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Mathematical Institute and
Oxford-Man Institute of Quantitative Finance

University of Oxford

24-29 St Giles, Oxford OX1 3LB, UK

jan.obloj@maths.ox.ac.uk
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We analyse the performance of robust hedging strategies of digital double barrier op-
tions of Cox and Ob lój against that of traditional hedging methods such as delta and
delta/vega hedging. Digital double barrier options are financial derivative contracts
which pay out a fixed amount on the condition that the underlying asset remains within
or breaks into a range defined by two distinct barrier levels. We perform the analysis
in hypothetical forward markets driven by models with stochastic volatility and jumps,

calibrated to the AUD/USD foreign exchange rate market. Our findings are strikingly
unanimous and suggest that, in the presence of model uncertainty and/or transaction
costs, robust hedging strategies typically outperform in a substantial way model-specific
hedging methods.
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1. Introduction

One way to see the fundamental idea of Black and Scholes [4], which gave momentum

to the whole financial industry, is that pricing is done through hedging. The unique

fair price for a payoff at some future date is equal to the capital needed to replicate,

through trading, its cashflow. In this idea is embedded an assumption of a fixed

model for the dynamics of the price process. The price and, more importantly, the

hedging strategy depend crucially on this model. Naturally, they also depend on

a number of simplifying assumptions about transaction costs, dividends, interest

rates, etc. However, if the trader can have a feel for the impact of the latter, it is

very hard to estimate the impact of wrong modelling assumptions. This issue was

accentuated through the crisis in 2008 and resulted in a growing interest in robust

hedging strategies as alternatives to model-specific hedging strategies.
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The generic idea behind robust hedging is as follows. One starts with the market

input, namely the prices of liquidly traded options. Using these options and trading

strategies in the underlying S, one looks for the cheapest superhedge (and/or most

expensive subhedge) for an exotic option which works under any dynamics of S,

possibly under some generic assumptions (e.g. continuity of paths of S). The bounds

are tight if one can further construct a model which matches the market input and

in which the superhedge (resp. subhedge) is a perfect hedge.

One of the methods to obtain such robust hedging strategies is based on the

Skorokhod embeddings and pathwise inequalities (see Hobson [20] and Ob lój [31,

30]). The underlying ideas go back to Hobson [21] and Brown, Hobson and Rogers

[5] and they were more recently explored in depth by Cox and Ob lój [11,10]. In

there, the authors developed robust pricing and hedging for digital double touch

and double no-touch barrier options. Digital double barrier options are financial

derivative contracts, most commonly traded in the foreign exchange markets, which

pay out a fixed amount on the condition that the underlying asset remains within

or breaks into a range defined by two distinct barrier levels.

The aim of this paper is to compare the performances of the robust hedging

methods of Cox and Ob lój [10,11] against that of some model-specific hedging strate-

gies. A preliminary comparison was carried out in [10] where the authors concluded

that for Heston dynamics and in the presence of transaction costs, robust hedg-

ing may well outperform delta/vega hedging. At least three interesting avenues for

further research were also suggested. First, the methods in [10,11] were developed

under the assumption of continuous paths and one should explore what happens

when the true model has jumps. Second, Cox and Ob lój only considered deta/vega

hedging with fixed rebalancing frequency and a better benchmark would be set by

a strategy with random, delta-dependent, rebalancing times. Finally, methods of

[10,11] are tailored to forward markets and extending them to spot markets is a

challenging problem.

In this paper we deal with the first two of these three questions. We present a

comprehensive analysis of the performance of robust versus classical hedging strate-

gies of digital double touch and double no-touch barrier options under a number of

market scenarios, which include stochastic volatility and jumps. We analyse risk-

adjusted performance using standard deviation, VaR, CVaR and maximum loss as

risk measures as well as expected utility when needed. Market assumptions and pa-

rameters are calibrated to AUD/USD foreign exchange rate market on 14 January

2010. Our findings are strikingly homogeneous: robust hedging strategies tend to

outperform classical delta or delta/vega hedging strategies under nearly all market

scenarios.

The remainder of the paper is structured as follows. In the following section we

describe our setup: Section 2.1 discusses market scenarios which drive the dynamics

of the underlying, Sections 2.2 and 2.3 present robust hedging strategies and classical

hedging strategies respectively, and finally Section 2.4 introduces risk measures used

to evaluate the performance of different hedging strategies. Then in Section 3 we
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describe our findings and Section 4 concludes. Appendix A contains tables and

figures which summarise our results and Appendix B has a short discussion of the

numerical procedures employed in our simulations.

2. Market models and hedging strategies

The aim of this paper is to compare the performances of the robust hedging methods

of Cox and Ob lój [10,11] when applied to digital double touch options and digital

double no-touch options against that of some model-specific hedging methods. We

want to consider a situation when the trader is uncertain about the real dynamics

and will either decide to use a robust hedge or some Black-Scholes-based delta or

delta/vega hedge. We will simulate their hedging performance in a number of market

scenarios and examine the distributions of hedging errors of the considered hedging

strategies. This methodology and setup have several important ingredients, which

are now described in detail: market scenarios, robust hedging, classical hedging

strategies and risk-adjusted performance measures of hedging errors.

2.1. Market scenarios

We assume a trader sells or buys for a premium p a one-year digital double barrier

option with continuously monitored barriers b and b written on an underlying pro-

cess S := {St : t ≥ 0} which has zero cost of carry. We consider both digital double

touch option, which pays one on the event {mint≤1 St ≤ b & maxt≤1 St ≥ b} and

zero otherwise, and digital double no-touch option, which pays one on the event

{mint≤1 St > b & maxt≤1 St < b} and zero otherwise. The premium p is set to

the Black-Scholes price corresponding to the implied volatility of the at-the-money

call option at time t = 0. We think of this as the price dictated by the market.

The values of the premium are reported in Tables 1–5. We stress that changing p is

equivalent to a constant additive shift of hedging errors (of all strategies) and does

not affect our relative performance comparisons.

We assume that transactions in the asset S carry a 4bps cost and that buying

or selling call or put options carries a 100bps cost. Both rates are applied to the

volume traded (i.e. the number of units traded multiplied by the unit price) and

approximate the proportional transaction costs observed in the real-life market data

set used below. We further assume that there are 250 trading days in one year.

