.

Order the parts P_1, \ldots, P_k so that $|R_{P_1}| \geq \cdots \geq |R_{P_k}|$.

Phase 2: For each $i = 1, \ldots, k$, in turn, we try to colour all of R_{P_i} with a colour in F which has not yet been used and which is available for every vertex of R_{P_i}.

Terminate Phase 2 when we reach an i for which this is not possible.

Phase 3: For every colour $c \in F$ not used in Phase 2, colour at most one uncoloured vertex with c (ignoring the lists).
Proof of Lemma 2

(For simplicity, assume $n \leq 2k$). Let F be a set of k frequent colours.
Proof of Lemma 2

(For simplicity, assume $n \leq 2k$). Let F be a set of k frequent colours.

Phase 1: For each colour $c \in C - F$, in turn, we use c to colour the largest stable set which has not yet been coloured and for which c is available.
Proof of Lemma 2

(For simplicity, assume \(n \leq 2k \)). Let \(F \) be a set of \(k \) frequent colours.

Phase 1: For each colour \(c \in C - F \), in turn, we use \(c \) to colour the **largest stable set** which has **not yet been coloured** and for which \(c \) is available.

For each part \(P \) of \(G \), let \(R_P \) be the set of uncoloured vertices in \(P \). Order the parts \(P_1, \ldots, P_k \) so that \(|R_{P_1}| \geq \cdots \geq |R_{P_k}| \).
Proof of Lemma 2

(For simplicity, assume $n \leq 2k$). Let F be a set of k frequent colours.

Phase 1: For each colour $c \in C - F$, in turn, we use c to colour the largest stable set which has not yet been coloured and for which c is available.

For each part P of G, let R_P be the set of uncoloured vertices in P. Order the parts P_1, \ldots, P_k so that $|R_{P_1}| \geq \cdots \geq |R_{P_k}|$.

Phase 2: For each $i = 1, \ldots, k$, in turn, we try to colour all of R_{P_i} with a colour in F which has not yet been used and which is available for every vertex of R_{P_i}.

Phase 3: For every colour $c \in F$ not used in Phase 2, colour at most one uncoloured vertex with c (ignoring the lists).
(For simplicity, assume $n \leq 2k$). Let F be a set of k frequent colours.

Phase 1: For each colour $c \in C - F$, in turn, we use c to colour the largest stable set which has not yet been coloured and for which c is available.

For each part P of G, let R_P be the set of uncoloured vertices in P. Order the parts P_1, \ldots, P_k so that $|R_{P_1}| \geq \cdots \geq |R_{P_k}|$.

Phase 2: For each $i = 1, \ldots, k$, in turn, we try to colour all of R_{P_i} with a colour in F which has not yet been used and which is available for every vertex of R_{P_i}.

Terminate Phase 2 when we reach an i for which this is not possible.
Proof of Lemma 2

(For simplicity, assume $n \leq 2k$). Let F be a set of k frequent colours.

Phase 1: For each colour $c \in C - F$, in turn, we use c to colour the largest stable set which has not yet been coloured and for which c is available.

For each part P of G, let R_P be the set of uncoloured vertices in P. Order the parts P_1, \ldots, P_k so that $|R_{P_1}| \geq \cdots \geq |R_{P_k}|$.

Phase 2: For each $i = 1, \ldots, k$, in turn, we try to colour all of R_{P_i} with a colour in F which has not yet been used and which is available for every vertex of R_{P_i}.

Terminate Phase 2 when we reach an i for which this is not possible.

Phase 3: For every colour $c \in F$ not used in Phase 2, colour at most one uncoloured vertex with c (ignoring the lists).
Proof of Lemma 2

(For simplicity, assume $n \leq 2k$). Let F be a set of k frequent colours.

Phase 1: For each colour $c \in C - F$, in turn, we use c to colour the largest stable set which has not yet been coloured and for which c is available.

For each part P of G, let R_P be the set of uncoloured vertices in P. Order the parts P_1, \ldots, P_k so that $|R_{P_1}| \geq \cdots \geq |R_{P_k}|$.

Phase 2: For each $i = 1, \ldots, k$, in turn, we try to colour all of R_{P_i} with a colour in F which has not yet been used and which is available for every vertex of R_{P_i}.

Terminate Phase 2 when we reach an i for which this is not possible.

