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&

Wasserstein distances
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Model neighbourhood
Measure µ (or P) will denote a model, such as

• µ = µ̂N = 1
N

∑N
i=1 δx i is the empirical measure of the

observations/test set.

• µ comes from a mathematical modelling effort, e.g., an SDE;

There are many ways to build a neighbourhood Bδ(µ) of µ:

▶ data perturbation

▶ support estimates

▶ moments contraints

▶ density constraints

▶ Prokhorov distance

▶ Hellinger distance

▶ Kullback–Leibler divergence/entropy bounds

▶ and more...
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Wasserstein distance

For p ≥ 1, µ, ν ∈ P(S) with pth moments, set

Wp(µ, ν) = inf

{∫
S×S

d(x , y)p π(dx , dy) : π ∈ Cpl(µ, ν)
}1/p

,

where Cpl(µ, ν) = {π : π(· × S) = µ and π(S × ·) = ν}.

metric d on S =⇒ metric W on P(S)
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Observe historical returns r1, . . . , rN assumed to follow a
time-homogeneous ergodic Markov chain on Rd with an invariant
distribution µ. Should we work with

the data points (r i )Ni=1 or the empirical measure µ̂N =
1

N

N∑
i=1

δr i ?

Source: J.

Ebert, V.

Spokoiny, A.

Suvorikova

arXiv:1703.03658
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Wasserstein vs Euclidean mean (MNIST data)
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Wasserstein vs Euclidean mean (MNIST data)
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Small uncertainty limit

Key property: µ̂N
Wp−→ µ + cnv rates, see Fournier & Guillin ’14

Esfahani & Kuhn ’18 argue that using Wasserstein balls gives

▶ finite sample guarantees,

▶ asymptotic consistency,

▶ tractability (see also Eckstein & Kupper ’19)
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Large uncertainty limit

Pflug, Pichler & Wozabal ’12 use Wasserstein balls for robust
portfolio selection:

inf
a:⟨a,1⟩=1

sup
ν∈Bδ(µ)

(
Eν [⟨a,R⟩] + γVarν [⟨a,R⟩]

)
and show that

a∗(δ)
δ→∞−→

(
1

N
, . . . ,

1

N

)
which may not be true for weaker or stronger metrics.
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OT & Distributionally Robust Optimization

based on Bartl, Drapeau, O. and Wiesel, Proc. R. Soc. A 477: 20210176, 2021

O. and Wiesel, Math. Finance 31(4): 1454–1493, 2021.

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 11



Problem Setting
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Consider the following optimisation problem

V = inf
a∈A

∫
S
f (a, x)µ(dx),

where A is the set of controls, S is the state space and µ is the model.

Examples:

▶ risk neutral pricing: EQ[f (ST )],

▶ optimal investment: infa∈A EP[−U(x + ⟨a,ST − S0⟩)],
▶ optimised certainty equivalents: infa∈R EP[a− U(X + a)]

▶ marginal utility pricing (Davis’ price)...

▶ OLS regression: infa∈Rd
1
N

∑N
i=1(y

i − ⟨a, x i ⟩)2,

▶ ML/NN: inf 1
N

∑N
i=1 |y i − ((A2(·) + b2) ◦ σ ◦ (A1(·) + b1)) (x

i )|p
over a = (A1,A2, b1, b2) ∈ A = Rk×d × Rd×k × Rk × Rd ,
where (x i , y i )Ni=1 is the training set.

▶

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 13



Consider the following optimisation problem

V = inf
a∈A

∫
S
f (a, x)µ(dx),

where A is the set of controls, S is the state space and µ is the model.
Examples:

▶ risk neutral pricing: EQ[f (ST )],

▶ optimal investment: infa∈A EP[−U(x + ⟨a,ST − S0⟩)],
▶ optimised certainty equivalents: infa∈R EP[a− U(X + a)]

▶ marginal utility pricing (Davis’ price)...

▶ OLS regression: infa∈Rd
1
N

∑N
i=1(y

i − ⟨a, x i ⟩)2,

▶ ML/NN: inf 1
N

∑N
i=1 |y i − ((A2(·) + b2) ◦ σ ◦ (A1(·) + b1)) (x

i )|p
over a = (A1,A2, b1, b2) ∈ A = Rk×d × Rd×k × Rk × Rd ,
where (x i , y i )Ni=1 is the training set.

▶
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Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 15



Given our optimisation problem

V = inf
a∈A

∫
S
f (a, x)µ(dx),

we want to understand its dependence on the “model” µ.

We are interested in computing

∂V

∂µ
– the uncertainty sensitivity of the problem

▶ parametric programming and statistical inference
see Armacost & Fiacco ’76 . . . Bonnans & Shapiro ’13;

▶ qualitative/quantitative stability in µ
see Dupačová ’90, Römisch ’03

▶ robust optimisation
see Bertsimas, Gupta & Kallus ’18
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Distributionally Robust Optimisation (DRO) considers

V (δ) = inf
a∈A

sup
ν∈Bδ(µ)

∫
S
f (a, x)ν(dx),

see Scarf ’58, . . . ,Rahimian & Mehrotra ’19, where

Bδ(µ) is a δ–neighbourhood of the model µ.

We propose to compute

Υ := V ′(0) = lim
δ↘0

V (δ)− V (0)

δ
and ℶ := lim

δ↘0

a∗(δ)− a∗(0)

δ
,

with Bδ(µ) being Wasserstein balls around µ.

Υ the sensitivity of the value w.r.t. Υπoδεγµα, the Model.

ℶ the sensitivity of ,בקרה the control, w.r.t. the Model.
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Aside on convex duality

Let E be a normed vector space. For Θ : E → R ∪ {+∞} convex, we
consider

Θ∗(p) := sup
x∈E

[⟨p, z⟩ −Θ(z)] , p ∈ E∗.