We consider three base scenarios for the dynamics of S: a diffusion process driven

by the Black-Scholes model ([4]), a diffusion process with stochastic volatility and

finite activity jumps driven by the Bates model ([3]) and a pure-jump Lévy process

with stochastic volatility and infinite activity jumps driven by the Variance Gamma

with CIR stochastic clock model ([7]). All modelling is done under the risk-neutral

measure so that S is a martingale (since it has zero cost of carry). We summarise

these models hereafter.

Black-Scholes (BS) model [4] assumes that S is the solution to the following
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stochastic differential equation:

dSt

St

= σdWt, (2.1)

where σ > 0 is a constant referred to as the volatility of S and (Wt) is a Brownian

motion.

Bates model [3] describes the dynamics of S via the following stochastic differential

equations:










dSt

St

= −λµjdt+
√
vtdW

(1)
t + JtdLt,

dvt = κ(θ − vt)dt+ ζ
√
vtdW

(2)
t ,

(2.2)

with






d〈W (1),W (2)〉t = ρdt, E(dLt) = λdt,

log(1 + Jt) ∼ N (log(1 + µj) − 1
2σ

2
J , σ

2
J ),

(2.3)

where (W
(1)
t ) and (W

(2)
t ) are correlated Brownian motions with correlation coef-

ficient ρ, (Lt) is an independent Poisson process with intensity λ > 0 and Jt are

lognormally, identically and independently distributed over time with mean µj .

Variance Gamma with CIR stochastic clock (VGSV) model [7] considers

S given by:

St = S0 exp
(

X
(

Y (t)
)

− Y (t)ψX(−i)
)

, (2.4)

where X
(

Y (t)
)

is a Variance Gamma process X(t) with parameters C, G and M

(cf. Madan and Seneta [26] and Carr, Geman, Madan and Yor [6]) time-changed

with an integral of a CIR process (cf. [12]): Y (t) =
∫ t

0
y(u)du,

dy(u) = κ(η − y(u))du+ λ
√

y(u)dW (u), (2.5)

where (Wu) is a standard Brownian motion independent of all other processes used

in the model. ψX(u) in (2.4) is the characteristic exponent of X , which is the

logarithm of the characteristic function of X1 (see Carr, Geman, Madan and Yor

[6], [7]) and is given by

ψX(u) = C log

(

GM

GM + (M −G)iu+ u2

)

. (2.6)

The market and model parameters we used are based on real-life global spot

foreign exchange interbank market data observed on 14 January 2010 for the

AUD/USD foreign exchange spot rate. We calibrated the models to bid and ask

implied volatility quotes on standard European options on AUD/USD for different
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maturities and spot delta pointsa, without premium adjustment. This way, we ob-

tain realistic parameters for our models and we also have different models which

all match market observed prices so each of them could potentially drive the true

dynamics and the trader should consider all these models.

As a result of the calibration, we have S0 = 0.9308 for all models whilst the

other model parameters are summarised below:

BS: σ = 0.1506.

Bates:







v0 = 0.0107, κ = 0.9952, θ = 0.0451, ζ = 0.4074,

ρ = −0.4031, λ = 1.2563, µj = −0.0112, σj = 0.0695.

VGSV:







C = 17.2562, G = 41.9420, M = 50.5294,

κ = 4.7198, λ = 4.7295, η = 1.6226.

(2.7)

The calibrated models are then used to drive our hypothetical market scenarios

and generate option prices available to the trader. At any time t ≥ 0, the trader

is given prices of call and put options co-maturing with the barrier option and at

strike prices evenly spaced from 0.641 to 1.153 with an increment of 0.0005, thereby

obtaining 1,024 call option prices from which we derive a volatility smileb. These

prices are computed using the same model which drives the evolution of S. As a

result of our calibration, under Bates and VGSV models, the initial prices are close

to our market data (naturally BS model only produces a flat volatility surface).

In addition to the three models above, we consider two rather unrealistic models

which are designed to examine the performance of various hedging strategies when

the volatility of the underlying dramatically and suddenly changes, e.g. due to the

arrival of some unforeseen news. The new values of volatility are chosen here in an

arbitrary manner to obtain a significant change whilst remaining within the interval

commonly observed in practise for the volatility of the underlying.

BS HV model is the BS model described above, only σ at time t > 0 is set to

0.4518 (which is three times its value at time t = 0).

BS LV model is the BS model described above, only σ at time t > 0 is set to a

value of 0.1.

In both models, the initial European option prices in the market are computed using

the BS model with a constant σ = 0.1506 and are thus mispriced, which reflects the

unforeseen nature of the news. Prices at t > 0 are computed using the appropriate

value of σ.

aA total of 176 data points: 11 options (strikes ranging between 5∆ put to 35∆ put strike, ATM
and from 35∆ call strike to 5∆ call strike) for each of 16 maturities ranging from 1 week to 1 year.
bThe lower and upper bounds of the range of strike prices approximate the strike prices of options
from our real-life market data set at delta strikes 5∆ put and 5∆ call, respectively.
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2.2. Robust hedging strategies

Robust hedges of digital double barrier options described in [10,11] are quasi-static.

They involve a carefully chosen initial position in co-maturing European vanilla op-

tions (at most 7 among the 1024 options available to the trader), cash and forward,

and at most two dynamic forward transactions when barriers are breached. The

nature of the hedge depends on the position of the barriers relative to the spot and

market prices of European options. For example, if b is very far from the spot com-

pared with b then it is shown that the optimal robust hedge for the digital double

touch options is in fact the one developed in [5] for a one-touch option struck at b.

Although this is a possible case, we are interested here in examining the strategies

which are genuinely new in [10,11] and tailored to double barrier options. We con-

sider four possible positions: long or short in digital double touch or double no-touch

option. For each of these, we set barrier levels so that we are in the typical case

when the genuine double barrier hedging strategy should be usedc. More precisely,

we have the following four scenarios:

(i) The trader sells a digital double touch option with barriers b = 0.85 and b =

1.01. The optimal robust super-hedge is type III in [10]. The initial portfolio

is composed of αi > 0 calls with strike Ki, i = 1, 2 and αj > 0 puts with strike

Kj, j = 3, 4 where 0 < K4 < b < K3 < K2 < b < K1. The dynamic part

involves at most two forward transactions. If b is reached first the trader sells

β1 forwards and if then the price reaches b they buy β3 forwards. Alternatively,

if b is reached first the trader buys β2 forwards and then if the price reaches

b they sell β4 forwards. The choice of αi, βi ensures superreplication. We refer

to [10] for details and explicit formulae. The optimal hedge H
III

DT is found by

minimising the price over all admissible strikesK1,K2,K3,K4 and the optimal

values are reported in Table 1.

