Choosability of Graphs with Bounded Order: Ohba’s Conjecture and Beyond

Jonathan Noel¹

Joint work with

Bruce Reed,² Douglas West,³ Hehui Wu,⁴ Xuding Zhu³

¹University of Oxford, United Kingdom.
²McGill University, Canada.
³Zhejiang Normal University, Jinhua, China.
⁴Simon Fraser University, Canada.
Graphs and Colourings

Definition:
A graph is a mathematical structure made up from a collection of points (called vertices), some pairs of which are connected by lines (called edges).

Figure 1: A graph G.

Jonathan Noel
Choosability of Graphs with Bounded Order: Ohba’s
Definition: A graph is a mathematical structure made up from a collection of points (called vertices), some pairs of which are connected by lines (called edges).
Definition: A **graph** is a mathematical structure made up from a collection of points (called **vertices**), some pairs of which are connected by lines (called **edges**).

![Figure 1: A graph G.](image)
Definition: A **graph** is a mathematical structure made up from a collection of points (called **vertices**), some pairs of which are connected by lines (called **edges**).

![Graph Image]

Figure 1: A graph G.
Definition: A **proper colouring** of a graph is a labelling of the vertices (with **colours**) such that adjacent vertices receive different colours.
Definition: A **proper colouring** of a graph is a labelling of the vertices (with **colours**) such that adjacent vertices receive different colours.

Figure 2: A proper colouring of G using red, green and blue.
Graphs and Colourings

Definition: A proper colouring of a graph is a labelling of the vertices (with colours) such that adjacent vertices receive different colours.

Figure 2: A proper colouring of G using red, green and blue.
Definition: A proper colouring of a graph is a labelling of the vertices (with colours) such that adjacent vertices receive different colours.

Figure 2: A proper colouring of G using red, green and blue.
Definition: A **proper colouring** of a graph is a labelling of the vertices (with **colours**) such that adjacent vertices receive different colours.

![Graph](image)

Figure 2: A proper colouring of G using red, green and blue.
Definition: A proper colouring of a graph is a labelling of the vertices (with colours) such that adjacent vertices receive different colours.

Figure 2: A proper colouring of G using red, green and blue.
Definition: A **proper colouring** of a graph is a labelling of the vertices (with **colours**) such that adjacent vertices receive different colours.

Figure 2: A proper colouring of G using red, green and blue.
Observation: Using more colours is easy; using fewer colours is hard.
Observation: Using more colours is easy; using fewer colours is hard.

![A proper colouring of G using red, green, blue and orange.](image)

Figure 2: A proper colouring of G using red, green, blue and orange.
Observation: Using more colours is easy; using fewer colours is hard.

Figure 2: A proper colouring of G using red, green, blue and orange.
Observation: Using more colours is easy; using fewer colours is hard.

Figure 2: A proper colouring of G using red, green, blue and orange. There is no way to colour G using only red and blue.
Observation: Using more colours is easy; using fewer colours is hard.

Figure 2: A proper colouring of G using red, green, blue and orange. There is no way to colour G using only red and blue.
Observation: Using more colours is easy; using fewer colours is hard.

Figure 2: A proper colouring of G using red, green, blue and orange. There is no way to colour G using only red and blue.
Observation: Using more colours is easy; using fewer colours is hard.

Figure 2: A proper colouring of \(G \) using red, green, blue and orange. There is no way to colour \(G \) using only red and blue.
The Chromatic Number

Definition: The **chromatic number** of a graph G is the **minimum integer** k such that there exists a proper colouring of G using k colours.
Definition: The **chromatic number** of a graph G is the **minimum integer** k such that there exists a proper colouring of G using k colours.

Notation: $\chi(G)$.
Definition: The chromatic number of a graph G is the minimum integer k such that there exists a proper colouring of G using k colours.

Notation: $\chi(G)$.

In our previous example, $\chi(G) = 3$.
Origins of Graph Colouring

Graph colouring goes back more than 160 years.

Definition:
A graph G is planar if it can be drawn on a flat surface without crossing edges.