Theorem (F-R duality)
Let Θ,Ξ be two convex functions on E , s.t. ∃x0 ∈ E , Θ(x0) < ∞,
Ξ(x0) < ∞ and Θ continuous at x0. Then

inf
x∈E

(Θ(x) + Ξ(x)) = max
p∈E∗

(−Θ∗(−p)− Ξ∗(p)) .
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I = sup
π∈Φµ,δ

∫
f (y)π(dx , dy), Φµ,δ =

π ∈
⋃

ν∈P(S)

Π(µ, ν) :

∫
cdπ ≤ δ


J = inf

{
λδ +

∫
ϕdµ︸ ︷︷ ︸

J(λ,ϕ)

: λ ≥ 0, ϕ(x) + λc(x , y) ≥ f (y)︸ ︷︷ ︸
Λc,f

}

Theorem (Blanchet & Murthy ’19)

Let S be Polish, c ≥ LSC and c(x , y) = 0 iff x = y , µ ∈ P(S), f ∈ L1(µ)
and USC. Then

I = J = inf
λ≥0

{
λδ +

∫
ϕλdµ

}
,

with J attained and where

ϕλ(x) := sup
y∈S

{f (y)− λc(x , y)}.
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Regularized optimization

▶ Square-root LASSO: Take c = ∥ · ∥2
q.

inf
β∈Rd

sup
d(µ,ν)≤δ

Eν [(y −β⊺x)2] = inf
β∈Rd

{√
Eµ[(y − β⊺x)2]+

√
δ∥β∥p

}2

.

▶ Regularised logistic regression: Take c = ∥ · ∥q.

inf
β∈Rd

sup
d(µ,ν)≤δ

Eν [log(1 + e−Yβ⊺X )] = inf
β∈Rd

{Eµ[log(1 + e−Yβ⊺X )] + δ∥β∥p}.

▶ Distributionally robust average value-at-risk: Take c = | · |.

AVaRα = sup
dη
dµ≤α−1

Eη[X ], AVaRα = sup
dη
dν ≤α−1, d(µ,ν)≤δ

Eη[X ].

AVaRα = AVaRα + δα−1.
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Main results

Part I: Sensitivity of the value function
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Uncertainty Sensitivity of DRO problems

Recall our DRO problem (for simplicity A = Rk , S = Rd)

V (δ) = inf
a∈Rk

sup
ν∈Bδ(µ)

∫
Rd

f (x , a) ν(dx).

Theorem
For p > 1, 1

p + 1
q = 1, and under suitable assumptions, we have

Υ := V ′(0) = lim
δ→0

V (δ)− V (0)

δ
= inf

a∗∈Aopt(0)

(∫
Rd

|∇x f (x , a
∗)|q µ(dx)

)1/q

,

where Aopt(δ) denotes the set of optimisers for V (δ).
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Υ: uncertainty sensitivity of the value function

We can restate the result as

inf
a∈Rk

sup
ν∈Bδ(µ)

∫
Rd

f (x , a) ν(dx) ≈ inf
a∈Rk

∫
Rd

f (x , a) µ(dx) + Υδ + o(δ)

where

Υ = inf
a∗∈Aopt(0)

(∫
Rd

|∇x f (x , a
∗)|q µ(dx)

)1/q

.

▶ extends to DRO problems with linear constraints, e.g., martingale;

▶ extends to general semi-norms;

▶ extends to sensitivity at a fixed δ > 0: V ′(δ+);

▶ no first order loss from using a∗(0) instead of a∗(δ).
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Sketch of the proof (1)

Sensitivity of the value function: “≤”

V (δ)− V (0) ≤ sup
π∈Cδ(µ)

∫
f (y , a∗)− f (x , a∗)π(dx , dy)

= sup
π∈Cδ(µ)

∫ ∫ 1

0

⟨∇x f (x + t(y − x), a∗), (y − x)⟩ dt π(dx , dy)

≤ δ sup
π∈Cδ(µ)

∫ 1

0

(∫
|∇x f (x + t(y − x), a∗)|qπ(dx , dy)

)1/q

dt.

+ growth conditions + DCT.
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Sketch of the proof (2)
Sensitivity of the value function: “≥”

T (x) :=
∇x f (x , a

∗)

|∇x f (x , a∗)|2−q

(∫
|∇x f (z , a

∗)|q µ(dz)
)1/q−1

πδ := [x 7→ (x , x + δT (x))]#µ ∈ Cδ(µ)

We can use πδ to get a lower bound:

V (δ)− V (0)

δ
≥ 1

δ

∫
f (x + δT (x), aδ)− f (x , aδ)µ(dx)

=

∫ ∫ 1

0

⟨∇x f (x + tδT (x), aδ),T (x)⟩ dt µ(dx)

δ→0−→
∫
⟨∇x f (x , a

∗),T (x)⟩µ(dx) =
(∫

|∇x f (x , a
∗)|q µ(dx)

)1/q

.

Sensitivity of the optimisers: similar but more involved + Langrange
multipliers + min-max
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Example 1: AV@R minimisation
Consider X ∼ µ vector of returns in Rd and a ∈ A ⊂ Rd portfolio

V (0) = inf
a∈A

AV@Rα (a · X ) = inf
a∈A,m∈R

{
m +

1

α

∫
(a · x −m)+

µ(dx)

}
And its robust version reads

V (δ) = inf
a∈A

RAV@Rα (a · X ) = inf
a∈A,m∈R

sup
ν∈Bδ(µ)

{
m +

1

α

∫
(a · x −m)+

ν(dx)

}
,

where Bδ(µ) = {ν ∈ P(S) : Wp(µ, ν) ≤ δ} . A direct computation gives

Υ = |a∗|
(

1

αq

∫
1{a∗·x≥V@Rα(a∗·L)}

) 1
q

µ(dx) =
|a∗|
α1/p

, or

inf
a∈A

RAV@Rα (a · X ) = AV@Rα (a∗ · X ) +
|a∗|
α1/p

δ + o(δ).
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Example 2: Mean-variance optimal investment

Consider X ∼ µ vector of returns in Rd and A = {a : ⟨a, 1⟩ = 1}.