(ii) The trader sells a digital double no-touch option with barriers b = 0.85 and

b = 1.01. The optimal robust super-hedge is type I in [11]. It is simply given by

H
I

DNT = 1ST∈(b,b), i.e. the superhedge is static and consists simply of buying

digital options paying 1 when b < ST < b.

(iii) The trader buys a digital double touch option with barriers b = 0.875 and

b = 0.985. The optimal robust sub-hedge is type I, described explicitly in [10]

to which we refer for the exact formulae. The initial portfolio has judiciously

chosen amounts of: cash, forward, long positions in calls with strikes K2 < b,

K3 ∈ (b, b) and K1 > b and in a digital call struck at b, and short positions in

calls with strikes b, b and in a digital call struck at b. The dynamic part is anal-

ogous to the one in H
III

DT described above, i.e. it involves forward transactions

when the barriers are first breached. The value of K3 is given as a function

of K1 and K2, and the optimal hedge HI
DT is hence found by maximising

cThe particular choice of barrier levels, as long as it guarantees we are in the interesting case, does
not seem to affect our results qualitatively, cf. [35].
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the price over admissible values of K1,K2. The optimal values are reported in

Table 3.

(iv) The trader buys a digital double no-touch option with barriers b = 0.71 and

b = 1.1. The optimal robust sub-hedge is type II in [11]. The initial portfolio

consists of −1 (cash) and is long 1/(b−K2) calls with strike K2 and 1/(K1−b)
puts with strike K1, for arbitrary b < K1 < K2 < b. The dynamic component

involves at most one transaction: the trader sells 1/(b − K2) forwards when

b is breached first or buys 1/(K1 − b) forwards if b is breached first. The

optimal hedge HII
DNT is found by maximising the price over admissible values

of K1,K2 and the optimal values are reported in Table 4.

Three out of four strategies described above require the trader to monitor barrier

crossings continuously. In practice this may be hard or costly. We consider thus the

following strategies:

(i) Robust hedge exact : the trader implements the optimal robust hedge, as

described above. They monitor continuously the breaching of the barriersd.

(ii) Robust hedge N : the trader implements the optimal robust hedge, as de-

scribed above, but only monitors the breaching of the barriers N times, at

even intervals, during the life of the option. This means that they may carry

out the relevant forward transactions with some delay.

We consider the cases where N = 250 and N = 1000, corresponding to monitoring

daily and every six hours, respectively, during the life of the option.

Let us examine the distribution of hedging errors resulting from robust hedging

under continuous monitoring of barrier crossing. Denote O(S)T the payoff of the

digital double barrier option at maturity. The trader sells or buys the option for

p, as discussed in Section 2.1, whereas the (frictionless) correct pricee at time zero

is p∗ = E[O(S)T ]. The trader then sets up the initial portfolio F (ST ) prescribed

by their super- or sub- hedge for an initial premium pRH = E[F (ST )] and pays

transaction costs ǫ0. Typically, pRH > p∗ if the trader sold the digital double barrier

option and pRH < p∗ if they bought it. When barriers are breached the trader enters

into forward transactions. At maturity T , the trader thus holds

Π = γ(−O(S)T + F (S)T + VT + p− pRH) − ǫ0 − ǫ1, (2.8)

where γ = 1 or −1 if the trader respectively sold or bought the digital double barrier

option and VT is the payoff from the self-financing dynamic trading (i.e. forward

dThe continuous monitoring of the breaching of the barriers is approximated by monitoring the
breaching of the barriers at each one of the 200,000 time steps used for the simulation of the
underlying price.
eIn any given scenario the underlying and option prices are generated by an arbitrage-free model
which is complete if European options and the underlying can be traded with no transaction costs.
Frictionless prices are then uniquely specified as the risk-neutral expectation of the payoffs.
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transactions) which carried (aggregated) transaction costs ǫ1. We have

E[Π] = γ(p− p∗) − ǫ0 − ǫ1, and Π ≥ γ(p− pRH) − ǫ0 − ǫ1.

The mean of Π is thus the same as that of an unhedged position less the transaction

costs. However, these transaction costs are small, as we will see, since they come

from single transactions as opposed to continuous rebalancing. On the other hand,

Π is bounded below, which may be a greatly appealing feature and will be rewarded

by risk measures.

If barrier crossing is monitored discretely (Robust hedge N) then Π in (2.8) has

an additional error term which has zero mean but is not theoretically bounded. In

practice this term is very small, as one would expect, but it does affect the risk

profile of hedging errors.

2.3. Benchmark (classical) hedging strategies

We want to benchmark the robust hedging strategies described above against clas-

sical delta or delta/vega hedging. The trader needs to decide on a model-specific

hedge facing uncertainty about the market conditions and hence the model. As in

[10], we assume they settle for the simplest (and possibly most universal, see e.g.

El Karoui, Jeanblanc-Picqué and Shreve [15]) solution, i.e. they construct the delta

and delta/vega hedges within the Black-Scholes framework using the same Black-

Scholes volatility input which is used to determine the option price p at time t = 0.

We consider the following strategies:

(i) No hedging : the trader does not set up any replicating portfolio after the

sale of the digital double barrier option and the position is left unhedged until

expiry.

(ii) Delta N (∆ N): the trader delta hedges the digital double barrier option by

rebalancing the replicating portfolio N times, at even intervals, during the life

of the option.

(iii) Delta/vega N (∆/V N): the trader delta/vega hedges the digital double

barrier option and rebalances the position N times, at even intervals, during

the life of the option. When rebalancing the trader aims to keep his portfolio

consisting of the digital double barrier option and the hedging portfolio delta–

and vega– neutral by trading ATM options, the asset and the risk-free bond.

We consider the cases where N = 250 and N = 1000, corresponding to rebalancing

daily and every six hours, respectively, during the life of the option.

We also examine modifications of the delta N and delta/vega N hedging strate-

gies intended to improve their performance in the presence of transaction costs.