The Four Colour Conjecture (Guthrie, 1852):
If G is a planar graph, then $\chi(G) \leq 4$.
(Equivalently, every map can be coloured with 4 colours so that neighbouring countries are coloured differently.)
Graph colouring goes back more than 160 years.

Definition:
A graph G is planar if it can be drawn on a flat surface without crossing edges.

The Four Colour Conjecture (Guthrie, 1852):
If G is a planar graph, then $\chi(G) \leq 4$.

(Equivalently, every map can be coloured with 4 colours so that neighbouring countries are coloured differently).
Graph colouring goes back more than 160 years.

Definition: A graph G is **planar** if it can be drawn on a flat surface without crossing edges.
Graph colouring goes back more than 160 years.

Definition: A graph G is **planar** if it can be drawn on a flat surface without crossing edges.

The Four Colour Conjecture (Guthrie, 1852): If G is a planar graph, then $\chi(G) \leq 4$.
Graph colouring goes back more than 160 years.

Definition: A graph G is **planar** if it can be drawn on a flat surface without crossing edges.

The Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.
Graph colouring goes back more than 160 years.

Definition: A graph G is **planar** if it can be drawn on a flat surface without crossing edges.

The Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.

(Equivalently, every map can be coloured with 4 colours so that neighbouring countries are coloured differently).
Graph colouring goes back more than 160 years.

Definition: A graph G is **planar** if it can be drawn on a flat surface without crossing edges.

The Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.

(Equivalently, every map can be coloured with 4 colours so that neighbouring countries are coloured differently).
In **graph colouring**, we usually map all of the vertices into a common list of available colours, say \{**red**, **blue**, **green**\}.
A Generalization: List Colouring

In **graph colouring**, we usually map all of the vertices into a common list of available colours, say \{red, blue, green\}.

Jonathan Noel

Choosability of Graphs with Bounded Order: Ohba’s
A Generalization: List Colouring

In **graph colouring**, we usually map all of the vertices into a common list of available colours, say \{red, blue, green\}.

In **list colouring**, each vertex \(v\) must be mapped to a colour in its own personal list \(L(v)\) of colours.
In **graph colouring**, we usually map all of the vertices into a common list of available colours, say \{red, blue, green\}.

In **list colouring**, each vertex v must be mapped to a colour in its own personal list $L(v)$ of colours.

\[
\begin{align*}
\{\text{pink, yellow, orange}\} & \quad \bullet \quad \{\text{red, blue, orange}\} \\
\{\text{red, blue, orange}\} & \quad \bullet \quad \{\text{red, blue, green}\} \\
\{\text{green, blue, orange}\} & \quad \bullet \quad \{\text{pink, yellow, red}\}
\end{align*}
\]
A Generalization: List Colouring

In graph colouring, we usually map all of the vertices into a common list of available colours, say \{red, blue, green\}.

In list colouring, each vertex \(v\) must be mapped to a colour in its own personal list \(L(v)\) of colours.
The Choice Number

Definition:
Given a graph G and a list assignment L, we say that a colouring is acceptable if
1. it is a proper colouring and
2. every vertex v is mapped to a colour in $L(v)$.

{pink, yellow, orange}
{red, blue, orange}
{red, blue, green}
{green, blue, orange}
{red, blue, orange}
{pink, yellow, red}

Definition:
The choice number of G, denoted $\text{ch}(G)$, is the minimum k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for every vertex v.
The Choice Number

Definition: Given a graph G and a list assignment L, we say that a colouring is **acceptable** if

- it is a proper colouring and
- every vertex v is mapped to a colour in $L(v)$.

Let $\{\red, \blue, \green\}$ and $\{\pink, \yellow, \red\}$.

Definition: The choice number of G, denoted $\text{ch}(G)$, is the minimum k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for every vertex v.

Jonathan Noel
Choosability of Graphs with Bounded Order: Ohba’s
Definition: Given a graph G and a list assignment L, we say that a colouring is **acceptable** if

(1) it is a proper colouring and

(2) every vertex v is mapped to a colour in $L(v)$.