V (0) = inf
a∈A

E[⟨a,X ⟩] + γVARµ(⟨a,X ⟩) = inf
a∈A

sup
Z :E[Z ]=1,E[Z 2]=1+γ2

E
[
⟨a,X ⟩Z

]
And its robust version, for p = q = 2, reads

V (δ) = inf
a∈A

sup
(ξ,Z):E[⟨ξ,ξ⟩]≤δ2,E[Z ]=1,E[Z 2]=1+γ2

E
[
⟨a,X + ξ⟩Z

]
A two-step computation recovers the result in Pflug et al. ’12:

Υ = |a∗|
√
1 + γ2.
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Ex 1: Decision making: prefs representation

Let X be agent’s wealth/consumption. Savage ’51, von Neuman &
Morgenstern ’53 give

P ⪰ P̌ ⇔ EP[u(X )] ≥ EP̌[u(X )].

An ambiguity averse agent of Gilboa & Schmeidler ’89, might instead
consider

P ⪰ρ P̌ ⇔ min
P̃∈Bδ(P)

EP̃[u(X )] ≥ min
P̃∈Bδ(P̌)

EP̃[u(X )].

for Bδ(P) a δ-ball around P in some metric ρ,

(also called constraint preferences by Hansen & Sargent ’01).
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Variational prefs: relative entropy vs Wasserstein

The variational/constraint preferences with ρ-ball Bδ(P)

U(X ) := min
P̃∈Bδ(P)

EP̃[u(X )]

up to o(δ) are equivalent to:

ρ =Rel. entropy

U(X ) ≈ EP[u(X ))]− δ
√

2VarP(u(X ))

(cf. Lam ’16)

ρ = W2 Wasserstein

U(X ) ≈ EP[u(X ))]− δ
√
EP [|u′(X )|2]

(cf. our Υ-sensitivity)
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Example 2: EUM & Optimal investment
X = ST − S0 ∼ µ vector of returns in S ⊂ Rd and A ⊆ Rd admissible
strategies; wlog r = 0, initial capital x = 0.
u : R → R strictly concave, continuously differentiable, bounded from
above. Consider the expected utility maximisation problem:

V (0) = sup
a∈A

Eµ [u (⟨X , a⟩)]

The optimal a⋆ ∈ A is characterised through the FOC

Eµ [X · u′ (⟨X , a⋆⟩)] = 0

and

V ′(0) = − (Eµ [|u′(⟨X , a⋆⟩)|q])1/q |a⋆|

is the sensitivity to ambiguity aversion.
Note that V ′(0) < 0 and is increasing in p.
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Binomial model with an exponential utility
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Figure: Sensitivities in function of the market’s Sharpe ratio

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 39



N (m, σ2) model with an exponential utility

Figure: Sensitivities for p = ∞ in function of the market’s Sharpe ratio m
σ

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 40



Ex 3: Robust call pricing (martingale constraint)
We optimise over measures ν ∈ Bδ(µ) satisfying

∫
x ν(dx) = S0.

A constrained version of our main results gives, for p = 2,

Υ = inf
a∗∈Aopt(0)

(∫ (
∇x f (x , a

∗)−
∫

∇x f (y , a
∗)µ(dy)

)2

µ(dx)

)1/2

,

i.e., Υ is the standard deviation of ∇x f (·, a∗) under µ.

Let µ ∼ ST/S0 with (St) from the BS(σ) model and

RBS(δ) = sup
ν∈Bδ(µ)

{∫
(S0x − K)+ν(dx) :

∫
xν(dx) = 1

}
so that RBS(0) = BSCall(S0,K , σ). For p = 2 we find

Υ(K) = S0

√
Φ(d−)(1− Φ(d−)).

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 41



Ex 3: Robust call pricing (martingale constraint)
We optimise over measures ν ∈ Bδ(µ) satisfying

∫
x ν(dx) = S0.

A constrained version of our main results gives, for p = 2,

Υ = inf
a∗∈Aopt(0)

(∫ (
∇x f (x , a

∗)−
∫

∇x f (y , a
∗)µ(dy)

)2

µ(dx)

)1/2

,

i.e., Υ is the standard deviation of ∇x f (·, a∗) under µ.
Let µ ∼ ST/S0 with (St) from the BS(σ) model and

RBS(δ) = sup
ν∈Bδ(µ)

{∫
(S0x − K)+ν(dx) :

∫
xν(dx) = 1

}
so that RBS(0) = BSCall(S0,K , σ). For p = 2 we find

Υ(K) = S0

√
Φ(d−)(1− Φ(d−)).
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Robust call: numerics

Exact value RBS(δ), first-order (FO) approximation and the model (BS)
price.
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BS model with S0 = T = 1, K = 1.2, r = q = 0, σ = 0.2. δ = 0.05
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Robust call: classical vs robust

Take r = q = 0, T = 1, S0 = 1 and µ =BS(σ) log-normal.

RBS(δ) = sup
ν∈Bδ(µ)

∫
S
(s − K )+ν(ds).

Parametric Approach

Bδ(µ) = {BS(σ̃) : |σ̃ − σ| ≤ δ}
Then

RBS ′(0) = V = S0ϕ(d+).

Non-parametric Approach

Bδ(µ) = {ν : W2(µ, ν) ≤ δ}
Then

RBS ′(0) = Υ = S0

√
Φ(d−)(1− Φ(d−))
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BS Call: Vega(V) vs Upsilon(Υ)
Consider the simple example of a call option pricing.

Take r = q = 0, T = 1, S0 = 1 and µ =BS(σ) model.
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Hedging: ∆–Vega vs ∆–Υ (with S. Moliner ’22)

Observe that Υ[aSt + b] = 0, i.e., cash and stock carry no uncertainty.

Comparison of two hedging approaches:

▶ ∆–Vega: at rebalancing buy/sell stock + ATM Call so that
∆ = 0 = V

▶ ∆–Υ: at rebalancing buy/sell stock + ATM Call so that
∆ = 0 and Υ is minimized
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W-Distributional Robustness of NNs

with X. Bai, G. He, Y. Jiang
NeurIPS 23

GitHub: JanObloj/W-DRO-Adversarial-Methods

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 48



Image classification setup
▶ An image is interpreted as a tuple (x , y) ∈ X × Y, where

x denotes the feature vector and y denotes the class.

▶ W.l.o.g, we take X = [0, 1]n and Y = {1, . . . ,m}.
▶ P is a given data distribution on X × Y.