One of the most popular methods to improve delta or delta/vega hedging in mar-

kets with transaction costs is the utility-based stochastic optimisation approach first

proposed by Hodges and Neuberger [22]. They define the price of an option as that

which results in the investor achieving the same terminal utility as when not trading
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the option. Mohamed [28], Clewlow and Hodges [9], and Martellini and Priaulet [27]

studied the performance of the utility-based approach and showed that it achieves

very good empirical performance. In this project, however, we do not implement

this approach because it would have been too computationally intensive. Instead,

we looked for methods that provide a closed-form formulae and are, in spirit and in

results, reasonably good approximations to the utility-based stochastic optimisation

approach.

Whalley and Wilmott [36] performed an asymptotic analysis of the stochastic

optimisation problem under small transaction costs and proposed a closed-form

formula that can be used to arrive at an approximately optimal trading rule for delta

hedging. More precisely, assuming the trader has an exponential utility function

with absolute risk aversion γ, [36] showed that it is optimal for the hedger to not

rebalance their delta hedge when the current delta of their replicating portfolio

is within a given bandwidth centred about the target delta ∆BS
t derived in the

Black-Scholes framework. In the case of zero interest rates the formula simplifies

considerably and the bandwidth is given by

∆t = ∆BS
t ±

(

3

2γ

)
1
3

. (2.9)

Zakamouline [37] compared the risk-adjusted performances of different optimised

hedging strategies and found that the Whalley and Wilmott method gives very

good results considering its ease of use. We obtained similar results as a by-product

of our simulations.

We were not able to find any analogous asymptotic analysis of the stochastic

optimisation problem under transaction costs applicable to vega hedging. We chose

to implement a rule similar to (2.9), which is rather widespread in practice: a fixed

vega band rule. The trader does not rebalance their vega hedge as long as

Vt = VBS
t ±H, (2.10)

where VBS
t is the Black-Scholes vega at time t and H is a constant. The more risk-

averse the hedger is, the lower H should be. The higher transaction costs are, the

higher H should be. Apart from those two intuitions, the optimal H must be found

either by running the simulation with many different values of H and selecting

the value achieving the highest risk-adjusted performance or by applying a rule of

thumb. We believe the former would give an unfair advantage to vega hedging and

would not be representative of a practical trading rule, as we would be setting in

advance the parameters of the true distribution of the underlying and selecting the

best value of H for that specific distribution. Instead, we decided to use a rule of

thumb, which is closer to the way the trading rule would be applied in practice. The

idea is to set the maximum loss due to volatility movements the trader is willing to

incur between rebalancing and infer the corresponding value of H . Let us assume

that the trader sells a digital double barrier option for a premium p and is not

willing to incur a loss exceeding x% of this premium between any rebalancing. Let
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us further assume that the trader believes that the volatility of the asset can move

by up to ∆σ in one day during the life of the option. We may then compute H as

follows: H = xp/∆σ. In our implementation, we chose x = 50% and ∆σ = 0.1 after

having experimented with different values and found these chosen values to provide

significant improvements in performance. Summarising, in addition to the delta N

and delta/vega N hedging strategies previously described, we have two additional

strategies:

(iv) Optimised delta N (∆+ N): identical to delta N , only the trader im-

plements the aforementioned delta trading rule (2.9). The trader’s absolute

risk aversion (ARA) level is assumed equal to 1.

(v) Optimised delta/vega N (∆/V+ N): identical to delta/vega N , only

the trader uses the delta and vega trading rules (2.9) and (2.10) described

above.

2.4. Performance measures

We run Monte Carlo simulations, each with 200,000 simulated paths and 200,000

time steps and carry out in parallel the twelve hedging strategies described above.

In order to compare the performances of the simulated hedging strategies, we con-

sider their expected profit and their risk. We record the distribution of hedging

errors for each of the hedging strategies and mean-correct them in the spirit of the

control variate approach suggested in Hull and White [24] (see also Davis, Schacher-

mayer and Tompkins [14] or [10]). The procedure is detailed in Appendix B.3 and

the adjustments (Adjf ) are reported. We call these the realised hedging errors and

compute their sample mean (Mean), standard deviation (SD), skewness (Skew),

kurtosis (Kurt), minimum (Min) and maximum (Max).

We chose the sample mean of the hedging errors as an obvious measure of expected

profit. Note that the sample mean for no hedging is simply the difference between

the sell/buy priceg and the true price. The means for other strategies additionally

capture the average level of transaction costs paid by each strategy as well as its

exposure to mispriced European options (the latter only happens in the BS HV and

BS LV models).

With respect to measuring the risk, there is no obvious unique choice. The

distributions of the hedging errors for the considered hedging strategies substantially

deviate from the normal distribution and, as a result, it would be misleading to only

use the sample standard deviation as a measure of risk. Instead, we chose as risk

measures the maximum observed loss, the Value-at-Risk (VaR) and the Conditional

Value-at-Risk (CVaR). Both VaR and CVaR measures were computed at the 99%

confidence level and with a time horizon equal to the life of the digital double barrier

option. These measures are typically used in practice to assess the economic capital

fAbbreviations given in parenthesis are used in Tables 1–5.
gRecall that it was set to the BS price with the at-the-money call option implied volatility.
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of unfunded transactions such as the sale of an exotic option. We examine those risk

measures in combination rather than in isolation when subjectively assessing the

risk of a particular hedging strategy. To illustrate, whenever a hedging strategy H1

achieves lower VaR, CoVaR and maximum loss measures than another strategy H2,

we conclude that H1 is less risky than H2. Furthermore, if that same H1 achieves an

expected return equal to or higher than H2, we conclude that H1 achieves a higher

risk-adjusted performance than H2.

We recall that VaR(α) of a portfolio at a confidence level α is given by the smallest

number l such that the probability that the portfolio loss exceeds l is not greater

than (1−α). The Conditional Value-at-Risk (CVaR), also called expected shortfall,

is given by

CVaR(α) =
1

1 − α

∫ 1

α

VaR(u)du (2.11)

and has the advantage of being a convex risk measure, see Artzner, Delbaen, Eber

and Heath [2] or Föllmer and Schied [17].

Finally, to complement the above, we compute the trader’s expected utility assum-

ing a negative exponential utility function: U(X) = 1 − e−γX for two values of

absolute risk aversion γ = 1 and γ = 2. These values are reported as EUM and

EUH respectively.

Observe that all the statistics and risk measures considered are either invariant

or monotone under a constant shift of the distribution and hence the choice of the

initial premium p does not affect the relative performance of hedging strategies.