Phase 3: For every colour $c \in F$ not used in Phase 2, colour at most one uncoloured vertex with c (ignoring the lists).
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.

Suppose that R_{P_1}, \ldots, R_{P_i} are coloured in Phase 2, but $R_{P_{i+1}}, \ldots, R_{P_k}$ are not.
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.

Suppose that R_{P_1}, \ldots, R_{P_i} are coloured in Phase 2, but $R_{P_{i+1}}, \ldots, R_{P_k}$ are not.

Let U be the colours in F not used in Phase 2.

Let U be the colours in F not used in Phase 2.
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.

Suppose that R_{P_1}, \ldots, R_{P_i} are coloured in Phase 2, but $R_{P_{i+1}}, \ldots, R_{P_k}$ are not.

Let U be the colours in F not used in Phase 2. We have

$$|F - U| = i$$
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.

Suppose that R_{P_1}, \ldots, R_{P_i} are coloured in Phase 2, but $R_{P_{i+1}}, \ldots, R_{P_k}$ are not.

Let U be the colours in F not used in Phase 2. We have

$$|F - U| = i$$

$$|U| = k - i.$$
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.

Suppose that R_{P_1}, \ldots, R_{P_i} are coloured in Phase 2, but $R_{P_{i+1}}, \ldots, R_{P_k}$ are not.

Let U be the colours in F not used in Phase 2. We have

$|F - U| = i$

$|U| = k - i$.

If there are at most $|U|$ vertices that are not coloured after Phase 2, then we are done.
Proof of Lemma 2

Let F be a set of k frequent colours. We assume $n \leq 2k$.

Proof. It suffices to show that every vertex is coloured by our procedure.

Suppose that R_{P_1}, \ldots, R_{P_i} are coloured in Phase 2, but $R_{P_{i+1}}, \ldots, R_{P_k}$ are not.

Let U be the colours in F not used in Phase 2. We have

$$|F - U| = i$$

$$|U| = k - i.$$

If there are at most $|U|$ vertices that are not coloured after Phase 2, then we are done. Therefore,

$$\sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1.$$
So far, we have proved:
So far, we have proved:

$$\sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1$$
Proof of Lemma 2

So far, we have proved:

\[\sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1 \]

Therefore, the number of vertices coloured in **Phases 1 and 2** is at most
So far, we have proved:

$$\sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1$$

Therefore, the number of vertices coloured in Phases 1 and 2 is at most

$$2k - (k - i + 1) = k + i - 1.$$
Also, by our ordering,
Also, by our ordering,

\[|R_{P_i+1}|(k - i) \geq \sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1 \]
Also, by our ordering,

\[|R_{P_{i+1}}| (k - i) \geq \sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1 \]

and therefore,
Also, by our ordering,

\[
|R_{P_{i+1}}|(k - i) \geq \sum_{j=i+1}^{k} |R_{P_{j}}| \geq k - i + 1
\]

and therefore,

\[
|R_{P_{i+1}}| \geq \left\lceil \frac{k - i + 1}{k - i} \right\rceil = 2.
\]
Also, by our ordering,

\[|R_{P_{i+1}}|(k - i) \geq \sum_{j=i+1}^{k} |R_{P_j}| \geq k - i + 1 \]

and therefore,

\[|R_{P_{i+1}}| \geq \left\lceil \frac{k - i + 1}{k - i} \right\rceil = 2. \]

By our ordering, this means that there are at least 2\(i\) vertices that are coloured in Phase 2.

(ie. each of \(R_{P_1}, \ldots, R_{P_i}\) also has size at least 2)
Proof of Lemma 2

Putting it together:

We know that at most $k + i - 1$ vertices are coloured in Phases 1 and 2.

We also know that at least $2i$ vertices are coloured in Phase 2.

So the number of vertices coloured in Phase 1 is at most $(k + i - 1) - 2i = k - i - 1$.

(*) If a colour $c \in C - F$ is used on ℓ vertices, then there are at most ℓ vertices $v \in R_{P_i + 1}$ with $c \in L(v)$.
Proof of Lemma 2

Putting it together:

We know that at most $k + i - 1$ vertices are coloured in Phases 1 and 2.
Proof of Lemma 2

Putting it together:

We know that at most $k + i - 1$ vertices are coloured in Phases 1 and 2.

We also know that at least $2i$ vertices are coloured in Phase 2.
Proof of Lemma 2

Putting it together:

We know that at most $k + i - 1$ vertices are coloured in Phases 1 and 2.