▶ A neural network is a map fθ : X → Rm

fθ(x) = f l ◦ · · · ◦ f 1(x), where f i (x) = σ(w ix + bi ).

▶ Prediction of x under fθ is given by argmax1≤i≤m{fθ(x)i}.

The aim of image classification is to find a model with high accuracy

A := P(arg max
1≤i≤m

{fθ(x)i} = y) = P(S).

This is achieved by training the network fθ according to:

inf
θ∈Θ

EP[J(θ, x , y)] where J(θ, x , y) = L(fθ(x), y).
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NN & adversarial attacks

Consider data (x , y) from P and a NN trained according to:

inf
θ

∫
|J(θ, x , y)|P(dx , dy).

Source: Goodfellow, Shlens & Szegedy ICLR 2015
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Background on adv attacks/training
Adversarial attack:

▶ Fast Gradient Sign Method (FGSM), see Goodfellow, Shlens &
Szegedy ’14

▶ Projected Gradient Descent (PGD), see Madry et al. ’18

▶ Black-box attacks: Zeroth order optimization (Chen et al. ’17),
query-limited attack (Ilyas et al. ’18) . . .

▶ Autoattack, see Croce & Hein ’20

Adversarial training:

▶ Random data generation by GAN/ diffusion models, see Gowal et al.
’21 and Wang et al. ’23

▶ Robustness–accuracy tradeoff, see TRADES Zhang et al. ’19, MART
Wang et al. ’20, SCORE Pang et al. ’22

▶ W-DRO based methods: Sinha, Namkoong & Duchi ’18, Trillos &
Trillos ’22, Bui et al. ’22 . . .

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 52



Adversarial robustness dataset and benchmarks

▶ Adversarial attacks and defence is a large field in ML

▶ RobustBench tracks over 3000 papers and maintains a
leaderboard for CIFAR datasets
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W-DRO formulation
Clean training:

inf
θ∈Θ

EP[L(fθ(x), y)].

Adversarial training (Madry et al. ’18):

inf
θ∈Θ

EP

[
max

∥x−x′∥r≤δ
L(fθ(x

′), y)

]
.

W-DRO adversarial training:

inf
θ∈Θ

sup
Q∈Bδ(P)

EQ[L(fθ(x), y)],

where Bδ(P) is the p-Wasserstein ball induced by a ‘distance’ d on
X × Y defined by, r > 1,

d((x , y), (x ′, y ′)) = ∥x − x ′∥r +∞1{y ̸=y ′}.

Taking the ∞-Wasserstein ball reduces W-DRO to Madry et al..

Jan Ob lój ENSAE Paris, May 2025 DRO Sensitivity 54



W-DRO formulation
Clean training:

inf
θ∈Θ

EP[L(fθ(x), y)].

Adversarial training (Madry et al. ’18):

inf
θ∈Θ

EP

[
max

∥x−x′∥r≤δ
L(fθ(x

′), y)

]
.

W-DRO adversarial training:

inf
θ∈Θ

sup
Q∈Bδ(P)

EQ[L(fθ(x), y)],

where Bδ(P) is the p-Wasserstein ball induced by a ‘distance’ d on
X × Y defined by, r > 1,

d((x , y), (x ′, y ′)) = ∥x − x ′∥r +∞1{y ̸=y ′}.

Taking the ∞-Wasserstein ball reduces W-DRO to Madry et al..
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Remark that in reality training is done using

P̂ =
1

M

M∑
i=1

δ(xi ,yi ),

where {(xi , yi ) : i = 1, . . . ,M} is the training set.

A (W∞, l∞) δ-ball around P̂ contains all the measures

1

M

M∑
i=1

δ(x′i ,yi )
, ∥xi − x ′

i ∥∞ ≤ δ for i = 1, . . . ,M,

i.e., it recovers pointwise perturbations of the pixels.
However, a (W2, l2) δ-ball around P̂ contains many more measures, discrete
and continuous, e.g., uniform measure over

X ∩
M⋃
i=1

{(x , yi ) : |xk
i − xk | ≤ ε for k = 1, . . . n}

for ε small enough (ε3 < 3δ2/2n).
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First order approximation

Let Jθ(x , y) = L(fθ(x), y) and V (δ) = supQ∈Bδ(P) EQ[L(fθ(x), y)].

Theorem
Assuming Jθ is Lipschitz, the following first order approximations hold:

(i) V (δ) = V (0) + δΥ+ o(δ), where

Υ =
(
EP∥∇xJθ(x , y)∥qs

)1/q

.

(ii) V (δ) = EQδ
[Jθ(x , y)] + o(δ), where

Qδ =
[
(x , y) 7→

(
x + δh(∇xJθ(x , y))∥Υ−1∇xJθ(x , y)∥q−1

s , y
)]

#
P,

and h is uniquely determined by ⟨h(x), x⟩ = ∥x∥s .
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Wassserstein distributionally adversarial attacks

Based on the first order approximation, we propose W-FGSM attack
given by

x ′ = x + δh(∇xJθ(x
t , y))∥Υ−1∇xJθ(x , y)∥q−1

s , (1)

Similarly, we propose W-PGD attack as

x t+1 = projδ
(
x t + αh(∇xJθ(x

t , y))∥Υ−1∇xJθ(x
t , y)∥q−1

s

)
, (2)

where α is the stepsize, projδ is the projection onto Wasserstein ball
Bδ(P) and t = 1, . . . , tmax .

In particular, under the case (W∞, ℓ∞) we retrieve FGSM attack given by

x ′ = x + δ sgn(∇xJθ(x , y)).
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Loss functions

For pointwise attacks a combination of cross-entropy (CE) and Difference of
Logits Ratio (DLR) losses works well. For z = (z1, . . . , zm) = fθ(x) and
z(1) ≥ · · · ≥ z(m) the order statistics of z ,

DLR(z , y) =


− zy − z(2)

z(1) − z(3)
, if zy = z(1),

− zy − z(1)

z(1) − z(3)
, else.