All the computations are done under the risk-neutral measure (RNM), which is

uniquely specified through the calibration procedure to the market data. It may be

argued that for risk assessment one should use the real-world (physical) measure

(RWM) and not the pricing measure. However, we are here concerned with the

relative evaluation of different hedging methods and there are good reasons to do it

under the RNM. Firstly, a canonical example for an underlying here would be the

exchange rate for a pair of stable currencies with very similar domestic interest rates.

In such a situation one might expect a drift close to zero, even under the RWM,

making the RNM a plausible guess for the RWM. Secondly, to estimate the dynamics

under the RWM one would have to turn to time series of historical prices. Such

model estimation may be inaccurate, drift estimation poses a significant difficulty

(see e.g. Monoyios [29]) and one would have to assess how sensitive the results are

with respect to e.g. drift misspecification. Further, we think here of a situation of

model uncertainty when the trader has doubts about future dynamics. In such a

case, using historical prices to forecast future dynamics does not seem appropriate.

The RNM in contrast has the benefit of being well specified and calibrated to prices

of future payoffs. Naturally, these are interesting problems that merit independent

research and we leave it for future investigations.
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12 J. Ob lój & F. Ulmer

3. Results

We discuss now the risk-adjusted performance of hedging strategies under different

market scenarios applying the methodology described above. We refer to Tables 1–5

for the detailed results of our simulations.

We begin by looking at how the robust hedging strategies performed relative

to traditional hedging methods in the ideal case for the latter, namely when the

underlying is driven by the Black-Scholes model. In this case there is no model

misspecification and the only error in delta-hedging is due to discrete rebalancing

and transaction costs. One might expect the robust hedges not to be competitive

in such a scenario. Indeed, for a long position in a digital double touch (DT) option

and a short position in a digital double no-touch (DNT) option, classical strategies,

especially delta N or optimised delta N hedges, tend to outperform robust hedges

with the exception that robust strategies achieve lower maximum observed losses.

In contrast, for a short position in a DT option and a long position in a DNT option,

the situation is reversed and the robust strategies achieved a higher risk-adjusted

performance than all considered traditional hedging methods. We note, however,

that the standard deviation of the hedging errors for robust strategies is between 2

and 3 times greater than that of a typical classical hedging strategy.

If we now look at the results for Bates and VGSV models, we find that the

robust hedging strategies lead to an often dramatic reduction in risk relative to

traditional hedging methods, whilst achieving similar or higher expected profitsh.

Robust hedges for a short position in a DT option and short or long position for a

DNT option outperformed all other considered hedging strategies on a risk-adjusted

basis. The results are less conclusive for a long position in a DT option. Here, the ∆+

1000 strategy under the Bates model and the ∆/V+1000 strategy under the VGSV

model achieved significantly higher means than robust hedges (the differences are

small and equal 3.7% and 0.5% of option’s premium respectively). They performed

worse on risk measures and achieved similar values for the expected utility.

The standard deviation of hedging errors for robust strategies was either comparable

to that of classical hedges (short or long DT option) or higher by around 30%

(long DNT option) up to a factor of 2 (short DNT option). Finally, in terms of

expected utility, for higher risk aversion (EUH) robust strategies typically decisively

outperformed classical strategies, while achieving higher or similar expected utility

for lower risk aversion (EUM). We emphasise that both Bates and VGSV models

have jumps and these results show that the robust strategies, originally designed

for markets with continuous paths, perform remarkably well also in the presence of

jumps.

We now turn to market scenarios with dramatic changes of volatility: BS HV

and BS LV. Robust hedges use market traded European options to construct the

hTo compare the means of hedging errors we run paired t-test at a 99% confidence level. We say
that a strategy has a significantly higher mean if this is true for both raw and mean-adjusted
hedging errors (cf. Appendix B.3).
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static parts of the hedge. At time t = 0, these options are underpriced in BS HV and

overpriced in BS LV. We would thus expect robust hedges to perform well or poorly

under BS HV/LV depending on whether they go long or short European options.

Naturally, a similar reasoning applies to delta/vega hedges. Our results confirm this

intuition. Under BS HV for a short position in a DT option and a long position

in a DNT option and under BS LV for a short position in a DNT option, robust

hedges decisively outperformed all other hedging strategies. For a long position in a

DT option under BS LV, robust hedges outperformed delta hedges but comparison

with delta/vega strategies is inconclusive: robust hedges came first under our three

risk measures but delta/vega hedges achieved higher means and expected utility.

We note finally that in all four situations the hedging errors of robust strategies had

a considerably larger standard deviation than other strategies (about 2 to 3 times

larger up to 5 times larger for the long position in DNT option under BS HV). This

is mainly due to comparatively large maximal hedging errors (gains) attained by

robust strategies.

Table 5 contains the simulation results for the remaining four cases: long DT or short

DNT under BS HV and short DT or long DNT under BS LV. In these cases, both

the robust hedges and the delta/vega hedges had a worse risk-adjusted performance

than delta hedges or no hedging. This was to be expected: frictionless delta hedging

would be guaranteed to super/sub-replicate (cf. El Karoui, Jeanblanc-Picqué and

Shreve [15]) while robust or delta/vega hedging methods have to lead to an expected

loss. Remarkably, in all four cases, we find that robust hedges achieved a better risk-

adjusted performance than delta/vega hedging. As previously, the hedging errors of

robust strategies had higher standard deviations than other strategies but this was

less pronounced: of the order of 1.5 to 2 times higher, except for the short position

in DNT under BS HV where other strategies had almost zero variance.

In all market scenarios and for all positions, the distribution of hedging errors

resulting from the robust methods is significantly positively skewed. In other words,

robust hedging tends to lead to poor returns more frequently than good returns,

but the poor returns are small whilst the good returns are large. In contrast, the

distribution of hedging errors for traditional hedging methods is typically negatively

skewed, leading to the opposite conclusion regarding the frequency and size of poor

and good returns.

Figures 1–4 show the cumulative distribution functions of the hedging errors

achieved by some of the simulated hedging strategies. Those figures highlight how

the hedging errors are practically bounded on the loss side for the robust hedges

whilst all the traditional hedging methods have important left tails. The figures

also highlight the extent to which the probability of large returns is much higher

for the robust hedges than for the traditional ones: the right tails of the cumulative

distribution functions for the traditional methods converge to 1 on the right-hand

side of the figures much faster than those of the robust methods.