We also know that at least $2i$ vertices are coloured in Phase 2.

So the number of vertices coloured in Phase 1 is at most

$$(k + i - 1) - 2i = k - i - 1.$$
Proof of Lemma 2

Putting it together:

We know that at most $k + i - 1$ vertices are coloured in Phases 1 and 2.

We also know that at least $2i$ vertices are coloured in Phase 2.

So the number of vertices coloured in Phase 1 is at most

\[(k + i - 1) - 2i = k - i - 1.\]

(*) If a colour $c \in C - F$ is used on ℓ vertices, then there are at most ℓ vertices $v \in R_{P_{i+1}}$ with $c \in L(v)$.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu
A Proof of a Conjecture of Ohba
Proof of Lemma 2

Putting it together:

We know that at most $k + i - 1$ vertices are coloured in Phases 1 and 2.

We also know that at least $2i$ vertices are coloured in Phase 2.

So the number of vertices coloured in Phase 1 is at most

$$(k + i - 1) - 2i = k - i - 1.$$

(*) If a colour $c \in C - F$ is used on ℓ vertices, then there are at most ℓ vertices $v \in R_{P_{i+1}}$ with $c \in L(v)$.
Summary

Main Ideas:

(1) Suppose that f is a colouring in which some vertices are coloured outside of their lists. Under what conditions can f be modified to produce an acceptable colouring? If not possible, then what information about the distribution of colours in the lists can you obtain from a Hall's Theorem argument?

(2) If an 'almost' acceptable colouring is sufficient, then exploit its more relaxed properties in a greedy colouring procedure.
Main Ideas:

(1) Suppose that \(f \) is a colouring in which some vertices are coloured outside of their lists.
Main Ideas:

(1) Suppose that f is a colouring in which some vertices are coloured outside of their lists.

- Under what conditions can f be modified to produce an acceptable colouring?
Main Ideas:

(1) Suppose that \(f \) is a colouring in which some vertices are coloured outside of their lists.

- Under what conditions can \(f \) be modified to produce an acceptable colouring?

- If not possible, then what information about the distribution of colours in the lists can you obtain from a Hall’s Theorem argument?

Jonathan A. Noel, Bruce A. Reed, Hehui Wu

A Proof of a Conjecture of Ohba
Main Ideas:

1. Suppose that f is a colouring in which some vertices are coloured outside of their lists.
 - Under what conditions can f be modified to produce an acceptable colouring?
 - If not possible, then what information about the distribution of colours in the lists can you obtain from a Hall’s Theorem argument?

2. If an ‘almost’ acceptable colouring is sufficient, then exploit its more relaxed properties in a greedy colouring procedure.
Def: A colour $c \in C$ is \textit{frequent} if it is contained in at least $k + 1$ lists.

Def: A proper colouring f of G is \textit{near-acceptable} if for every $v \in V(G)$ either

- $f(v) \in L(v)$, or
- $f(v)$ is frequent and $f^{-1}(f(v)) = \{v\}$.

Lemma 1: If there is a near-acceptable colouring, then there is an acceptable colouring.

Lemma 2: If there are at least k frequent colours, then there is a near-acceptable colouring.

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least k frequent colours.
Lemma 3 requires us to find a ‘special counterexample’ (with k frequent colours).
Lemma 3 requires us to find a ‘special counterexample’ (with k frequent colours).

Let G be a **minimal counterexample**.
Lemma 3 requires us to find a ‘special counterexample’ (with k frequent colours).

Let G be a minimal counterexample.

That is, Ohba’s Conjecture is true for graphs on fewer than $|V(G)|$ vertices.
Lemma 3 requires us to find a ‘special counterexample’ (with k frequent colours).

Let G be a minimal counterexample.

That is, Ohba’s Conjecture is true for graphs on fewer than $|V(G)|$ vertices.

Observe: If P is a non-singleton part of G, then

$$\bigcap_{v \in P} L(v) = \emptyset.$$
Lemma 3 requires us to find a ‘special counterexample’ (with \(k\) frequent colours).

Let \(G\) be a \textbf{minimal counterexample}.

That is, Ohba’s Conjecture is true for graphs on fewer than \(|V(G)|\) vertices.

