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CREST Doctoral Course
ENSAE Paris, May 2025



Calibration

... selection of a model which reproduces market prices.

Parametric: find the best model out of a given family Pθ : θ ∈ Θ,

inf
θ∈Θ

∥∥∥MarketPrices−ModelPrices(θ)
∥∥∥

Non-parametric: find a fully calibrated model close to a reference one

Fix a favourite reference model P̄
Consider a cost given by

J(P) =
{

dist(P, P̄) if P is market calibrated,
+∞ otherwise.

Minimise J(P) over all P
pioneered by Avellaneda et al. ’97 (via relative entropy)
here via Stochastic Optimal Transport
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Optimal transport
Fluid mechanics formulation

Transfer material from one site to another while minimising transportation costs.

Monge (1781), Kantorovich (1948): Monge-Kantorovich problem

Benamou & Brenier (2000): continuous-time formulation

Optimal transport, continuous-time formulation

Minimising the cost function F under given initial density ρ0 and final density ρ1

inf
ρ,v

∫
Rd

∫ 1

0

ρ(t, x)F (v(t, x)) dtdx,

subject to the continuity equation

∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = 0,

and the initial and final distributions

ρ(0, x) = ρ0, ρ(1, x) = ρ1.
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Stochastic optimal transport

Tan & Touzi (2013) (also Mikami & Thieullen (2006), Huesmann & Trevisan (2017),
Backhoff et al. (2017)): Consider probability measures P such that X is a semimartingale,

dXt = βP
t dt+ (αP

t )
1/2 dW P

t .

Stochastic optimal transport problem

We want to minimise

V (µ0, µ1) = inf
P∈P(µ0,µ1)

EP
∫ 1

0

F (αP, βP) dt,

where P(µ0, µ1) contains probability measures satisfying

P ◦X−1
0 = µ0, P ◦X−1

1 = µ1.

Note that the cost function F is convex and may depend on (t,X) as well.
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Stochastic optimal transport
Dual formulation

Tan & Touzi (2013) established the following duality result

Dual formulation

The primal problem is equivalent to

V (µ0, µ1) = sup
ϕ1

∫
ϕ1 dµ1 − ϕ0 dµ0,

where

ϕ0(x) := sup
P∈P(δx)

EP
(
ϕ1(X1)−

∫ 1

0

F (αP, βP) dt

)
.

and for Ft = F (t,Xt, α
P
t , β

P
t ) characterised ϕ0 via PDEs.

Guo and Loeper (2018) extended this to path dependent constraints and cost.
Path-dependent PDEs & functional Itô used to describe the dual.
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Stochastic OT & Calibration

SOT induces a projection onto a subset of (semi)-martingales.

Use for calibration:

Gather market data G
Fix a favourite reference model P̄
Consider a cost F given by

F (P) =
{

dist(P, P̄) if P is calibrated to G,
+∞ otherwise.

ensuring convexity to get duality

Solve the dual via a non-linear (P)PDE

P∗ recovered via ∇F ∗(. . .).
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SPX & VIX Calibration

w/ I. Guo, G. Loeper, and S. Wang
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SPX and VIX

S&P 500 Index (SPX): a stock market index that measures the stock performance of
500 large companies listed in the US stock market.

CBOE Volatility Index (VIX): a volatility index that measures the market’s
expectation of the volatility of SPX over the following 30 days.

Figure: Historical SPX and VIX data. (Source: Schaeffer’s Investment Research)
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Why joint calibration?

VIX futures and options are very popular hedging instruments.
e.g., Szado (2009) shows that VIX call options are better than S&P 500 put options
as a hedging instrument against the financial crisis in 2008.

An arbitrage argument (Guyon 2020): existence of a liquid market
⇒ need for models that jointly calibrate to the option prices of SPX and VIX
⇒ avoid arbitrage between financial institutions (or even within the same institution)

Joint calibration problem: build a (stochastic volatility) model that jointly calibrates
to the prices of SPX options, VIX futures and VIX options.

Very challenging problem, especially for short maturities.
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Selected previous works

Previous works:

Continuous-time diffusion models (without jump):
Gatheral (2008): double CEV model
Goutte–Ismail–Pham (2017): Regime-switching Heston model
Fouque–Saporito (2018): Heston stochastic vol-of-vol

Continuous-time jump-diffusion models: many works including

Cont–Kokholm (2013), Lian–Zhu (2013), Baldeaux–Badran (2014),
Kokholm–Stisen (2015), Pacati–Pompa–Reno (2018), ...

However, even with jumps, these models have yet to achieve an exact fit.

Recent works:

Guyon (2020): nonparametric discrete-time model calibrated by martingale optimal
transport

Gatheral–Jusselin–Rosenbaum (2020): (parametric) quadratic rough Heston model
(no efficient calibration method yet)

⇒ This work: nonparametric continuous-time model calibrated by semimartingale
optimal transport
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Modelling

Assumption: zero interest rates & dividends.

Let St be the SPX price:

St = S0 +

∫ t

0

σsSs dWs.

Consider a time grid 0 < t0 < t1 < · · · < tn = T and an annualisation factor AF ,
e.g., if ti corresponds to daily observations, then AF = 1002 × 252/n.

The realised variance of St during [t0, T ]:

AF
n∑

i=1

(
log

Sti

Sti−1

)2

→ 1002

T − t0

∫ T

t0

σ2
t dt, a.s.