Finally, we examine in more detail the effect of jumps and discrete monitoring of

barrier crossing, both of which violate assumptions in [10,11], on the performance
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of robust hedges. We are interested in how well the theoretical property of super-

or sub-hedging is preserved and hence we need to examine the left tail of the distri-

bution of hedging errors. For the short position in a DNT option the robust hedge

is fully static and hence invariant to these factors. The hedging error is bounded

below, as in (2.8), which is clearly visible in Figure 2. Jumps in the underlying

alone do not affect the performance of the robust hedge of a short position in a

DT option or a long position in a DNT option, see [10,11]. However, the hedging

error is no longer bounded below because the discrete monitoring of barrier crossing

introduces an additional error term to (2.8). We see this in Figures 1 and 4 – robust

hedges exhibit a small left tail. It is, however, roughly similar in all four figures,

which confirms that jumps in the underlying do not introduce an additional error.

We see also that the tail grows with the decrease of monitoring frequency, which is

summarised by worsening risk measures, cf. Tables 1 and 4. Lastly, in Figure 3 we

see the cumulative distribution function of hedging errors from a long position in a

digital double touch option. In this case the theory indicates that the robust hedging

strategy is sensitive to the assumption of continuity of paths. This is confirmed by

our simulations. Under BS and BS LV robust hedging errors exhibit a small left tail

which grows with decreasing monitoring frequency. Under Bates and VGSV models

the left tail becomes more pronounced and the changing frequency of monitoring

has little effect, indicating that the presence of jumps is a more important factor.

This is confirmed by the risk measures computed in Table 3.

We conclude that the introduction of jumps in the underlying and the discrete

monitoring of barrier crossing may affect the performance of robust hedges, along

the lines predicted by the theory. We stress, however, that in our simulations this

effect is of second order compared with the differences between robust and classical

hedges and all our main findings above apply equally well to all considered versions

of the robust hedges.

4. Conclusions and further research

The results of our simulations, as described above, are strikingly unanimous. We

compared the hedging errors resulting from robust hedging strategies of Cox and

Ob lój [10,11] and from Black-Scholes delta or delta/vega hedges with fixed or opti-

mally adjusted rebalancing times. In the vast majority of considered market scenar-

ios and trader’s positions, robust hedges achieved an expected return similar to or

higher than the best classical hedge whilst delivering an often dramatic reduction

in risk measured with VaR, CVar and Maximum Loss. The hedging errors of robust

strategies typically have higher variance than classical model-specific hedges but

this is mainly due to infrequent large gains.

Theoretical properties of robust hedging strategies of digital double barrier op-

tions were developed in [10,11] assuming continuity of paths of the underlying and

continuous monitoring of barrier crossings. Our market scenarios included mod-

els with finite and infinite activity jumps component and we implemented robust
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strategies with discrete monitoring of barrier crossings. Results of our simulations

indicate the robust hedges are truly robust, even with respect to these two simpli-

fying assumptions in [10,11].

We believe that our results present convincing evidence of the benefits of robust

hedging methods. Nevertheless, the setup of our paper was restrictive in two ways.

Firstly, we only considered an underlying with zero cost of carry. This may be ap-

propriate for futures markets or currency pairs with the same domestic and foreign

interest rates but not in all generality. Implementation of robust hedging methods

of [10,11] for generic spot markets and a numerical analysis of their performance

remains, in our view, an important research avenue. Secondly, all our analysis apply

to a single position in a digital double barrier option. It remains an open problem

whether, and how, this discussion may be extended to a portfolio of options.

Appendix A. Tables and Figures
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Table 1: Simulation results (cf. Section 2.4) for the short position in the considered

digital double touch barrier option.

Strategy Mean SD Skew Kurt Min Max VaR CVaR EUM EUH Adj

BS model; p = 0.1644; Robust Strategy: HIII
DT , K1 = 1.0425, K2 = 0.9805, K3 = 0.8795, K4 = 0.819

No Hedging 0.0000 0.37 -1.8 4.3 -0.84 0.16 0.84 0.84 -0.09 -0.47 -0.0010

∆ 250 -0.0209 0.07 -1.8 39.1 -1.80 1.25 0.24 0.38 -0.02 -0.06 -0.0011

∆ 1000 -0.0397 0.05 -4.6 99.1 -1.95 0.94 0.19 0.30 -0.04 -0.09 -0.0011

∆/V 250 -0.0549 0.07 -2.0 35.6 -1.83 1.21 0.28 0.43 -0.06 -0.13 -0.0011

∆/V 1000 -0.0999 0.07 -2.0 23.1 -2.04 0.78 0.30 0.41 -0.11 -0.24 -0.0011

∆+ 250 -0.0092 0.10 -1.2 19.0 -1.93 1.14 0.30 0.44 -0.01 -0.04 -0.0011

∆+ 1000 -0.0101 0.08 -1.3 23.5 -2.10 1.29 0.24 0.35 -0.01 -0.03 -0.0011

∆/V+ 250 -0.0248 0.10 -0.9 15.0 -1.85 1.14 0.31 0.46 -0.03 -0.08 -0.0023

∆/V+ 1000 -0.0266 0.09 -0.9 15.1 -2.25 1.27 0.26 0.37 -0.03 -0.07 -0.0026

Robust 250 -0.0081 0.20 1.7 6.2 -0.45 2.47 0.23 0.26 -0.03 -0.08 -0.0006

Robust 1000 -0.0081 0.20 1.8 6.5 -0.29 2.45 0.18 0.20 -0.03 -0.08 -0.0006

Robust Exact -0.0081 0.20 1.8 6.5 -0.15 2.45 0.14 0.14 -0.03 -0.08 -0.0006

BS HV model; p = 0.1644; Robust Strategy: HIII
DT , K1 = 1.0425, K2 = 0.9805, K3 = 0.8795, K4 = 0.819