\textbf{Observe:} If \(P\) is a non-singleton part of \(G\), then

\[
\cap_{v \in P} L(v) = \emptyset.
\]

This means that the lists are fairly \textbf{spread apart}.
Def:
Let B be the bipartite graph on $(V(G), C)$ where each vertex $v \in V(G)$ is joined to the colours of $L(v)$.

Observe:
There is no matching in B which saturates $V(G)$.

Lemma (Kierstead (2000), Reed and Sudakov (2005)):
There is a matching M in B which saturates C.

Corollary:
$|C| \leq |V(G)| \leq 2k + 1$.

Proof.
Otherwise, M would saturate $V(G)$.

This means that the lists are fairly close together.
Def: Let B be the bipartite graph on $(V(G), C)$ where each vertex $v \in V(G)$ is joined to the colours of $L(v)$.
Def: Let B be the bipartite graph on $(V(G), C)$ where each vertex $v \in V(G)$ is joined to the colours of $L(v)$.

Observe: There is no matching in B which saturates $V(G)$.
Def: Let B be the bipartite graph on $(V(G), C)$ where each vertex $v \in V(G)$ is joined to the colours of $L(v)$.

Observe: There is no matching in B which saturates $V(G)$.

Lemma (Kierstead (2000), Reed and Sudakov (2005)): There is a matching M in B which saturates C.

Corollary: $|C| < |V(G)| \leq 2k + 1$.

Proof. Otherwise, M would saturate $V(G)$. This means that the lists are fairly close together.
Def: Let B be the bipartite graph on $(V(G), C)$ where each vertex $v \in V(G)$ is joined to the colours of $L(v)$.

Observe: There is no matching in B which saturates $V(G)$.

Lemma (Kierstead (2000), Reed and Sudakov (2005)): There is a matching M in B which saturates C.

Corollary: $|C| < |V(G)| \leq 2k + 1$.

Proof. Otherwise, M would saturate $V(G)$. \qed
Def: Let B be the bipartite graph on $(V(G), C)$ where each vertex $v \in V(G)$ is joined to the colours of $L(v)$.

Observe: There is no matching in B which saturates $V(G)$.

Lemma (Kierstead (2000), Reed and Sudakov (2005)): There is a matching M in B which saturates C.

Corollary: $|C| < |V(G)| \leq 2k + 1$.

Proof. Otherwise, M would saturate $V(G)$.

This means that the lists are fairly close together.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either $f(v) \in L(v)$, or $f^{-1}(f(v)) = \{v\}$, and some other condition holds (to be determined). We try to find an acceptable colouring using Hall's Theorem and minimality of G.

Again, there is a set $S \subseteq V$ such that $|N_B(f)(S)| < |S|$. Pick S such that $|S| - |N_B(f)(S)|$ is maximal.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either

\bullet $f(v) \in L(v)$, or
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$, and some other condition holds (to be determined).
More Bad Colourings With Good Properties

Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either

- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$, and some other condition holds (to be determined).

We try to find an acceptable colouring using Hall’s Theorem and minimality of G.

Jonathan A. Noel, Bruce A. Reed, Hehui Wu
A Proof of a Conjecture of Ohba
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$, and some other condition holds (to be determined).

We try to find an acceptable colouring using Hall’s Theorem and minimality of G.

Again, there is a set $S \subseteq V_f$ such that $|N_{B_f}(S)| < |S|$.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$, and some other condition holds (to be determined).

We try to find an acceptable colouring using Hall’s Theorem and minimality of G.

Again, there is a set $S \subseteq V_f$ such that $|N_{B_f}(S)| < |S|$.

Pick S such that $|S| - |N_{B_f}(S)|$ is maximal.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$. and some other condition holds (to be determined).

Let ℓ be the number of colour classes of f containing more than one vertex.

Therefore, $\ell \leq |V(G)| - |C|$.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$. and some other condition holds (to be determined).

Let ℓ be the number of colour classes of f containing more than one vertex.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$. and some other condition holds (to be determined).

Let ℓ be the number of colour classes of f containing more than one vertex.

Colour each colour class containing more than one vertex with its colour under f.
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either

- $f(v) \in L(v)$, or
- $f^{-1}(f(v)) = \{v\}$.

and some other condition holds (to be determined).

Let ℓ be the number of colour classes of f containing more than one vertex.

Colour each colour class containing more than one vertex with its colour under f.

