Mathematical Methods EXAMPLE SHEET 6 Michaelmas Term 2003

The following questions are modified exam questions

Problem 1
The differential equation

is subject to the boundary conditions

u'(0) = 0,

W'(1) = au(0),

where a is a real constant, f is a real continuous function, and ' = %. What is the homogeneous adjoint
problem? The Green’s function G(x,y) for the original problem satisfies
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dz? + dx @ =y)
on [0, 1] with the same boundary conditions, where ¢ is the Dirac d-function. Find the Green’s function, and
express the solution of the original problem in terms of an integral. Sketch (roughly) G(z,y) for y € [0, 1]
and 0 < x < 1. Suppose

0 for x<s,
hiz) = { 1—e% for x> s.
Find %, g%’; and show that
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in the sense of distributions.

Problem 2
Consider the nonlinear oscillator equation
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where A and k are real constants. Show that in the limit £ < 1 there is a closed trajectory 1With period
27 + O(k?) providing |A\| < 1, and that its leading-order approximation is 2o = A + 2(1 — A?)2 cost. [You
may use the fact that cos® ysiny = 1(siny + sin3y).|

Find F(x) such that the system may be written in Liénard form
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Sketch the trajectories in the (x,y)-plane for the cases A = 0,k = 3 and A\ = 2,k = 3. Find the critical point
and show that its stability changes between these cases, and state what this implies about the stability of
the closed trajectory (assuming it exists)?
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Problem 3
Let y be the solution of

1
e +ay +2y* =0, y(0)=0, y(1)= 5

where 7/ —dy and 0 < e < 1.

(i) Show that there can be no (nontrivial, i.e. constant) boundary layer at = = 1.
(ii) Find the leading-order outer solution valid for z = O(1) (use y(1) = 3).

(iii) Show that the scaling of the boundary layer at z =0 is x = €23

(iv) By solving the leading-order boundary layer equation and matching with the outer solution, show that
the leading-order boundary layer solution is

T w2 o8} w2 T
A/ e zdu, where A7l = / e 2du=,/—.
0 0 2

(v) State a leading order composite expansion for y(z,€).

(vi) Now suppose that the boundary condition at = = 1 is changed to y(1) = 1. What happens to the outer

solution y as © — 07 Show that the boundary layer scaling is now x = €27 Y = € 2y, and find the
new boundary layer equation.