Under distributional threat models, we propose ReDLR (Rectified DLR) loss:

ReDLR(z , y) = −(DLR)−(z , y) =

− zy − z(2)

z(1) − z(3)
, if zy = z(1),

0, else.

(3)
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Comparison of adversarial attacks
CIFAR-10 dataset: 60k (50k+10k) color (3 channels) images across 10 classes.
We normalize the input feature as x ∈ [0, 1]3×32×32.

Recall S = {(x , y) ∈ X × Y : y = argmax1≤i≤m{fθ(x)i}} .
Define the adversarial accuracy Aδ as

Aδ := inf
Q∈Bδ(P)

Q(S)

and compare it under classical W∞ and W2 threat models:
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Comparison of adversarial attacks

CIFAR-10 dataset: 60k (50k+10k) color (3 channels) images across 10 classes.
We normalize the input feature as x ∈ [0, 1]3×32×32.

Recall S = {(x , y) ∈ X × Y : y = argmax1≤i≤m{fθ(x)i}} .
Define the adversarial accuracy Aδ as

Aδ := inf
Q∈Bδ(P)

Q(S)

and compare it under classical W∞ and W2 threat models:

W∞ W2

Methods AutoAttack W-PGD-CE W-PGD-DLR W-PGD-ReDLR

l∞ 57.66% 61.32% 79.00% 45.46%
l2 75.78% 74.62% 78.69% 61.69%
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Bounds on adversarial accuracy

We write Rδ := Aδ/A as a metric of robustness for neural networks. Any
admissible attack gives an upper bound on adversarial accuracy:

Rδ ≤ Ru
δ := Qδ(S)/A.
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Bounds on adversarial accuracy

We write Rδ := Aδ/A as a metric of robustness for neural networks. Any
admissible attack gives an upper bound on adversarial accuracy:

Rδ ≤ Ru
δ := Qδ(S)/A.

To obtain a lower bound we impose:

▶ 0 < Q(S) < 1,

▶ Wp(P(· | S),Q(· | S)) +Wp(P(· | Sc),Q(· | Sc)) = o(δ),

for any Q ∈ Bδ(P).
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Bounds on adversarial accuracy

We write Rδ := Aδ/A as a metric of robustness for neural networks. Any
admissible attack gives an upper bound on adversarial accuracy:

Rδ ≤ Ru
δ := Qδ(S)/A.

Theorem (lower bound)
We write W (0) = EP[Jθ(x , y)|Sc ]. Under suitable assumptions, we have an
asymptotic lower bound as δ → 0

Rδ ≥ W (0)− V (δ)

W (0)− V (0)
+ o(δ) = Rl

δ + o(δ) (4)

where Rl
δ = min{R̃l

δ,R
l
δ} and the first order approximations are given by

R̃l
δ =

W (0)− EQδ [Jθ(x , y)]

W (0)− V (0)
and Rl

δ =
W (0)− V (0)− δΥ

W (0)− V (0)
. (5)
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Bounds on W∞-adversarial accuracy

0.88 0.90 0.92 0.94 0.96 0.98

0.88

0.90

0.92

0.94

0.96

0.98

(W∞, l∞) Threat Model with δ = 2/255
Ru
Rl
R

0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

(W∞, l∞) Threat Model with δ = 4/255
Ru
Rl
R

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(W∞, l2) Threat Model with δ = 1/8
Ru
Rl
R

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(W∞, l2) Threat Model with δ = 1/4
Ru
Rl
R
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time compared to the diagonal.
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Comparison of (W∞, l∞) computational times

PreAct ResNet ResNet WRN WRN WRN
ResNet-18 -18 -50 -28-10 -34-10 -70-16

R 197 175 271 401 456 2369
Rl&Ru 0.52 0.49 0.17 0.55 0.53 1.46

Computation times of (W∞, l∞), δ = 8/255 attack for one mini-batch of size

100, in seconds. We compute R by AutoAttack and average the computation

time over models on RobustBench grouped by their architecture.
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Bounds on W2-adversarial accuracy
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Improved bounds on W2-adversarial accuracy
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Out of sample performance

Theorem
Let ε > 0. With probability at least 1− K exp(−KNεn) we have

V (δ) ≤ V̂ (δ) + ε sup
Q∈B∗

δ
(P̂)

(
EQ∥∇xJθ(x , y)∥qs

)1/q

+ o(ε) ≤ V̂ (δ) + Lε

where B∗
δ (P̂) = argmaxQ∈Bδ(P̂) EQ [Jθ(x , y)] and K only depends on p and n.

Corollary
With probability at least 1− K exp(−KNδn) we have

A(P)− Aδ(P) ≤ V̂ (δ)− V̂ (0)

Ŵ (0)− Ĉ(0)
+

2Lδ

Ŵ (0)− Ĉ(0)
+ o(δ),

where ·̂ are computed using the training set.
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Limitations and constraints
A (W∞, l∞) threat model with budget δ = 8/255 can make significant changes

to the image.

WideResNet-28-10 (Gowal et al., 2020), the confidence goes

73% ⇝ 61% ⇝ 60%.
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Limitations and constraints
Our theoretical bounds for (W∞, l∞) threat model with budget δ = 8/255.

Bounds fail in some cases as we are outside of the first order approximation

regime.
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LHS uses 60 models on RobustBench. RHS uses WideResNet-28-10 (Gowal et

al., 2020).
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W-DRO Training as fine-tuning

Networks Clean Acc W∞ Adversarial Acc W2 Adversarial Acc

Zhang et al. ’19 83.71 59.99 (+2.95) 50.53 (+7.54)
Chen et al. ’24 85.44 62.12 (+1.98) 53.42 (+9.66)
Gowal et al. ’20 85.93 63.39 (-3.05) 52.14 (+1.15)
Cui et al. ’23 88.88 68.71 (-2.21) 58.02 (+4.86)
Wang et al. ’23 91.45 69.19 (-1.43) 55.93 (+3.79)
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Main results

Part II: Sensitivity of the optimisers
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Sensitivity of optimisers

Theorem
For p = q = 2, under suitable regularity and growth assumptions,

lim
δ→0

a∗(δ)− a∗

δ
= − 1

Υ
(∇2

aV (0, a∗))−1

∫
∇x∇af (x , a

∗)∇x f (x , a
∗)µ(dx),

where a∗ := a∗(0).