No Hedging -0.5316 0.46 0.8 1.7 -0.84 0.16 0.84 0.84 -0.86 -2.93 -0.0027

∆ 250 -0.5482 0.45 -1.8 8.7 -9.68 2.25 2.15 2.59 -1.03 -520.56 -0.0026

∆ 1000 -0.5621 0.45 -1.9 8.8 -7.05 0.77 2.19 2.64 -1.04 -10.92 -0.0028

∆/V 250 0.4405 0.51 -1.5 7.1 -8.64 2.94 1.29 1.73 0.22 -65.23 -0.0026

∆/V 1000 0.3355 0.59 -1.6 6.6 -6.40 1.51 1.65 2.13 0.08 -2.52 -0.0027

∆+ 250 -0.5439 0.46 -1.9 9.0 -9.58 2.21 2.16 2.61 -1.03 -430.30 -0.0025

∆+ 1000 -0.5468 0.45 -2.0 9.2 -6.96 0.78 2.16 2.62 -1.00 -10.28 -0.0027

∆/V+ 250 0.4925 0.46 -1.6 7.8 -8.45 2.99 1.07 1.51 0.29 -43.63 -0.0026

∆/V+ 1000 0.4804 0.46 -1.7 8.0 -6.04 1.90 1.11 1.57 0.28 -0.48 -0.0027

Robust 250 0.6414 1.34 3.8 29.4 -1.13 31.90 0.42 0.50 0.23 0.23 -0.0006

Robust 1000 0.6414 1.34 3.9 29.8 -0.56 31.97 0.27 0.31 0.23 0.26 -0.0007

Robust Exact 0.6414 1.34 3.9 30.0 -0.15 31.92 0.14 0.14 0.24 0.26 -0.0006

Bates model; p = 0.1831; Robust Strategy: HIII
DT , K1 = 1.046, K2 = 0.978, K3 = 0.8845, K4 = 0.8105

No Hedging 0.0179 0.37 -1.8 4.3 -0.82 0.18 0.82 0.82 -0.07 -0.42 0.0000

∆ 250 0.0029 0.25 -1.9 15.7 -4.90 3.58 0.90 1.23 -0.04 -0.37 0.0005

∆ 1000 -0.0100 0.25 -2.0 15.9 -4.48 3.55 0.90 1.24 -0.05 -0.40 0.0006

∆/V 250 -0.0240 0.23 -1.8 18.4 -4.99 3.52 0.84 1.15 -0.06 -0.38 0.0728

∆/V 1000 -0.0532 0.23 -1.9 17.9 -4.51 3.55 0.89 1.20 -0.09 -0.45 0.0728

∆+ 250 0.0107 0.25 -2.0 15.2 -4.63 3.47 0.91 1.25 -0.03 -0.32 0.0006

∆+ 1000 0.0098 0.25 -2.0 16.3 -4.58 3.07 0.89 1.22 -0.03 -0.37 0.0004

∆/V+ 250 -0.0056 0.23 -1.7 17.1 -4.97 3.66 0.82 1.13 -0.04 -0.32 0.0763

∆/V+ 1000 -0.0071 0.22 -1.7 18.2 -4.47 3.27 0.79 1.10 -0.04 -0.29 0.0763

Robust 250 0.0099 0.26 3.9 39.0 -1.16 7.35 0.26 0.32 -0.02 -0.08 -0.0033

Robust 1000 0.0099 0.26 4.0 40.6 -1.19 7.39 0.20 0.23 -0.02 -0.07 -0.0033

Robust Exact 0.0099 0.26 4.1 41.5 -0.16 7.42 0.16 0.16 -0.02 -0.07 -0.0033

VGSV model; p = 0.1895; Robust Strategy: HIII
DT , K1 = 1.0445, K2 = 0.979, K3 = 0.8845, K4 = 0.811

No Hedging 0.0675 0.33 -2.3 6.3 -0.81 0.19 0.81 0.81 -0.00 -0.22 0.0000

∆ 250 0.0580 0.22 -1.4 20.7 -5.42 4.04 0.70 1.01 0.03 -0.31 -0.0108

∆ 1000 0.0565 0.22 -0.8 64.1 -7.83 11.24 0.68 0.99 0.02 -31.47 -0.0107

∆/V 250 0.0347 0.19 -1.4 30.1 -5.41 4.04 0.64 0.95 0.01 -0.32 0.0127

∆/V 1000 0.0300 0.19 -0.7 101.0 -7.81 11.14 0.64 0.95 -0.00 -30.35 0.0127

∆+ 250 0.0615 0.22 -1.5 19.4 -5.39 4.24 0.70 1.01 0.03 -0.29 -0.0078

∆+ 1000 0.0612 0.22 -0.8 55.6 -6.33 11.06 0.69 0.99 0.03 -1.62 -0.0078

∆/V+ 250 0.0453 0.19 -1.2 26.2 -5.51 4.23 0.60 0.91 0.02 -0.35 0.0256

∆/V+ 1000 0.0447 0.19 -0.2 87.2 -6.25 11.04 0.58 0.88 0.02 -1.38 0.0267

Robust 250 0.0599 0.23 2.9 24.8 -1.23 5.53 0.19 0.27 0.04 0.04 0.0196

Robust 1000 0.0599 0.23 3.0 26.2 -0.81 5.53 0.12 0.17 0.04 0.04 0.0198

Robust Exact 0.0599 0.23 3.0 26.6 -0.13 5.53 0.12 0.12 0.04 0.04 0.0198
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Table 2: Simulation results (cf. Section 2.4) for the short position in the considered

digital double no-touch barrier option.