The choice number of G, denoted $ch(G)$, is the minimum k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for every vertex v.

Jonathan Noel
Choosability of Graphs with Bounded Order: Ohba’s
Definition: Given a graph G and a list assignment L, we say that a colouring is acceptable if

(1) it is a proper colouring and

(2) every vertex v is mapped to a colour in $L(v)$.

The choice number of G, denoted $\text{ch}(G)$, is the minimum k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for every vertex v.

Jonathan Noel
Choosability of Graphs with Bounded Order: Ohba’s
Definition: Given a graph G and a list assignment L, we say that a colouring is **acceptable** if

1. it is a proper colouring and
2. every vertex v is mapped to a colour in $L(v)$.

Jonathan Noel
Choosability of Graphs with Bounded Order: Ohba’s
The Choice Number

Definition: Given a graph G and a list assignment L, we say that a colouring is **acceptable** if
(1) it is a proper colouring and
(2) every vertex v is mapped to a colour in $L(v)$.

\[
\begin{align*}
\{\text{pink, yellow, orange}\} & \quad \{\text{red, blue, orange}\} \\
\{\text{red, blue, orange}\} & \quad \{\text{red, blue, green}\} \\
\{\text{green, blue, orange}\} & \quad \{\text{pink, yellow, red}\}
\end{align*}
\]

Definition: The **choice number** of G, denoted $\text{ch}(G)$, is the **minimum** k such that there is an acceptable colouring whenever $|L(v)| \geq k$ for every vertex v.
Claim: $\text{ch}(K_{3,3}) > 2$.

Proof. Each side must be mapped to a set of at least 2 colours. Therefore, the image of an acceptable colouring must contain at least 4 colours, a contradiction.
Claim: $\text{ch}(K_{3,3}) > 2$.

Proof. Each side must be mapped to a set of at least 2 colours. Therefore, the image of an acceptable colouring must contain at least 4 colours, a contradiction.
Claim: \(\text{ch} (K_{3,3}) > 2. \)

\[
\begin{align*}
\{ \text{red, blue} \} & \quad \{ \text{red, blue} \} \\
\{ \text{red, green} \} & \quad \{ \text{red, green} \} \\
\{ \text{blue, green} \} & \quad \{ \text{blue, green} \}
\end{align*}
\]
Claim: \(\text{ch} (K_{3,3}) > 2. \)

\[
\begin{align*}
\rightarrow \{\text{red, blue}\} & \quad \rightarrow \{\text{red, blue}\} \\
\rightarrow \{\text{red, green}\} & \quad \rightarrow \{\text{red, green}\} \\
\rightarrow \{\text{blue, green}\} & \quad \rightarrow \{\text{blue, green}\}
\end{align*}
\]
Claim: $\text{ch}(K_{3,3}) > 2$.

Proof. Each side must be mapped to a set of at least 2 colours.
An Example: $K_{3,3}$

Claim: $\text{ch}(K_{3,3}) > 2$.

\[
\begin{align*}
\rightarrow \{\text{red, blue}\} & \quad \rightarrow \{\text{red, green}\} & \quad \rightarrow \{\text{blue, green}\} \\
& \quad \rightarrow \{\text{red, blue}\} & \quad \rightarrow \{\text{red, green}\} & \quad \rightarrow \{\text{blue, green}\}
\end{align*}
\]

Proof. Each side must be mapped to a set of \textbf{at least 2} colours.

Therefore, the image of an acceptable colouring must contain \textbf{at least 4 colours}, a contradiction.
Theorem: A graph G is bipartite if and only if $\chi(G) \leq 2$.

Theorem (Erdős, Rubin and Taylor 1979): For every integer k there is a bipartite graph G such that $\text{ch}(G) \geq k$.

Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.

Thomassen's Five Colour Theorem (Thomassen, 1994): If G is a planar graph, then $\text{ch}(G) \leq 5$.

There are many conjectures which claim that certain types of graphs satisfy $\text{ch} = \chi$.