The results extends to general p > 1 and semi-norms.
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Example 1: Square-root LASSO
Consider ∥(x , y)∥∗ = |x |r1{y=0} +∞1{y ̸=0}, r > 1, (x , y) ∈ Rk × R.
Then (see Blanchet, Kang & Murthy ’19)

inf
a∈Rk

sup
ν∈Bδ(µ̂N )

∫
(y − ⟨x , a⟩)2 dν = inf

a∈Rk

(√∫
(y − ⟨a, x⟩)2 dµ+ δ|a|s

)2

,

where 1/r + 1/s = 1. µ̂N = 1
N

∑N
i=1 δ(x i ,y i ) encodes the observations.

System is overdetermined so that D =
∫
xxT µ(dx) is invertible.

δ = 0 case is the ordinary least squares regression: a∗ = 1
ND

−1
∫
yxdµ.

δ > 0, s = 1 ⇝ RHS = square-root LASSO regression Belloni et al. ’11

δ > 0, s = 2 ⇝ RHS ≈ Ridge regression
Then a∗(δ) is approximately, for s = 1 and s = 2 (cf. Tibshirani ’96):

a∗ −
√
V (0)D−1sgn(a∗)δ and a∗

(
1−

√
V (0)

|a∗|2
D−1δ

)
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Square-root LASSO: numerics
Comparison of exact (o) and first-order (x) approximation of square-root LASSO
coefficients for 2000 data generated from: (with all Xi , ε i.i.d. N (0, 1))

Y = 1.5X1 −3X2 −2X3 + 0.3X4 −0.5X5 −0.7X6 + 0.2X7 + 0.5X8 + 1.2X9 + 0.8X10 + ε.

2 4 6 8 10

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Parameter Shirnkage: Exact (o) vs First Order Approximation (x)

covariate's index

sh
rin

ka
ge

delta = 0.01
delta = 0.03
delta = 0.05
delta = 0.07
delta = 0.09
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Ex 2: Marginal utility (Davis’) price

Recall the EUM setup. For a continuous payoff g ≥ 0 consider

V (ε, pd) := sup
a∈A

Eµ

[
u

(
−ε+ ⟨X , a⟩+ ε

pd
g(X )

)]
,

Definition
Suppose that for each pd > 0, the function ε 7→ V (ε, pd) is differentiable
at ε = 0 and p̂d is a solution to

∂εV (0, pd) = 0.

Then p̂d is called a marginal utility price of the option g .
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Characterisation of the marginal utility price

Theorem (Davis (1997))
Under mild technical assumptions p̂d is unique and satisfies

p̂d =
Eµ [u

′(⟨X , a⋆⟩)g(X )]

Eµ [u′(⟨X , a⋆⟩)] .

In this way p̂d is the price under a subjective martingale measure:

X = ST − S0 and Eµ [u
′(⟨X , a⋆⟩)X ] = 0.
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Robust marginal utility price

Definition
Let us define

V (δ, ε, pd) = sup
a∈A

inf
ν∈Bδ(µ)

Eν

[
u

(
−ε+ ⟨X , a⟩+ ε

pd
g(X )

)]
.

Suppose that for each pd > 0 the function ε 7→ V (δ, ε, pd) is
differentiable. A number p̂d(δ), which satisfies

∂εV (δ, 0, p̂d(δ)) = 0.

is called a robust marginal utility price of g at the uncertainty level δ.
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Characterisation of DR marginal utility price

Theorem
Fix δ ≥ 0, pd > 0. Under mild technical assumptions the robust marginal
utility price p̂d(δ) is given by

p̂d(δ) =
Eµ⋆ [u′(⟨X − X0, a

⋆
δ⟩) g(X ) ]

Eµ⋆ [u′(⟨X − X0, a⋆δ⟩)]

for any pair of optimisers a⋆δ ∈ A and µ⋆ ∈ Bδ(µ).

As before, p̂d(δ) is the price under a subjective martingale measure but
which also depends on δ.

Special cases: p̂d = p̂d(δ) for all δ > 0, e.g., for µ = N (m, σ2), p = ∞
and an agent with an exponential utility.
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Sensitivity of the marginal utility price
Theorem
Under mild technical assumptions the following holds:

(i) If a⋆ = 0, then the Davis price p̂d(δ) satisfies

p̂′d(0) = − (Eµ [|∇g(x)|q])1/q
.

(ii) If a⋆ ̸= 0 then

p̂′d(0) =
1

Eµ [u′(⟨X , a⋆⟩)]

(
Eµ

[
u′′(⟨X , a⋆⟩) ·

(
⟨T (X ), a⋆⟩ − ⟨X , a′(0)⟩

)
· (Eµ̂ [g(X )]− g(X ))

])
− Eµ̂ [⟨∇g(X ),T (X )⟩] ,

where dµ̂
dµ ∝ u′(⟨X , a⋆⟩) and T (x) ∝ a⋆

|a⋆| |u′(⟨x , a⋆⟩)|q−1.
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Dynamic setting: Causal Wasserstein DRO

based on Bartl and Wiesel SIFIN ’23, Jiang arXiv:2401.16556

and Jiang and O. arXiv:2408.17109
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Sensitivity of causal DRO

Let p > 1 and 1/p + 1/q = 1. Take c(x , y) = ∥∆x −∆y∥p for p > 1, where

∆(x1, x2, . . . , xN) = (x1, x2 − x1, . . . , xN − xN−1).

Write D = (D1, . . . ,DN) as the pullback of ∇ under ∆, i.e., Dn =
∑

l≥n ∂l .

Under suitable assumptions, we have

Υ := lim
δ→0

v(δ)− v(0)

δ
= L∗

(
Eµ

[ N∑
n=1

|Eµ[Dnf (X )|Fn]|q
]1/q)

= L∗(∥ oDf ∥q).
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Extensions
▶ Martingale constraint on the model.

ΥMart = L∗(∥ oDf − pDf ∥2).