The VIX index at t0:

V IX(t0, T ) =

√
E
(

1002

T − t0

∫ T

t0

σ2
t dt

∣∣∣∣Ft0

)
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Modelling — Standard approach

Underlying assets:

St = S0 +

∫ t

0

σsSs dWs

V IX(t0, T ) =

√
E
(

1002

T − t0

∫ T

t0

σ2
t dt

∣∣∣∣Ft0

)

Calibrating instruments:

SPX calls: uSPX,c = E((ST −K)+)
SPX puts: uSPX,p = E((K − ST )

+)

VIX futures: uV IX,f = E(V IXt0)
VIX calls: uV IX,c = E((V IXt0 −K)+)
VIX puts: uV IX,p = E((K − V IXt0)

+)

Many previous works involve modelling (St, σt) or (St, σ
2
t )

⇒ the term V IX is a square root of conditional expectation
⇒ numerically difficult to compute the prices of VIX futures and VIX options.
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Modelling — Our approach

Consider a two dimensional stochastic process X = (X1, X2), let X1 be the logarithm of
St:

X1
t := logSt = X1

0 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs.

Let X2 be a half of the expected forward quadratic variation of X1 over [t, T ] observed
at t:

X2
t = E

(
1

2

∫ T

t

σ2
s ds

∣∣∣∣Ft

)
.

Calibrating instruments: for τ ≤ T ,

SPX calls: uSPX,c = E((exp(X1
τ )−K)+) =: E(GSPX,c(Xτ ))

SPX puts: uSPX,p = E((K − exp(X1
τ ))

+) =: E(GSPX,p(Xτ ))

VIX futures: uV IX,f = E(100
√

2X2
t0
/(T − t0)) =: E(GV IX,f (Xt0))

VIX calls: uV IX,c = E((100
√

2X2
t0
/(T − t0)−K)+) =: E(GV IX,c(Xt0))

VIX puts: uV IX,p = E((K − 100
√

2X2
t0
/(T − t0))

+) =: E(GV IX,p(Xt0))

All payoffs depend on only the marginal distributions of X at fixed times
⇒ suitable for the calibration framework via optimal transport.
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Modelling — a Heston model example

The Heston model:

dSt =
√
νtSt dW

1
t ,

dνt = −κ(νt − θ) dt+ ω
√
νt dW

2
t ,

⟨dW 1, dW 2⟩t = η dt.

We can derive that

X2
t = E

(
1

2

∫ T

t

νs ds

∣∣∣∣Ft

)
=

1− e−κ(T−t)

2κ
(νt − θ) +

1

2
θ(T − t).

Define A(t, κ) := (1− e−κ(T−t))/κ and ν(t,X2
t , κ, θ) := A(t, κ)−1(2X2

t − θ(T − t)) + θ,
then the Heston model in terms of (X1, X2) is

dX1
t = −1

2
ν(t,X2

t , κ, θ) dt+
√

ν(t,X2
t , κ, θ) dW

1
t ,

dX2
t = −1

2
ν(t,X2

t , κ, θ) dt+
1

2
A(t, κ)ω

√
ν(t,X2

t , κ, θ) dW
2
t ,

⟨dW 1
t , dW

2
t ⟩ = η dt.
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Framework — Semimartingale optimal transport

Consider probability measures P under which X is a semimartingale:

dXt = αP
t dt+ (βP

t )
1
2 dW P

t .

Semimartingale optimal transport with discrete constraints

Minimise

inf
P∈P(X0,τ,G,c)

EP
∫ T

0

F (αP
t , β

P
t ) dt,

where P(X0, τ, G, c) contains probability measures P satisfying

P ◦X−1
0 = δX0 and EPGi(Xτi) = ci, i = 1, . . . ,m.

Note that the cost function F is convex in (αP, βP). It may depend on (t,X) as well.
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Framework — Cost function

The cost function plays a regularisation role to ensure that X has the correct dynamics.

We want X to have the following dynamics:

X1
t = X1

0 −
1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs, X2
t = E

(
1

2

∫ T

t

σ2
s ds

∣∣∣∣Ft

)
.

The above dynamics can be captured by P such that

(αP
t , β

P
t ) =

([
− 1

2
σ2
t

− 1
2
σ2
t

]
,

[
σ2
t (βt)12

(βt)12 (βt)22

])
, 0 ≤ t ≤ T,

where (βt)12 = d⟨X1, X2⟩t / dt and (βt)22 = d⟨X2⟩t / dt and with the additional
property that X2

T = 0 P-a.s.

Given β̄, a reference for β, define the cost function:

F (α, β) =


2∑

i,j=1

(βij − β̄ij)
2 if α1 = α2 = − 1

2
β11,

+∞ otherwise.
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Framework — Discrete constraints

The additional property X2
T = 0, P-a.s. and the prices of calibrating instruments are

imposed on X as discrete constraints ⇒ exact calibration

We want to calibrate X to:

m number of SPX options with payoffs G = (G1, . . . , Gm), maturities τ ∈ (0, T ]m

and prices uSPX ∈ Rm
+ , e.g.,

EPGi(Xτi) = uSPX
i , i = 1, . . . ,m,

a VIX futures with payoff J(x) = 100
√

2x2/(T − t0), maturity t0 and price
uV IX,f ∈ R, e.g.,

EPJ(Xt0) = uV IX,f ,

n number of VIX options with payoffs H = (H1, . . . , Hn), maturity t0 and prices
uV IX ∈ Rm

+ , e.g.,

EP(Hi ◦ J)(Xt0) = uV IX
i , i = 1, . . . , n,

a contract with payoff ξ(x) = 1− exp(−(x2)
2), maturity T and zero price, e.g.,

EPξ(XT ) = 0.