Jonathan Noel

Choosability of Graphs with Bounded Order: Ohba’s
Theorem: A graph G is bipartite if and only if $\chi(G) \leq 2$.

Theorem (Erdős, Rubin and Taylor 1979): For every integer k there is a bipartite graph G such that $\text{ch}(G) \geq k$.

There are many conjectures which claim that certain types of graphs satisfy $\text{ch} = \chi$.

Jonathan Noel

Choosability of Graphs with Bounded Order: Ohba’s
Theorem: A graph G is bipartite if and only if $\chi(G) \leq 2$.

Theorem (Erdős, Rubin and Taylor 1979): For every integer k there is a bipartite graph G such that $\text{ch}(G) \geq k$.

Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.
Theorem: A graph G is bipartite if and only if $\chi(G) \leq 2$.

Theorem (Erdős, Rubin and Taylor 1979): For every integer k there is a bipartite graph G such that $\text{ch}(G) \geq k$.

Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.

Thomassen’s Five Colour Theorem (Thomassen, 1994): If G is a planar graph, then $\text{ch}(G) \leq 5$.
Theorem: A graph G is bipartite if and only if $\chi(G) \leq 2$.

Theorem (Erdős, Rubin and Taylor 1979): For every integer k there is a bipartite graph G such that $\text{ch}(G) \geq k$.

Four Colour Theorem (Appel and Haken, 1977): If G is a planar graph, then $\chi(G) \leq 4$.

Thomassen’s Five Colour Theorem (Thomassen, 1994): If G is a planar graph, then $\text{ch}(G) \leq 5$.

There are many conjectures which claim that certain types of graphs satisfy $\text{ch} = \chi$.
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

Motivating example:
Theorem (Erd˝ os, Rubin, Taylor 1979).

$\text{ch} (K^2 \ast k) = k.$

Proof Ingredients.
Induction and Hall’s Theorem.
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

Motivating example:

Theorem (Erdős, Rubin, Taylor 1979).

$$\text{ch}(K_{2^*k}) = k.$$
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $ch(G) = \chi(G)$.

Motivating example:

Theorem (Erdős, Rubin, Taylor 1979).

$$ch(K_{2\ast k}) = k.$$

Proof Ingredients. Induction and Hall’s Theorem.
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

Theorem (Reed and Sudakov 2002). If G is a graph with at most $(2 - o(1))\chi(G)$ vertices, then $\text{ch}(G) = \chi(G)$.
Main Partial Results

Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

Theorem (Reed and Sudakov 2002). If G is a graph with at most $(2 - o(1))\chi(G)$ vertices, then $\text{ch}(G) = \chi(G)$.

Theorem (Kostochka, Stiebitz, Woodall 2011). If G is a graph with at most $2\chi(G) + 1$ vertices and independence number at most 5, then $\text{ch}(G) = \chi(G)$.
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

Theorem (N., Reed, Wu 2012). Ohba’s Conjecture is true!

Proof Ingredients. Induction, Hall’s Theorem, and greedy colouring.
Ohba’s Conjecture (2002)

If \(G \) is a graph with at most \(2\chi(G) + 1 \) vertices, then \(\text{ch}(G) = \chi(G) \).

Theorem (N., Reed, Wu 2012). Ohba’s Conjecture is true!
Ohba’s Conjecture (2002)

If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

Theorem (N., Reed, Wu 2012). Ohba’s Conjecture is true!

Proof Ingredients. Induction, Hall’s Theorem, and greedy colouring.
Definition: Given a finite collection S of sets, a **system of distinct representatives** is a set $X = \{x_A : A \in S\}$ such that

1. $x_A \in A$ for all $A \in S$, and
2. $x_A \neq x_{A'}$ for all $A \neq A'$.
Definition: Given a finite collection \mathcal{S} of sets, a **system of distinct representatives** is a set $X = \{x_A : A \in \mathcal{S}\}$ such that

1. $x_A \in A$ for all $A \in \mathcal{S}$, and
2. $x_A \neq x_{A'}$ for all $A \neq A'$.