(*) We can assume that f is surjective (matching argument).
Suppose that f is a proper colouring such that for every vertex $v \in V(G)$, either
\begin{itemize}
\item $f(v) \in L(v)$, or
\item $f^{-1}(f(v)) = \{v\}$. and some other condition holds (to be determined).
\end{itemize}

Let ℓ be the number of colour classes of f containing more than one vertex.

Colour each colour class containing more than one vertex with its colour under f.

(*) We can assume that f is surjective (matching argument).

Therefore, $\ell \leq |V(G)| - |C|$.
Lemma 1 Revisited

Definition: Say that a colour \(c \in C \) is frequent among singletons if it is contained in the lists of at least \(\gamma \) singletons.

We have proved the following:

Lemma 1': It suffices to find a proper colouring \(f \) such that for every vertex \(v \in V(G) \) either \(f(v) \in L(v) \), or \(f(v) \) is either frequent or frequent among singletons and \(f^{-1}(f(v)) = \{v\} \).
Def: Say that a colour $c \in C$ is frequent among singletons if it is contained in the lists of at least γ singletons.
Def: Say that a colour $c \in C$ is frequent among singletons if it is contained in the lists of at least γ singletons.

We have proved the following:
Def: Say that a colour \(c \in C \) is *frequent among singletons* if it is contained in the lists of at least \(\gamma \) singletons.

We have proved the following:

Lemma 1′: It suffices to find a proper colouring \(f \) such that for every vertex \(v \in V(G) \) either
- \(f(v) \in L(v) \), or
- \(f(v) \) is either frequent or frequent among singletons and \(f^{-1}(f(v)) = \{v\} \).
As it turns out, it is equivalent to look at colours that are available to every singleton.
As it turns out, it is equivalent to look at colours that are available to every singleton.

Prop 1: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:
As it turns out, it is equivalent to look at colours that are available to every singleton.

Prop 1: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
As it turns out, it is equivalent to look at colours that are available to every singleton.

Prop 1: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.
Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons. If there is a singleton v with $c \not\in L(v)$, add c to $L(v)$. Now, if there is a colouring, then every vertex $w \neq v$ is coloured from its list and v is coloured with c. But v is a singleton! Thus, it is the only vertex coloured with c.

By Lemma 1′ there is an acceptable colouring. For the other direction, we omit the details.
Proof of Prop 1

Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons.
Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons.

If there is a singleton v with $c \notin L(v)$, add c to $L(v)$.
Proof of Prop 1

Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons.

If there is a singleton v with $c \notin L(v)$, add c to $L(v)$.

Now, if there is a colouring, then every vertex $w \neq v$ is coloured from its list and v is coloured with c.
Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons.

If there is a singleton v with $c \notin L(v)$, add c to $L(v)$.

Now, if there is a colouring, then every vertex $w \neq v$ is coloured from its list and v is coloured with c.

But v is a singleton! Thus, it is the only vertex coloured with c.
Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons.

If there is a singleton v with $c \notin L(v)$, add c to $L(v)$.

Now, if there is a colouring, then every vertex $w \neq v$ is coloured from its list and v is coloured with c.

But v is a singleton! Thus, it is the only vertex coloured with c.

By Lemma 1' there is an acceptable colouring.
Prop: For a minimal counterexample G and a colour $c \in C$, we can assume that the following are equivalent:

- c is frequent or frequent among singletons,
- c is available to every singleton.

Proof. First suppose that c is frequent or frequent among singletons.

If there is a singleton v with $c \notin L(v)$, add c to $L(v)$.

Now, if there is a colouring, then every vertex $w \neq v$ is coloured from its list and v is coloured with c.

But v is a singleton! Thus, it is the only vertex coloured with c.

By Lemma 1' there is an acceptable colouring.

For the other direction, we omit the details.
Remember, we want to prove:
Remember, we want to prove:

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least k frequent colours.
Remember, we want to prove:

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least k frequent colours.

It suffices to show:
Remember, we want to prove:

Lemma 3: If Ohba’s Conjecture is false, then there is a counterexample with at least \(k \) frequent colours.

It suffices to show:

Lemma 3’: If Ohba’s Conjecture is false, then there is a minimal counterexample with at least \(k \) colours \(c \) such that either
- \(c \) is frequent, or
- \(c \) is frequent among singletons, or
- \(c \) is available to every singleton.
Def: Let p be the number of parts in G with at least two vertices.
Def: Let \(p \) be the number of parts in \(G \) with at least two vertices.