The last calibrating instrument ensures that X2
T = 0, P-a.s. Since its price is always zero,

we call it a singular contract.
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Framework — Reformulation of the joint calibration problem

For simplicity, we represent all the discrete constraints by

EPGi(XTi) = ci, i = 1, . . . ,m+ n+ 2,

where

G = (G1, . . . , Gm︸ ︷︷ ︸
m SPX options

, H1 ◦ J, . . . ,Hn ◦ J︸ ︷︷ ︸
n VIX options

, J︸︷︷︸
VIX futures

, ξ︸︷︷︸
singular contract

),

and T and c are defined in a similar manner.

Define a set of the probability measures Pjoint such that

Pjoint := {P : P ◦X−1
0 = δX0 and EPGi(XTi) = ci, i = 1, . . . ,m+ n+ 2}

The joint calibration problem

Minimise V := inf
P∈Pjoint

EP
∫ T

0

F (αP
t , β

P
t ) dt.

If we find an optimal solution P̃ and V < +∞, then we have a well-calibrated model

Xt = X0 +

∫ t

0

αP̃
s ds+

∫ t

0

(βP̃
s )

1
2 dW P

s .
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Framework — Markovian projection

Markovian projection: use a (Markovian) diffusion process mimic an Itô process by
matching its marginals at fixed times. (Gyöngy (1986) and Brunick–Shreve (2013))

Lemma (Figalli (2008) and Trevisan (2016))

Let ρPt = P ◦X−1
t be the marginal distribution of Xt under P, t ≤ T , then ρP is a weak

solution to the Fokker–Planck equation: ∂tρ
P
t +∇x · (ρPtEP

t,xα
P
t )−

1

2

∑
i,j

∂ij(ρ
P
t (EP

t,xβ
P
t )ij) = 0 in [0, T ]× R2,

ρP0 = δX0 in R2.

Moreover, there exists another probability measure P′ under which X has the same
marginals, ρP

′
= ρP, and is a Markov process solving

dXt = αP′(t,Xt)dt+ (βP′(t,Xt))
1
2 dW P′

t , 0 ≤ t ≤ T,

where W P′ is a P′-Brownian motion, αP′(t, x) = EP
t,xα

P
t and βP′(t, x) = EP

t,xβ
P
t .

Notation: EP
t,x = EP(· | Xt = x).
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Framework — Markovian projection

Let P loc
joint be a subset of Pjoint such that, under any P ∈ P loc

joint, X is a Markov process
that solves

dXt = αP(t,Xt)dt+ (βP(t,Xt))
1
2 dW P

t , 0 ≤ t ≤ T,

and X is fully calibrated to the calibrating instruments.

Proposition

V = inf
P∈Pjoint

EP
∫ T

0

F (αP
t , β

P
t ) dt = inf

P∈Ploc
joint

EP
∫ T

0

F (αP
t (t,Xt), β

P
t (t,Xt)) dt

Proof: “≥” follows by convexity of F via Jensen’s inequality:

EP
∫ T

0

F (αP
t , β

P
t ) dt = EP

∫ T

0

(
EP
t,xF (αP

t , β
P
t )
)
dt

≥ EP
∫ T

0

F (EP
t,xα

P
t ,EP

t,xβ
P
t ) dt.

“≤” is clear since P loc
joint ⊂ Pjoint.
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Framework — PDE formulation

The problem can be made convex by introducing A = ρα and B = ρβ, since

ρF (α, β) = ρF

(
A

ρ
,
B

ρ

)
= sup

r+F∗(a,b)≤0

{ρr +A · a+B : b},

is convex in (ρ,A,B), where F ∗(a, b) = supα,β{a · α+ b : β − F (α, β)} is the convex
conjugate of F , and B : b = Tr(Bb).

PDE formulation

Minimise

V = inf
ρ,A,B

∫ T

0

∫
R2

ρF (A/ρ,B/ρ) dxdt,

subject to constraints

∂tρ+∇x ·A−
1

2

∑
i,j

∂ijBij = 0,∫
R2

Giρ(t, ·) dx = ci, i = 1, . . . ,m+ n+ 2

ρ(0, ·) = δX0 .
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Framework — Duality

Introducing Lagrange multipliers ϕ ∈ C∞
c ([0, T ]× R2) and λ ∈ Rm+n+2, the problem

can be formulated as:

V = inf
ρ,A,B

sup
ϕ,λ

{∫ T

0

∫
R2

(
ρF

(
A

ρ
,
B

ρ

)
−

(
∂tϕρ + ∇xϕ · A +

1

2
∇2

xϕ : B
)
−

m+n+2∑
i=1

λiGiδ(t − Ti)ρ

)
dxdt

+λ · c − ϕ(0, X0)

}

= sup
ϕ,λ

inf
ρ,A,B

{∫ T

0

∫
R2

(
ρF

(
A

ρ
,
B

ρ

)
︸ ︷︷ ︸

objective of the primal

−
(
∂tϕρ + ∇xϕ · A +

1

2
∇2

xϕ : B
)
−

m+n+2∑
i=1

λiGiδ(t − Ti)ρ

)
dxdt

+λ · c − ϕ(0, X0)︸ ︷︷ ︸
objective of the dual

}

The interchange of inf and sup can be formally established by the Fenchel–Rockafellar
duality theorem.
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Framework — Duality

By applying the Fenchel–Rockafellar duality theorem and a smoothing technique:

Dual formulation

Maximise

V = sup
λ∈Rm+n+2

λ · c− ϕ(0, X0),

where ϕ is the viscosity solution to the HJB equation:

∂tϕ+ F ∗(∇xϕ,
1

2
∇2

xϕ) = −
m+n+2∑

i=1

λiGiδ(t− Ti),

with the terminal condition ϕ(T, ·) = 0. If the supremum is attained and the associated
solution to the HJB equation is ϕ̃ ∈ BV ([0, T ], C2

b (R2)), then an optimal (α, β) of the
PDE formulation can be found by

(α, β) = ∇F ∗(∇xϕ̃,
1

2
∇2

xϕ̃).