Example: A collection of sets with a system of distinct representatives:

$$\{1, 4\}, \{2, 4\}, \{1, 5, 3\}, \{4, 1, 2\}, \{1, 2, 5\}$$
The Main Tool: Hall’s Theorem

Definition: Given a finite collection S of sets, a **system of distinct representatives** is a set $X = \{x_A : A \in S\}$ such that

1. $x_A \in A$ for all $A \in S$, and
2. $x_A \neq x_{A'}$ for all $A \neq A'$.

Example: A collection of sets with a system of distinct representatives:

$$\{1, 4\}, \{2, 4\}, \{1, 5, 3\}, \{4, 1, 2\}, \{1, 2, 5\}$$
Definition: Given a finite collection S of sets, a system of distinct representatives is an $|S|$-tuple $(x_A)_{A \in S}$ such that

1. $x_A \in A$ for all $A \in S$, and
2. $x_A \neq x_{A'}$ for all $A \neq A'$.
Definition: Given a finite collection S of sets, a system of distinct representatives is an $|S|$-tuple $(x_A)_{A \in S}$ such that

1. $x_A \in A$ for all $A \in S$, and
2. $x_A \neq x_{A'}$ for all $A \neq A'$.

Observation: If there exists a system of distinct representatives, then for every $t \geq 1$ and distinct $A_1, \ldots, A_t \in S$ we have

$$\left| \bigcup_{i=1}^{t} A_i \right| \geq t.$$
Definition: Given a finite collection S of sets, a system of distinct representatives is an $|S|$-tuple $(x_A)_{A \in S}$ such that

1. $x_A \in A$ for all $A \in S$, and
2. $x_A \neq x_{A'}$ for all $A \neq A'$.

Hall’s Theorem (Hall, 1939): There exists a system of distinct representatives if and only if for every $t \geq 1$ and distinct $A_1, \ldots, A_t \in S$ we have

$$\left| \bigcup_{i=1}^{t} A_i \right| \geq t.$$
"A mathematics lecture without a proof is like a movie without a love scene...

This is already my third proof, make of that what you will."

– Hendrik Lenstra
“A mathematics lecture without a proof is like a movie without a love scene...

– Hendrik Lenstra
“A mathematics lecture without a proof is like a movie without a love scene...
This is already my third proof, make of that what you will.”
– Hendrik Lenstra
Back to Choosability

Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch (K}_2^\ast \text{k}) = k. \]

Proof.

Let \(L \) be a list assignment such that \(|L(v)| \geq k \) for each vertex. We show that there is an acceptable colouring by induction on \(k \).

The case \(k = 1 \) is trivial. So, assume that \(k \geq 2 \).

Case 1: There exists a part \(V_i = \{u, v\} \) such that \(L(u) \cap L(v) \neq \emptyset \).

Use the inductive hypothesis.

Case 2: Every part \(V_i = \{u, v\} \) satisfies \(L(u) \cap L(v) = \emptyset \).

Use Hall’s Theorem.
Theorem (Erdős, Rubin, Taylor 1979).

$$\text{ch}(K_{2\times k}) = k.$$
Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch}(K_{2\ast k}) = k. \]

Proof.
Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch}(K_{2^k}) = k. \]

Proof. Let \(L \) be a list assignment such that \(|L(v)| \geq k \) for each vertex.
Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch} (K_{2^*k}) = k. \]

Proof. Let \(L \) be a list assignment such that \(|L(v)| \geq k \) for each vertex. We show that there is an acceptable colouring by induction on \(k \).
Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch}(K_{2^*k}) = k. \]

Proof. Let \(L \) be a list assignment such that \(|L(v)| \geq k \) for each vertex. We show that there is an acceptable colouring by induction on \(k \).

The case \(k = 1 \) is trivial. So, assume that \(k \geq 2 \).
Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch} (K_{2^*k}) = k. \]

Proof. Let \(L \) be a list assignment such that \(|L(v)| \geq k \) for each vertex. We show that there is an acceptable colouring by induction on \(k \).