▶ Pass limit to the continuous time!
▶ Hyperbolic scaling — drift uncertainty.

c(x , y) = lim
N→∞

Np−1
N∑

n=1

|∆xn −∆yn|p = ∥∂t(x − y)∥p.

A pathwise Malliavin derivative leads to Υ = L∗(∥ oDf ∥q).
▶ Parabolic scaling — volatility uncertainty. Focus on p = 2 and

µ = γ.

c(x , y) = lim
N→∞

N∑
n=1

|∆xn −∆yn|2 = [x − y ]T .

An extended Skorokhod integral gives ΥMart.
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AVaR of an exotic option

We consider AVaRα of an exotic option.

▶ X = (X1,X2) – underlying asset.

▶ K – shifted strike price.

▶ f (x) = (x2 − x1 + 1− K )+ – payoff of the option.

▶ (X1,X2) ∼ (S0.5,S1). X follows the marginal distribution of a
geometric Brownian motion S

dSt = σSt dWt , S0 = 1.

We take α = 0.95, σ = 0.2, c(x , y) = ∥x − y∥2, and L = +∞1(0.32,+∞].
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AVaR of an exotic option
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Figure: Comparison of AVaR for the option under a causal transport-type
ambiguity (in blue), a classical transport-type ambiguity (in orange), and no
ambiguity (in green). Take α = 0.95, σ = 0.2, c(x , y) = ∥x − y∥2, and
L = +∞1(0.32,+∞].

Note that in some cases, there is no reduction in risk when restricting to
a non-anticipative perturbation, e.g., f (x) = (x2 − K )+ − (x1 − K )+.
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Asian option (disc. time sensitivity)
▶ A discrete-monitored Asian option with payoff

f (X ) = max
{
0, X̄ − K

}
with X̄ =

1

N

N∑
n=1

Xn.

▶ Let µ be the reference risk-neutral measure.

▶ Notice that
Dnf (X ) = (N + 1− n)1{X̄>K}.

▶ The nonparametric ‘Greek’ of the Asian option is given by

ΥMart =

(
Eµ

[
N∑

n=1

|Eµ[Dnf (X )|Fn] − Eµ[Dnf (X )|Fn−1]|2
])1/2

=

(
Eµ

[
N∑

n=1

(N + 1 − n)2
∣∣µ(X̄ > K |Fn) − µ(X̄ > K |Fn−1)

∣∣2])1/2

.
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Merton’s problem (cont. time sensitivity)▶ The stock follows the standard BS model, with S solving

dSt = ζStdt + σStdXt .

▶ Agent’s wealth process

dK θ
t = (r + λθtσ)K

θ
t dt + σθtK

θ
t dXt ,

where λ = (ζ − r)/σ, known as the market price of risk.

▶ Merton’s problem of maximizing E[log(K θ
T )] over θ is solved taking

θt = λ/σ.

▶ This gives K∗
T = κ exp((r + λ2/2)T + λXT ).

▶ The general sensitivity to model uncertainty, around µ the Wiener
measure, can be computed for

f (X ) = log(K∗
T ) = log(κ) + (r + λ2/2)T + λXT .

Taking p = 2 and L = +∞1(
√
T ,∞), we obtain Υ = λ

√
T .

▶ The parametric sensitivity gives ∂
∂λ

E[log(K∗
T )] = Υ.
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OT & Data-Driven Approach: risk estimation example

(r1, . . . , rN) ∈ RdN v.s. P̂N =
1

N

N∑
i=1

δri ∈ P(Rd)

based on O. and Wiesel, Ann. Stat. 49(1): 508–530, 2021.
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Data set: historical returns

Public information also includes historical stock returns. How can we use
this information in a coherent and consistent way?

▶ Model specific: typically ignored. This is “physical measure”
information hard to combine with “risk neutral measure”

▶ Robust approach: no P vs Q conflict.
▶ indirect - agents can use to form beliefs/private information.
▶ direct - non-parametric statistical estimation of superhedging prices

(w/ Johannes Wiesel)
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Take I: Plugin estimator
A simple setting: d assets, one-period, no other traded options.
Information: historical returns r1, . . . , rN assumed i.i.d. from P.
Aim: Build an estimator for

πP(ξ) = inf
{
x ∈ R | ∃H ∈ Rd s.t. x + H(r − 1) ≥ ξ(r) P-a.s.

}

Theorem
Let ξ : Rd

+ → R be Borel-measurable. Define the empirical measure

P̂N = 1
N

∑N
i=1 δri . Then

lim
N→∞

πP̂N (ξ) = πP(ξ) P∞-a.s.,

where P∞ denotes the product measure on Π∞
i=1Rd

+.
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Example for consistency (1)
Let’s take ξ(r) = |r − 1| ∧ 1 and P =

λ[0,2]

2 .

0.5 1 1.5 2

0.5

1

g(r)

r
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Example for consistency (2)
Let’s take ξ(r) = |r − 1| ∧ 1 and P =

λ[0,2]

2 .

0.5 1 1.5 2

0.5

1

g(r)

r
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Example for consistency (3)
Let’s take ξ(r) = |r − 1| ∧ 1 and P =

λ[0,2]

2 .

0.5 1 1.5 2

0.5

1

g(r)

rr1 r2
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Example for consistency (4)
Let’s take ξ(r) = |r − 1| ∧ 1 and P =

λ[0,2]

2 .

0.5 1 1.5 2

0.5

1

g(r)

rr1 r2r3 r4
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Concave envelope in two dimensions

Figure: Concave envelope in 2 dimensions with P = λ|[0,2]2/4,
ξ(r) = |r − 1|1{|r−1|<1/2} + (1− |r − 1|)1{|r−1|≥1/2}
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Problems with the plugin estimator

The plugin estimator πP̂N (ξ) is not robust!

▶ Not Financially: it underestimates the superhedging price πP̂N ≤ πP.

▶ Not Statistically: (in the sense of Hampel). This applies to any
estimator in fact:

Lemma
Let ξ : Rd

+ → R be continuous and fix P on Rd
+. Any consistent

estimator TN of πP(ξ) is robust at P only if

πP(ξ) = sup
Q∈M

EQ[ξ].