Note: F ∗(a, b) = supα,β{a · α+ b : β − F (α, β)} is the convex conjugate of F .
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Framework — Gradient

Given λ ∈ Rm+n+2 with the associated solution ϕλ, let P(λ) be the probability measure
under which X has (α, β) = (αλ, βλ) := ∇F ∗(∇xϕ

λ, 1
2
∇2

xϕ
λ).

Define

L(λ) := λ · c− ϕλ(0, X0).

The gradients of the objective can be formulated as the difference between the market
prices and the model prices:

∂λiL(λ) = ci︸︷︷︸
market price

−EP(λ)Gi(XTi)︸ ︷︷ ︸
model price

, i = 1, . . . ,m.

The model price EP(λ)Gi(XTi) = ϕ′(0, X0) where ϕ′ satisfies{
∂tϕ

′ + αλ · ∇xϕ
′ +

1

2
βλ : ∇2

xϕ
′ = 0, in [0, Ti)× R2,

ϕ′(Ti, ·) = Gi.

Note: For the calculation of different gradients, the PDEs are the same but with different
terminal conditions. The inversion of the linear operator is only required once for all
gradients.
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Numerical method — Solving the dual formulation

Dual formulation:

maximise V = sup
λ∈Rm+n+2

λ · c− ϕλ(0, X0),

subject to ∂tϕ
λ + F ∗(∇xϕ

λ,
1

2
∇2

xϕ
λ) = −

m+n+2∑
i=1

λiGiδ(t− Ti), ϕ(T, ·) = 0.

Numerical solution:

1 Set an initial λ (e.g., λ = 0),

2 Solve the HJB equation backward to get ϕλ(0, X0) (see next slide),

3 Solve the linear PDEs and calculate all gradients,

4 Update λ by gradient descent.
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Numerical method — Solving HJB equations

HJB: ∂tϕ+sup
α,β
{α·∇xϕ+

1

2
β : ∇2

xϕ−F (α, β)} = −
m+n+2∑

i=1

λiGiδ(t−Ti), ϕ(T, ·) = 0

Algorithm 1: Solving the HJB equation

for k = N − 1, . . . , 0 do
/* Handling the source term */

ϕtk+1 ← ϕtk+1 +
∑m+n+2

i=1 λiGi1(tk+1 = Ti)
/* Policy iteration */

ϕnew
tk ← ϕtk+1

do
ϕold
tk ← ϕnew

tk

Approximate the optimal (αtk , βtk ) by solving the supremum with ϕold
tk

Solve the linearised HJB equation with (αtk , βtk ) by a fully implicit finite
difference method, and set the solution to ϕnew

tk

while ∥ϕnew
tk − ϕold

tk ∥∞ > ϵ
ϕtk ← ϕnew

tk

end
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Numerical method — Scaling

Scaling the discrete constraints with proper scales might improve the stability and
convergence.

EPĜ(XT ) := EP 1

Γ
G(XT ) =

c

Γ
=: ĉ

Recommended values of Γ:

for SPX and VIX options, set Γ to their Black–Scholes Vega
⇒ 1e-4 error of ĉ ≈ 1 bp error in implied vol,

for VIX futures, set Γ = 100
⇒ 1e-4 error of ĉ ≈ 1 cent error in price.
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Numerical method — Smoothing

So far we have ignored the significance of the reference model β̄.
When the gaps between strikes are too large or β̄ is too far away from the β that
describes the actual market dynamics, there might be spikes in the volatility surfaces,
which might cause hump-shaped model volatility skews.

Smoothing technique:

1 Set an initial reference β̄

2 Solve the dual formulation to get an optimal β = β∗

3 Smooth β∗ by a smoothing method and set the result to β̄

4 Repeat steps 2-4 with the new β̄

In the numerical example, we smooth β∗ by the simple moving average method over
(X1, X2) with bandwidths of (3, 3).
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Simulated data example — Generating model

Simulated calibrating instruments:

SPX call options maturing at 44 days and 79 days

VIX futures maturing at 49 days

VIX call options maturing at 49 days

Prices of the above instruments are generated using Heston dynamics and parameters
(κ, θ, ω, η) = (0.6, 0.09, 0.4,−0.5), i.e., X satisfies

Xt = X0 +

∫ t

0

αP
s ds+

∫ t

0

(βP
s )

1
2 dW P

s ,

and

(αP
t , β

P
t ) =

([
− 1

2ν(t,X
2
t , κ, θ)

− 1
2ν(t,X

2
t , κ, θ)

]
,
[

ν(t,X2
t , κ, θ)

1
2ηωA(t, κ)ν(t,X2

t , κ, θ)
1
2ηωA(t, κ)ν(t,X2

t , κ, θ)
1
4ω

2A(t, κ)2ν(t,X2
t , κ, θ)

])
,

where A(t, κ) := (1− e−κ(T−t))/κ and ν(t,X2
t , κ, θ) := A(t, κ)−1(2X2

t − θ(T − t)) + θ.

⇒ Solution exists!
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Simulated data example — OT-Model

Recall our joint calibration problem is

inf
P∈Ploc

joint

EP
∫ T

0

F (αP
t , β

P
t ) dt, where F (α, β) =


2∑

i,j=1

(βij − β̄ij)
2 if α1 = α2 = − 1

2
β11,

+∞ otherwise.