The case \(k = 1 \) is trivial. So, assume that \(k \geq 2 \)

Case 1: There exists a part \(V_i = \{u, v\} \) such that \(L(u) \cap L(v) \neq \emptyset \).

Use the inductive hypothesis.
Theorem (Erdős, Rubin, Taylor 1979).

\[\text{ch}(K_{2*k}) = k. \]

Proof. Let \(L \) be a list assignment such that \(|L(v)| \geq k \) for each vertex. We show that there is an acceptable colouring by induction on \(k \).

The case \(k = 1 \) is trivial. So, assume that \(k \geq 2 \)

Case 1: There exists a part \(V_i = \{u, v\} \) such that \(L(u) \cap L(v) \neq \emptyset \).

Use the inductive hypothesis.

Case 2: Every part \(V_i = \{u, v\} \) satisfies \(L(u) \cap L(v) = \emptyset \).

Use Hall’s Theorem. \(\square \)
Theorem (N., Reed, Wu 2012). If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

As in Erdős, Rubin and Taylor's proof, we apply induction and Hall's Theorem. We use these tools to obtain information about the distribution of colours in the lists. After that, we show that an acceptable colouring can be obtained from a simple greedy colouring procedure.
Theorem (N., Reed, Wu 2012). If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.
Theorem (N., Reed, Wu 2012). If G is a graph with at most $2\chi(G) + 1$ vertices, then $ch(G) = \chi(G)$.

As in Erdős, Rubin and Taylor’s proof, we apply **induction** and **Hall’s Theorem**.
Theorem (N., Reed, Wu 2012). If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

As in Erdős, Rubin and Taylor’s proof, we apply induction and Hall’s Theorem.

We use these tools to obtain information about the distribution of colours in the lists.
Theorem (N., Reed, Wu 2012). If G is a graph with at most $2\chi(G) + 1$ vertices, then $\text{ch}(G) = \chi(G)$.

As in Erdős, Rubin and Taylor’s proof, we apply induction and Hall’s Theorem.

We use these tools to obtain information about the distribution of colours in the lists.

After that, we show that an acceptable colouring can be obtained from a simple greedy colouring procedure.
What about graphs on more than $\chi(G) + 1$ vertices? In general, we cannot say that $\chi(G) = \chi(G)$. However, perhaps we can still obtain a good bound on $\chi(G)$ in terms of $\chi(G)$ with a less restrictive bound on the number of vertices. In particular, what is the best upper bound on $\chi(G)$ for graphs with at most $3\chi(G)$ vertices?
Question: What about graphs on more than $2\chi(G) + 1$ vertices?
Question: What about graphs on more than $2\chi(G) + 1$ vertices?

In general, we cannot say that $\text{ch}(G) = \chi(G)$.

However, perhaps we can still obtain a good bound on ch in terms of χ with a less restrictive bound on the number of vertices.
Question: What about graphs on more than $2\chi(G) + 1$ vertices?

In general, we **cannot** say that $\text{ch}(G) = \chi(G)$

However, perhaps we can still obtain a good bound on ch in terms of χ with a **less restrictive** bound on the number of vertices.

In particular, what is the best upper bound on $\text{ch}(G)$ for graphs with at most $3\chi(G)$ vertices?
Graphs for which $|V(G)| \leq 3\chi(G)$

Theorem (Kierstead 2000).

Theorem (N., West, Wu, Zhu 2013). If G is a graph with at most $3\chi(G)$ vertices, then $\text{ch}(G) \leq \left\lceil \frac{4\chi(G) - 1}{3} \right\rceil$.

Jonathan Noel

Choosability of Graphs with Bounded Order: Ohba’s
Theorem (Kierstead 2000).

\[\text{ch} (K_{3^* k}) = \left\lceil \frac{4k - 1}{3} \right\rceil. \]
Theorem (Kierstead 2000).

\[\text{ch}(K_{3* k}) = \left\lceil \frac{4k - 1}{3} \right\rceil. \]

Theorem (N., West, Wu, Zhu 2013). If \(G \) is a graph with at most \(3\chi(G) \) vertices, then \(\text{ch}(G) \leq \left\lceil \frac{4\chi(G) - 1}{3} \right\rceil. \)
The Full Theorem

For every graph G, $\text{ch}(G) \leq \max\{\chi(G), \lceil |V(G)| + \chi(G) - 1 \rceil\}$.