=⇒ need to control the support =⇒ robustness w.r.t. W∞.
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Positive results

▶ Wp-approach.

▶ W∞-robustness, estimating quantiles.

▶ Penalisation approach akin to risk measures.

▶ Convergence of superhedging strategies.

▶ Extension to law-invariant convex risk measures.

▶ Extension to multi-period models.
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Wp-approach

Fix p ≥ 1. Assume we can find confidence bounds for the
Glivenko-Cantelli theorem (see Dereich, Scheutzow, Schottstedt, 2011,
Fournier, Guilllin, 2013):

PN(Wp(P, P̂N) ≥ εN(βN)) ≤ βN .

Definition
For a sequence (kN)N∈N such that kN → ∞ and kN = o(1/εN(βN)) we
define

Q̂N =

{
Q ∈ M

∣∣∣∣ ∃ν ∈ Bp
εN (βN )(P̂N),

∥∥∥∥dQdν
∥∥∥∥
∞

≤ kN

}
.
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Wp-approach: Consistency

Theorem
Let g be Lipschitz continuous and bounded from below or continuous
and bounded and p ≥ 1. Pick a sequence kN = o(1/εN(βN)). Then

lim
N→∞

sup
Q∈Q̂N

EQ[ξ] = πP(ξ) P∞ − a.s.,

if NA(P) holds.
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Convergence of Wasserstein estimators

100 101 102 103 104

10 1

100

Plugin
Wasserstein
True Value

100 101 102 103 104

10 1

100

Plugin
Wasserstein
True Value

Figure: Wasserstein estimators with g(r) = (1− r)1{r≤1} −
√
r − 11{r>1},

P = Exp(1) (left) and g(r) = (r − 2)+, P = exp(N (0, 1)) (right).
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Robust Superhedging Price estimator

Take kN → ∞ and kNεN(βN) → 0. Let

πQ̂N
(ξ) = sup

P∈B
p
εN

(P̂N )

sup
Q∈M:∥dQ/dP∥∞≤kN

EQ[ξ]

= sup
P∈B

p
εN

(P̂N )

sup
∥dQ/dP∥∞≤kN

inf
H∈Rd

EQ[ξ − H(r − 1)]

= inf
H∈Rd

sup
P∈B

p
εN

(P̂N )

sup
∥dQ/dP∥∞≤kN

EQ[ξ − H(r − 1)]

= inf
H∈Rd

sup
P∈B

p
εN

(P̂N )

AV@RP
kN−1
kN

(ξ − H(r − 1))

= inf
{
x ∈ R| ∃H ∈ Rd s.t. sup

P∈B
p
εN

(P̂N )

AV@RP
kN−1
kN

(ξ − H(r − 1)− x) ≤ 0
}
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Robust Superhedging Price estimator
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Wp-approach: Robustness

Definition
Let P, P̃ ⊆ P(Rd

+). We define p-Wasserstein-Hausdorff metric

Wp(P, P̃) = max

(
sup
P∈P

inf
P̃∈P̃

Wp(P, P̃), sup
P̃∈P̃

inf
P∈P

Wp(P, P̃)

)
.

Theorem
The estimator supQ∈Q̂N

EQ[g ] is robust with respect to the Wp in the sense
that

sup
g∈L1

∣∣∣∣∣ supQ∈Q̂1
N

EQ[g ]− sup
Q∈Q̂2

N

EQ[g ]

∣∣∣∣∣ ≤ Wp(Q̂1
N , Q̂2

N),

where Q̂i
N are defined corresponding to Pi ∈ P(Rd

+), i = 1, 2.
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Superhedging with respect to risk measures (1)

Consider ρP with Kusuoka representation:

ρP(ξ) = sup
µ∈P

∫ 1

0

AV@RP
α(ξ)dµ(α)

for a set P of probability measures on [0, 1] (⇒ law-invariant coherent
risk measures). Introduce

πρ

Bp
εN (βN )

(P̂N )
(ξ)

:= inf

x ∈ Rd

∣∣∣∣∣ ∃H ∈ Rd s.t. sup
ν∈Bp

εN (βN )
(P̂N )

ρν(ξ − x − H(r − 1)) ≤ 0

 .
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Superhedging with respect to risk measures (2)
Consistency

Theorem
Assume g satisfies |ξ(r)− ξ(r̃)| ≤ Lγ |r − r̃ |γ for some γ ≤ 1 and Lγ ∈ R.
Then

lim
n→∞

πρ

Bp
εN (βN )

(P̂N )
(ξ) = πρP(ξ) P∞-a.s.
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Plugin estimator and option prices

Corollary
Let P ∈ P(Rd

+) and ξ : Rd
+ → R be Borel-measurable. In addition to the assets

S , assume that there are d̃ traded options with continuous payoffs f1(r) and
prices f0 in the market. Then, if the observations r1, r2, . . . are i.i.d. samples
from P, and under NA, we have

lim
N→∞

inf{x ∈ R | ∃H, H̃ s.t. x + H(ri − 1) + H̃(f1 − f0) ≥ ξ(ri ) ∀i = 1, . . . ,N}

= sup
Q∼P, Q∈M, EQ(f1)=f0

EQ[ξ].
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Estimates for πAV@RP̃
0.95((r − 1)+)
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Rolling window of 50 data points, average of the last 10 estimates.

The data is from P ∼ GARCH(1, 1).
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Estimates for πAV@RP̃
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Estimates for πAV@RP̃
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Estimation divergence as an information signal
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Conclusions

▶ Robust approach builds risk estimates from market data without any
modelling assumptions.

▶ OT allows to conceptualise and quantify the impact of model
uncertainty

▶ Data/Information is used to endogenously specify models.

▶ The case of information on traded options’ prices leads to an
Optimal Transport problem with a martingale constraint. We
develop numerical methods to solve it.

▶ DRO conceptually appealing. Applications in finance, statistics, UQ,
ML and more!

▶ Wasserstein balls lead to statistical estimators for robust outputs
directly from historical returns
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Thank You

list of references to follow
some papers available at www.maths.ox.ac.uk/people/jan.obloj
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