We consider two references:

(a) a Heston reference with parameters (κ̄, θ̄, ω̄, η̄) = (0.9, 0.04, 0.6,−0.3):

β̄(t,X1
t , X

2
t ) =

[
ν(t,X2

t , κ̄, θ̄)
1
2
η̄ω̄A(t, κ̄)ν(t,X2

t , κ̄, θ̄)
1
2
η̄ω̄A(t, κ̄)ν(t,X2

t , κ̄, θ̄)
1
4
ω̄2A(t, κ̄)2ν(t,X2

t , κ̄, θ̄)

]
;

(b) a constant reference:

β̄(t,X1
t , X

2
t ) =

[
0.09 −0.01
−0.01 0.04

]
.

Rk: if in (a) we took the reference to be the generating model, (κ̄, θ̄, ω̄, η̄) = (κ, θ, ω, η), then the

algorithm quickly recovers OT-model = generating model by λ = 0, and V = 0.
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Simulated data example — Calibration results for Heston reference
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Simulated data example — Calibrating results for constant reference
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Simulated data example — Simulation of X2
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Market data example

Market data as of 1st September 2020:

SPX call options maturing at 17 days and 45 days

VIX futures maturing at 15 days

VIX call option maturing at 15 days

These are the shortest maturities, which is known as the most challenging case!

We calibrate the OT-model with a Heston reference β̄. The parameters
(κ̄, θ̄, ω̄, η̄) = (4.99, 0.038, 0.52,−0.99) are obtained by (roughly) calibrating a standard
Heston model to the SPX option prices.

Remark. Interest rates and dividends are NOT zero
⇒ model X1 as the log of T-forward SPX price (instead of the spot price)
⇒ P are T-forward measures under which exp(X1) is still a martingale.
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Market data example — Calibration results
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Market data example — Simulation of X1 and X2
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SPX & Interest Rates Calibration

w/ B. Joseph and G. Loeper
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Fixed Income Modelling — Our Approach

Case I: A pre-calibrated short rate model fitting the term structure, zero dividends

Take a two dimensional stochastic process X = (X1, X2), let X1 log-stock price of some
underlying asset and X2 represent the short rate

X1
t = X1

0 +X2
t −

1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dW
1
s ,

we assume that X2 is a Hull-White short rate process given by

X2
t = X2

0 +

∫ t

0

(θ(s)− a(s)X2
s ) ds+

∫ t

0

σr(s) dW
2
s .

We assume that W 1
t and W 2

t are correlated standard Brownian motions such that

⟨W 1
· ,W

2
· ⟩t =

∫ t

0

ξs ds.

Note that since rt is assumed to be pre-calibrated, the parameters θ, a, and σr are all
assumed to be known. We calibrate σ and ξ using Call options on the underlying at 60
and 120 days.
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Framework — Constraints and Cost Function

Given n Call options observed in the market with prices ui, strikes Ki and maturities τi,
our calibration constraints become

E
[
e−

∫ τi
0 X2

s ds
(
e
X1

τi −Ki

)]
= ui, i = 1, . . . , n.

We therefore consider the set P(X0, τ,K, u) containing measures P such that X is a
semimartingale and satisfies the calibration constraints.
Moreover, we may localise using Markovian projection and consider the subset
Ploc(X0, τ,K, u) ⊂ P(X0, τ,K, u) such that under the mimicking measure
P′ ∈ Ploc(X0, τ,K, u), X is a Markov process satisfying

dXt = α(t,Xt)dt+ (β(t,Xt))
1
2 dWt,

where W is a P′ Brownian motion.
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Framework — Conditioning Argument

The discount term e−
∫ τi
0 X2

s ds is path dependent and thus incompatible with our PDE
formulation framework.
We could add an extra state variable, but that would increase the computational
complexity when solving the HJB equation, so we provide a conditioning argument.

Discounted Density Transformation

Let ρ̄ be the joint law of X1
t , X

2
t and

∫ t

0
X2

s ds and ηt,x(y) the law of
∫ t

0
X2

s ds
conditional on Xt = [x1, x2]⊺.
Define the ‘discounted density’ ρ̃(t, x) =

(∫
R e

−yηt,x(dy)
)
ρ(t, x), (t, x) ∈ [0, T ]× R2.

Then ρ̃ satisfies for (t, x) ∈ [0, T ]× R2:

∂tρ̃(t, x) +∇x · (α(t, x)ρ̃(t, x))−
1

2
∇2

x : (β(t, x)ρ̃(t, x)) + x2ρ̃(t, x) = 0.

A modification of the superposition principle allows us to reduce to Markov models in
(t,X1

t ).

Jan Ob lój OT and Calibration ENSAE Paris, May 2025 40 / 78



Framework — PDE Formulation

Primal Problem

Minimise

V = inf
ρ,A,B

∫ T

0

∫
R2

ρF

(
A

ρ
,
B

ρ

)
dxdt,

subject to the constraints

∂tρ+∇x ·A−
1

2
∇2 : B + x2ρ = 0∫

R2

(ex1 −Ki)
+ ρ(τi, dx) = ui, i = 1, . . . , n

ρ(0, ·) = δX0
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Framework — Dual Problem

Introduce the Lagrange multipliers ϕ ∈ C∞
c ([0, T ]× R2) and λ ∈ Rn, then

V = inf
ρ,A,B

sup
ϕ,λ

{∫ T

0

∫
R2

(
ρF

(
A

ρ
,
B

ρ

)
−

(
∂tϕρ + ∇xϕ · A +

1

2
∇2

xϕ : B − x2ϕρ

)

−
n∑

i=1

λi(e
x1 − Ki)

+
δτiρ

)
dxdt + λ · u − ϕ(0, X0)

}

Dual Problem

Maximise
V = sup

λ∈Rn
λ · u− ϕ(0, X0),

where ϕ is the viscosity solution to the HJB equation:

∂tϕ− x2ϕ+ F ∗(∇xϕ,
1

2
∇2

xϕ) +

n∑
i=1

λi(e
x
1 −Ki)

+δτi = 0

with the terminal condition ϕ(T, ·) = 0. If the supremum is attained and the associated
solution to the HJB equation is ϕ̃ ∈ BV([0, T ], C2

b (R2)), then an optimal (α, β) of the
PDE formulation can be found by

(α, β) = ∇F ∗(∇xϕ̃,
1

2
∇2

xϕ̃).
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Cost function for Sequential Calibration

Choose a reference correlation ξ̄(t) and require ξ(t, Zt, rt) =
σr(t)

σ(t,Zt,rt)
ξ̄(t), for t ∈ [0, T ].