Observe: \((\# \text{ singletons}) = k - p\).
Def: Let \(p \) be the number of parts in \(G \) with at least two vertices.

Observe: \((\# \text{ singletons}) = k - p\).

In fact, \(p \) colours available to every singleton is enough!
Def: Let \(p \) be the number of parts in \(G \) with at least two vertices.

Observe: \((\# \text{ singletons}) = k - p\).

In fact, \(p \) colours available to every singleton is enough!

Prop 2: If there are \(p \) colours that are available to every singleton, then there is a minimal counterexample with \(k \) colours that are available to every singleton.
Def: Let p be the number of parts in G with at least two vertices.

Observe: $(\# \text{ singletons}) = k - p$.

In fact, p colours available to every singleton is enough!

Prop 2: If there are p colours that are available to every singleton, then there is a minimal counterexample with k colours that are available to every singleton.

Proof. Another trick using Hall’s Theorem (we omit the details). \square
Therefore, it suffices to prove:

Lemma 3″: If Ohba’s Conjecture is false, then there is a minimal counterexample with at least p colours c such that either

- c is frequent,
- c is frequent among singletons, or
- c is available to every singleton.
Therefore, it suffices to prove:

Lemma 3″: If Ohba’s Conjecture is false, then there is a minimal counterexample with at least p colours c such that either

- c is frequent,
- c is frequent among singletons, or
- c is available to every singleton.

... Unfortunately, the proof is a little technical, and not particularly interesting 😞.
Therefore, it suffices to prove:

Lemma 3″: If Ohba’s Conjecture is false, then there is a minimal counterexample with at least p colours c such that either

- c is frequent,
- c is frequent among singletons, or
- c is available to every singleton.

... Unfortunately, the proof is a little technical, and not particularly interesting 😞.

Ideas:

- Use Hall’s Theorem again.
- Combine various counting arguments.
Open Problems

Question (Erdős, Rubin, Taylor):
What is $\chi^\ell(K_{m,m,...,m})$?
For $m = 2$ it is k.
For $m = 3$ it is $\lceil 4k - \frac{1}{3} \rceil$ (Kierstead 2000).
No other values have been calculated.

There are graphs with $|V(G)| = 2\chi(G) + 2$ and $\chi^\ell(G) > \chi(G)$.

Question:
For a function $f(k) > 2k + 1$, what is a good upper bound on χ^ℓ for complete k-partite graphs on at most $f(k)$ vertices?
Question (Erdős, Rubin, Taylor): What is $\chi_\ell (K_{m,m,...,m})$?

For $m=2$ it is k. For $m=3$ it is $\lceil 4k-1 \rceil /3$ (Kierstead 2000).

No other values have been calculated.

There are graphs with $|V(G)|=2\chi(G)+2$ and $\chi_\ell (G) > \chi(G)$.

Question: For a function $f(k) > 2k+1$, what is a good upper bound on χ_ℓ for complete k-partite graphs on at most $f(k)$ vertices?
Question (Erdős, Rubin, Taylor): What is $\chi_\ell (K_m,m,...,m)$?

- For $m = 2$ it is k.
- For $m = 3$ it is $\lceil \frac{4k-1}{3} \rceil$ (Kierstead 2000).
- No other values have been calculated.
Question (Erdős, Rubin, Taylor): What is $\chi_\ell(K_{m,m,...,m})$?

- For $m = 2$ it is k.
- For $m = 3$ it is $\left\lceil \frac{4k-1}{3} \right\rceil$ (Kierstead 2000).
- No other values have been calculated.

There are graphs with $|V(G)| = 2\chi(G) + 2$ and $\chi_\ell(G) > \chi(G)$.
Open Problems

Question (Erdős, Rubin, Taylor): What is $\chi_\ell(K_m,m,...,m)$?

- For $m = 2$ it is k.
- For $m = 3$ it is $\lceil \frac{4k-1}{3} \rceil$ (Kierstead 2000).
- No other values have been calculated.

There are graphs with $|V(G)| = 2\chi(G) + 2$ and $\chi_\ell(G) > \chi(G)$.

Question: For a function $f(k) > 2k + 1$, what is a good upper bound on χ_ℓ for complete k-partite graphs on at most $f(k)$ vertices?
Thanks!
Questions?