Proof Ingredients.
Induction and Hall's Theorem.

Note: This result implies Ohba's Conjecture, as well as the result on graphs for with at most $3\chi(G)$ vertices.
Theorem (N., West, Wu, Zhu 2013). For every graph G,

$$\text{ch}(G) \leq \max \left\{ \chi(G), \left\lceil \frac{|V(G)| + \chi(G) - 1}{3} \right\rceil \right\}.$$
The Full Theorem

Theorem (N., West, Wu, Zhu 2013). For every graph G,

$$ch(G) \leq \max \left\{ \chi(G), \left\lceil \frac{|V(G)| + \chi(G) - 1}{3} \right\rceil \right\}.$$

Note: This result implies Ohba’s Conjecture, as well as the result on graphs for with at most $3\chi(G)$ vertices.
Theorem (N., West, Wu, Zhu 2013). For every graph G,
\[
\text{ch}(G) \leq \max \left\{ \chi(G), \left\lceil \frac{|V(G)| + \chi(G) - 1}{3} \right\rceil \right\}.
\]

Proof Ingredients. Induction and Hall’s Theorem.

Note: This result implies Ohba’s Conjecture, as well as the result on graphs for with at most $3\chi(G)$ vertices.
A Theme: the choice number of K_{m^*k} might give an upper bound on the choice number of all k-chromatic graphs on at most mk vertices.

Question 1: Does this remain true for $m \geq 4$?

Question 2: What is the choice number of K_{4^*k}?

Lower bound: $\lceil \frac{3k^2}{2} \rceil$ due to Yang 2003.

Upper bound: $\lceil \frac{5k - 1}{3} \rceil$ due to N., West, Wu, Zhu 2013.
A Theme: the choice number of K_{m^*k} might give an upper bound on the choice number of all k-chromatic graphs on at most mk vertices.

This is true for $m = 1, 2, 3$.

Question 1: Does this remain true for $m \geq 4$?

Question 2: What is the choice number of K_{4^*k}?

Lower bound: $\left\lfloor \frac{3k}{2} \right\rfloor$ due to Yang 2003.

Upper bound: $\left\lceil \frac{5k - 1}{3} \right\rceil$ due to N., West, Wu, Zhu 2013.
A Theme: the choice number of K_{m*k} might give an upper bound on the choice number of all k-chromatic graphs on at most mk vertices.

This is true for $m = 1, 2, 3$.

Question 1: Does this remain true for $m \geq 4$?
A Theme: the choice number of $K_{m \ast k}$ might give an upper bound on the choice number of all k-chromatic graphs on at most mk vertices.

This is true for $m = 1, 2, 3$.

Question 1: Does this remain true for $m \geq 4$?

Question 2: What is the choice number of $K_{4 \ast k}$?
A Theme: the choice number of $K_{m\ast k}$ might give an upper bound on the choice number of all k-chromatic graphs on at most mk vertices.

This is true for $m = 1, 2, 3$.

Question 1: Does this remain true for $m \geq 4$?

Question 2: What is the choice number of $K_{4\ast k}$?

Lower bound: $\left\lceil \frac{3k}{2} \right\rceil$ due to Yang 2003.

Upper bound: $\left\lfloor \frac{5k-1}{3} \right\rfloor$ due to N., West, Wu, Zhu 2013.
Question 1: What is the choice number of $K_{4* k}$?

Question 2: Is it true that $K_{m* k}$ has the largest choice number among k-chromatic graphs on at most $m k$ vertices?

Question 3: Does there exist a function $f(k) = o(k^2)$ such that for every graph G,

$$\text{ch} (G^2) \leq f (\chi (G^2))$$

(it is known that we cannot do better than $f(k) = ck \log(k)$).