Define for p > 1

H(x, x̄, s) =

(p− 1)
(

x−s
x̄−s

)1+p

+ (p+ 1)
(

x−s
x̄−s

)1−p

− 2p, if x, x̄ > s,

+∞, otherwise.

Notice that the coefficients are chosen such that H is minimised over x at x = x̄ with
minH = 0. Also define the convex set

Γ(t,Xt) =

{
(α, β) ∈ R2 × S2 : α1 = X2

t −
1

2
β11, α2 = (b(t)− aX2

t ),

β12 = β21 = ξ̄σr(t), β22 = σ2
r

}

Define the cost function F (α, β) =

{
H(β11, σ̄

2, ξ̄2σ2
r), if (α, β) ∈ Γ(t,Xt),

+∞, otherwise.

σ̄2 = σ̄2(t,Xt) is some reference value for the volatility
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HJB Equation and Model Prices

HJB Equation

n∑
i=1

λi(exp(x1)−Ki)
+δτi + ∂tϕ+ sup

β11

((
x2 −

1

2
β11

)
∂x1ϕ

+ (b(t)− ax2)∂x2ϕ+
1

2
β11∂

2
x1x1

ϕ+ ξ̄σr∂
2
x1x2

ϕ+
1

2
σ2
r∂

2
x2x2

ϕ− x2ϕ

−H(β11, σ̄
2, ξ̄2σ2

r)

)
= 0, (t, x) ∈ [0, T ]× R2.

Given λ with associated solution Pλ of the dual problem, let P(λ) be the probability
measure under which X has the characteristics (αλ, βλ) = ∇F ∗(∇xϕ

λ, 1
2
∇2

xϕ
λ). Then

the model price of an instrument with payoff G and maturity T is given by

EP(λ)
[
e−

∫ T
0 X2

s dsG(XT )
]
= ϕ′(0, X0), where ϕ′ solves{

∂tϕ+ αλ · ∇xϕ
′ + 1

2
βλ : ∇2

xϕ
′ − x2ϕ

′ = 0, (t, x) ∈ [0, T )× R2

ϕ′(T , ·) = G(·)

The numerical method is analogous in this case, and we may analytically compute the
optimal β11 in the HJB equation with our chosen cost function.
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Simulated Data Example

We used a CEV-Hull-White reference and generating model with the interest rate
parameters the same in both. This gave us that σ̄(t, x) = σ exp(x1)

γ−1. The generating
model had parameters (σ, γ, a, σr, ξ) = (0.78, 0.9, 0.4, 0.005,−0.6), and the “good”
reference had (σ̄, γ̄, ξ̄) = (0.9, 0.9,−0.4), whereas the “bad” reference had
(σ̄, γ̄, ξ̄) = (1.2, 0.78, 0.4)
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of β11 with the generating vol surface for a ‘good’ and a ‘bad’ reference
model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of ξ with the generating vol surface for a ‘good’ and a ‘bad’ reference model
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Cost Function for Joint Calibration

Case II: Joint & simultaneous calibration exercise, zero dividends

Now assume we have no prior knowledge of the interest rate, our characteristics for the
log-stock and short rate are therefore given by:

αt =

[
X2

t − 1
2
(βt)11

(αt)2

]
, βt =

[
(βt)11 (βt)12
(βt)12 (βt)22

]
.

Define the convex set

Γ(t, x) =

{
(α, β) ∈ R2 × S2

+ : α1 = x2 −
1

2
β11

}
.

Define the cost function

F (α, β) =

{
||α− α||22 + ||β − β||2Fro, if (α, β) ∈ Γ(t, x),

+∞, otherwise.

Where ᾱ and β̄ correspond to some reference model. We remark that we will calibrate
with interest rate derivatives as well.
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Joint Calibration HJB Equation

The dual formulation is similar to the sequential calibration, but with a different cost
function. Let Gi(x) denote the payoffs of instruments with maturity τi and market value
ui.

Joint Calibration Dual Formulation

Maximise
V = sup

λ∈Rn
λ · u− ϕ(0, X0)

Subject to

∂tϕ+ sup
α2∈R,β∈S2+

{(
x2 −

1

2
β11

)
∂x1ϕ+ α2∂x2ϕ+

1

2
β11∂

2
x1x1

ϕ

+
1

2
β22∂

2
x2x2

ϕ+ β12∂
2
x1x2

ϕ− ||α− α||22 − ||β − β||2Fro
}

− x2ϕ+

n∑
i=1

λiGi(x)δτi = 0, for (t, x) ∈ [0, T ]× R2
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Joint Calibration Numerical Method

The numerical method is identical to the sequential calibration method, and we can
analytically compute the supremum in the HJB equation.
We calibrate using Call options on the stock and Caplets on the interest rate with a fixed
notional of $1,000 at 60 and 120 days.
The reference models are the CEV local volatility model with a Hull-White interest rate
and a CIR interest rate. In both cases, the generating model was the same with shifted
parameters. The parameters were given as follows:

Generating Reference
σ 1.50 σ 1.2
γ 0.95 γ 0.89
a 0.05 a 0.03
σr 0.04 σr 0.02
ρ −0.05 ρ −0.2

Table: CEV-Hull-White Parameters

Generating Reference
σ 1.5 σ 1.2
γ 0.95 γ 0.89

b 0.03 b 0.03
a 0.5 a 0.4
σr 0.5 σr 0.3
ρ −0.4 ρ −0.2

Table: CEV-CIR Parameters
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Simulated Data Example — CEV-HW
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Simulated Data Example — CEV-CIR
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Simulated Data Example — Plots of Characteristics

Figure: Compatison of β11 for the calibrated and generating model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of β12 for the calibrated and generating model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of β22 for the calibrated and generating model
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Simulated Data Example — Plots of Characteristics

Figure: Comparison of α2 for the calibrated and generating model
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Joint Calibration Numerical Method

The numerical method is identical to the sequential calibration method, and we can
analytically compute the supremum in the HJB equation. We took the SPX as the
underlying and the 1M US LIBOR for a proxy of the short rate. We obtained the
following data on 23/05/2022 from a Bloomberg terminal:

Calls on the SPX with expiry 19/08/2022,

Caps on the one month LIBOR with notional $10,000,000 and expiry 23/08/2022,

Calls on the SPX with expiry 18/11/2022,

Caps on the one month LIBOR with notional $10,000,000 and expiry 23/11/2022.

We additionally took a CEV-Hull-White reference model with parameters
(σ̄, γ, ā, σ̄r, ρ̄) = (0.3, 0.95, 0.01, 0.02,−0.7)
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Market Data Example — CEV-HW
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Market Data Example — Plots of Characteristics

Figure: Compatison of β11 = σ2
X for the calibrated and generating model
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Market Data Example — Plots of Characteristics

Figure: Comparison of β12 = ρ for the calibrated and generating model
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Market Data Example — Plots of Characteristics

Figure: Comparison of β22 = σ2
r for the calibrated and generating model

Jan Ob lój OT and Calibration ENSAE Paris, May 2025 61 / 78



Market Data Example — Plots of Characteristics

Figure: Comparison of α2 = µr for the calibrated and generating model
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SOT – BB Formulation

Analytic formulae and some magic

based on joint work J. Backhoff, B. Joseph and G. Loeper

see arXiv: 2406.04016 and 2310.13797
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G-Bass calibration problem

We want to solve

GmBBµ0,µ1 = inf
S0∼µ0,S1∼µ1

St=S0+
∫ t
0 σuSudBu

E
[∫ 1

0

(σt − σ̄)2dt

]
, (G-mBB)

That is, we want to find

a calibrated model,

which is the closest to the σ̄-Black-Scholes model.

Jan Ob lój OT and Calibration ENSAE Paris, May 2025 64 / 78



(M)OT Motivation

The celebrated Benamou-Brenier reformulation of the classical OT problem is:

inf
X0∼ν0,X1∼ν1

Xt=X0+
∫ t
0 Vsds

E
[∫ 1

0

|Vt|2dt
]
,

i.e., we look for a particle with velocity as close as possible to a constant one, with given
initial and terminal distributions.

More recently, Backhoff et al. ’20 and Huesmann & Trevisan ’19, considered the
martingale analogue of this problem:

AmBBν0,ν1 = inf
M0∼ν0,M1∼ν1

Mt=M0+
∫ t
0 ΣsdBs

E
[∫ 1

0

(Σt − Σ̄)2dt

]
, (A-mBB)

where the optimisation is taken over filtered probability spaces with a Brownian motion
(Bt)t≥0, possibly starting from a non-trivial position B0.
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A-mBB: martingale Benamou-Brenier problem

We rewrite AmBBν0,ν1 as

inf
M0∼ν0,M1∼ν1

Mt=M0+
∫ t
0 ΣsdBs

E
[∫ 1

0
(Σt − Σ̄)2dt

]
= Σ̄2 +

∫
x2dν1 −

∫
x2dν0 − 2Σ̄APν0,ν1 ,

since

E
[∫ 1

0 Σ2
tdt

]
= E[⟨M⟩1] =

∫
x2dν1 −

∫
x2dν0

and where the new problem is

APν0,ν1 = sup
M0∼ν0,M1∼ν1

Mt=M0+
∫ t
0 ΣsdBs

M martingale

E
[∫ 1

0
Σtdt

]
= sup

M0∼ν0,M1∼ν1
Mt=M0+

∫ t
0 ΣsdBs

M martingale

E [M1(B1 −B0)] . (AP)

=⇒ it follows that M1 = FB0 (B1) is optimal with Fx increasing.
=⇒ in fact, we can find α ∼ B0, such that Fx ≡ F .

=⇒ and hence Mt = E[F (B1)|Ft] = (F ∗ γ1−t)(Bt), with γt ∼ N (0, t).
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G-mBB calibration problem

Similarly, in our calibration problem

GmBBµ0,µ1 = inf
S0∼µ0,S1∼µ1

St=S0+
∫ t
0 σuSudBu

E
[∫ 1

0
(σt − σ̄)2dt

]
,

for any such martingale S we have

E
[∫ 1

0 σ2
t dt

]
= 2E[log(S0/S1)] = 2

∫
log(x)dµ0 − 2

∫
log(x)dµ1

and hence GmBBµ0,µ1 is equivalent to the following problem:

GPµ0,µ1 = sup
S0∼µ0,S1∼µ1

St=S0+
∫ t
0 σuSudBu

S martingale

E
[∫ 1

0
σtdt

]
, (GP)

where (Bt)t≥0 is a Brownian motion on a filtered probability space (Ω,F , (Ft)t≥0,P).
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From A-mBB to G-mBB and back

It turns out G-mBB can be mapped 1-1 to A-mBB for different marginals!
W.l.o.g., suppose

∫
xµ0(dx) =

∫
xµ1(dx) = 1.

The relationship between the problems can be deduced using PDE arguments on the dual
side.

On the primal side, it is a change of measure argument, akin to Campi, Laachir and
Martini ’17; see also Beiglböck, Pammer and Riess ’24.

Define dP̃ := S1dP and let Rt = 1/St, a P̃-martingale. Then

E
[∫ 1

0

σtdt

]
= Ẽ

[
R1

∫ 1

0

σtdt

]
= Ẽ

[∫ 1

0

Rtσtdt

]
= Ẽ

[∫ 1

0

Σtdt

]
,

where Σt := Rtσt and Itô gives dRt = ΣtdW̃t, for a P̃-BM W .∫
gdν1 := Ẽ[g(R1)] = E

[
g(R1)
R1

]
= E

[
g
(

1
S1

)
S1

]
=

∫
g
(

1
y

)
yµ1(dy).
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From A-mBB to G-mBB and back

For a µ-integrable f : R+ → R+, we consider the f -reflected measure

f†µ =
(
y → 1

f(y)

)
#

(
f(y)∫

f(x)µ(dx)
µ(dy)

)
.

Theorem

Let µ0, µ1 ∈ P−1,1(R+) satisfy µ0 ≼cx µ1. Let νi = Id†µi, i = 0, 1. Then

GPµ0,µ1 = APν0,ν1 ,

and (GP) admits a unique optimiser in distribution

characterised by

E
[
g
(
{St : t ∈ [0, 1]}

)]
= E

[
g
(
{1/F (t, Bt) : t ∈ [0, 1]}

)
· F (1, B1)

]
,

for any measurable functional g : C([0, 1];R)→ R+, where (F (t, Bt), t ∈ [0, 1]) is an
optimiser for APν0,ν1 .
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Jan Ob lój OT and Calibration ENSAE Paris, May 2025 69 / 78



Further properties

The optimiser in GPµ0,µ1 solves

dSu = Su
Su

∂xF−1(u, 1
Su

)
dBu, 0 < u < 1.

The equivalence extends to a larger class of problems:

E
[∫ 1

0
c(t, St, σ

2
t )dt

]
= Ẽ

[∫ 1

0
Rtc(t, St, σ

2
t )dt

]
= Ẽ

[∫ 1

0
Rtc

(
t, 1

Rt
,
Σ2

t

R2
t

)
dt
]
.

The optimiser in (GP) also solves (AP) if and only if

log(S1/S0) ∼ N (−σ̄2/2, σ̄2),

for some σ̄.
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Further properties

Consider now projecting a Bass martingale M intoM(µ0, µ1), with M1 = F (B1)
and M0 ∼ δm0 for simplicity.
This is equivalent to a weak OT pb:

sup
S∈M(µ0,µ1)

E[S1F (B1)] ≡ sup
π

∫
MC(πx, q)dµ0(x),

which is solved by q-Bass mg of Tschiderer ’24, q ∼M1 = F (B1). If the optimiser
has S1 = G(ξ + F (B1)), then

St = E[S1|Ft] =

∫
G(ξ + F (Bt + z))dγ1−t(z) := Gt(ξ,Bt).
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Numerics

Solution to AmBBν0,ν1 , given by M1 = F (B1) with B0 ∼ α is characterised by the
Martingale Sinkhorn system:

ν0 = (γ1 ∗ F )#α,

ν1 = F#(γ1 ∗ α),

which is another way to write the fixed-point problem of Conze & Henry-Labordère ’21,
see also Acciaio, Marini and Pammer ’23.

The above immediately allows us to solve also GmBBµ0,µ1 .

Furthermore, we can do this across many maturities. Note that the resulting local
volatility surface will likely be discontinuous across maturities. We now test and compare
A-mBB and G-mBB martingale on market data.

Jan Ob lój OT and Calibration ENSAE Paris, May 2025 72 / 78



Market Data

BNP Paribas data on SPX options as of 27/10/2023, with many strikes and maturities:
27/11/2023, 29/12/2023, 19/01/2024, 29/02/2024, 15/03/2024, 28/03/2024,
19/04/2024 and 17/05/2024.

CDFs built via Breeden Litzenberger formula and interpolated/extrapolated implied vols.

Rescale variables St → St/S0. Com domain (−0.5, 3)× (Tk, Tk+1) with 1001 spatial
gridpoints and 1t01 time gridpoints.

Solve heat equation using Crank-Nicolson.

For G-Bass, we do CDF → density → reflected density → reflected cdf.
Reflected density via numerical derivative over 250 gridpoints

whole numerics took ca 5 min on a laptop.
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Figure: Call prices: Bass and Geometric Bass models.
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Figure: Call price surface: Bass and Geometric Bass models.
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Conclusion and future research

Conclusion:

Semimartingale OT is a powerful model selection tool

Arbitrary constraints: European options, path-dependent options and (maybe?)
American options

We develop generic approach to Calibration via OT

We use it to tackle difficult joint calibration problems: SPX options + VIX futures
+ VIX options prices; interest rates and SPX options

Numerical proof-of-concept results

Future research:

Improving computational efficiency and exploring applications in higher dimensions
Deep PDE solvers (see, e.g., Han et al. (2020))
Neural SDE (see, e.g., Cuchiero et al. (2020))

OT Calibration to American options

Thank you!
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