Strategy Mean SD Skew Kurt Min Max VaR CVaR EUM EUH Adj

BS model; p = 0.0295; Robust Strategy: HI
DNT

No Hedging 0.0000 0.17 -5.5 31.4 -0.97 0.03 0.97 0.97 -0.02 -0.12 0.0005

∆ 250 -0.0085 0.05 -2.8 70.9 -1.17 1.55 0.21 0.32 -0.01 -0.02 0.0005

∆ 1000 -0.0161 0.04 -5.1 63.5 -1.22 0.88 0.19 0.27 -0.02 -0.04 0.0005

∆/V 250 -0.0357 0.06 -3.6 43.8 -1.21 1.41 0.28 0.39 -0.04 -0.08 0.0005

∆/V 1000 -0.0673 0.08 -2.8 14.5 -1.44 0.69 0.38 0.47 -0.07 -0.16 0.0005

∆+ 250 -0.0045 0.06 -2.2 47.8 -1.58 1.52 0.25 0.36 -0.01 -0.02 0.0007

∆+ 1000 -0.0051 0.05 -2.7 44.0 -1.07 1.18 0.19 0.28 -0.01 -0.01 0.0008

∆/V+ 250 -0.0330 0.07 -3.5 36.5 -1.41 1.43 0.32 0.44 -0.04 -0.08 0.0005

∆/V+ 1000 -0.0580 0.08 -2.9 16.4 -1.30 0.99 0.38 0.47 -0.06 -0.14 0.0005

Robust 250 -0.0097 0.49 0.4 1.2 -0.41 0.59 0.41 0.41 -0.13 -0.49 0.0005

Robust 1000 -0.0097 0.49 0.4 1.2 -0.41 0.59 0.41 0.41 -0.13 -0.49 0.0005

Robust Exact -0.0097 0.49 0.4 1.2 -0.41 0.59 0.41 0.41 -0.13 -0.49 0.0005

BS LV model; p = 0.0295; Robust Strategy: HI
DNT

No Hedging -0.2125 0.43 -1.2 2.4 -0.97 0.03 0.97 0.97 -0.37 -1.40 0.0009

∆ 250 -0.2314 0.26 -1.2 3.7 -2.53 0.99 0.96 1.16 -0.31 -0.89 0.0007

∆ 1000 -0.2483 0.28 -1.1 3.2 -2.84 1.14 0.97 1.14 -0.34 -0.98 0.0006

∆/V 250 -0.1851 0.26 -1.1 3.8 -2.51 1.06 0.92 1.12 -0.25 -0.71 0.0009

∆/V 1000 -0.2265 0.29 -1.0 3.1 -2.80 1.17 0.98 1.16 -0.31 -0.92 0.0009

∆+ 250 -0.2214 0.27 -1.2 3.8 -2.34 0.92 0.98 1.16 -0.30 -0.86 0.0006

∆+ 1000 -0.2224 0.26 -1.2 3.6 -2.33 1.45 0.94 1.11 -0.30 -0.84 0.0005

∆/V+ 250 -0.1773 0.27 -1.2 3.9 -2.50 1.02 0.93 1.12 -0.24 -0.70 0.0009

∆/V+ 1000 -0.2034 0.28 -1.0 3.3 -2.44 1.45 0.95 1.12 -0.28 -0.80 0.0009

Robust 250 -0.0434 0.48 0.5 1.3 -0.41 0.59 0.41 0.41 -0.16 -0.55 0.0003

Robust 1000 -0.0434 0.48 0.5 1.3 -0.41 0.59 0.41 0.41 -0.16 -0.55 0.0003

Robust Exact -0.0434 0.48 0.5 1.3 -0.41 0.59 0.41 0.41 -0.16 -0.55 0.0003

Bates model; p = 0.0228; Robust Strategy: HI
DNT

No Hedging -0.0920 0.32 -2.4 6.8 -0.98 0.02 0.98 0.98 -0.17 -0.66 0.0000

∆ 250 -0.1020 0.29 -1.2 20.3 -5.50 8.95 1.10 1.34 -0.17 -1.22 -0.0004

∆ 1000 -0.1102 0.29 -1.4 20.2 -5.46 8.35 1.11 1.36 -0.18 -1.11 -0.0006

∆/V 250 -0.1307 0.26 -0.9 26.1 -5.77 8.40 1.04 1.31 -0.19 -1.65 -0.0574

∆/V 1000 -0.1623 0.27 -1.2 24.6 -5.78 7.78 1.10 1.38 -0.23 -1.55 -0.0579

∆+ 250 -0.0975 0.29 -1.3 18.2 -5.31 8.98 1.09 1.31 -0.16 -0.86 -0.0003

∆+ 1000 -0.0983 0.29 -1.3 18.7 -4.76 8.66 1.08 1.30 -0.16 -0.81 -0.0004

∆/V+ 250 -0.1270 0.26 -1.0 20.8 -5.62 7.73 1.03 1.28 -0.18 -1.19 -0.0574

∆/V+ 1000 -0.1507 0.27 -1.2 22.1 -5.34 8.14 1.07 1.33 -0.21 -1.18 -0.0579

Robust 250 -0.1022 0.47 0.7 1.5 -0.43 0.57 0.43 0.43 -0.22 -0.69 -0.0036

Robust 1000 -0.1022 0.47 0.7 1.5 -0.43 0.57 0.43 0.43 -0.22 -0.69 -0.0036

Robust Exact -0.1022 0.47 0.7 1.5 -0.43 0.57 0.43 0.43 -0.22 -0.69 -0.0036

VGSV model; p = 0.0208; Robust Strategy: HI
DNT

No Hedging -0.1087 0.34 -2.2 5.9 -0.98 0.02 0.98 0.98 -0.20 -0.75 0.0000

∆ 250 -0.1161 0.31 -1.5 11.9 -5.77 4.28 1.21 1.44 -0.19 -1.26 0.0149

∆ 1000 -0.1178 0.31 -1.3 18.9 -5.87 8.71 1.21 1.46 -0.20 -1.56 0.0149

∆/V 250 -0.1373 0.27 -1.6 15.0 -5.79 4.19 1.15 1.39 -0.20 -1.26 -0.0092

∆/V 1000 -0.1418 0.27 -1.4 26.4 -5.90 8.80 1.15 1.42 -0.21 -1.57 -0.0093

∆+ 250 -0.1140 0.31 -1.5 11.2 -5.73 4.23 1.17 1.38 -0.19 -1.16 0.0118

∆+ 1000 -0.1145 0.30 -1.5 11.8 -5.52 4.95 1.17 1.39 -0.19 -1.07 0.0120

∆/V+ 250 -0.1355 0.27 -1.5 13.6 -5.72 3.97 1.12 1.34 -0.20 -1.13 -0.0091

∆/V+ 1000 -0.1387 0.27 -1.6 14.8 -5.47 5.05 1.12 1.35 -0.20 -1.06 -0.0091

Robust 250 -0.1189 0.46 0.8 1.7 -0.43 0.57 0.43 0.43 -0.23 -0.72 0.0003

Robust 1000 -0.1189 0.46 0.8 1.7 -0.43 0.57 0.43 0.43 -0.23 -0.72 0.0003

Robust Exact -0.1189 0.46 0.8 1.7 -0.43 0.57 0.43 0.43 -0.23 -0.72 0.0003
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Table 3: Simulation results (cf. Section 2.4) for the long position in the considered

digital double touch barrier option.

Strategy Mean SD Skew Kurt Min Max VaR CVaR EUM EUH Adj

BS model; p = 0.3896; Robust Strategy: HI
DT , K1 = 1.1525, K2 = 0.7385

No Hedging -0.0000 0.49 0.5 1.2 -0.39 0.61 0.39 0.39 -0.11 -0.44 0.0031

∆ 250 -0.0230 0.08 -0.6 32.2 -2.54 2.01 0.25 0.38 -0.03 -0.06 0.0017

∆ 1000 -0.0425 0.05 -3.4 79.9 -2.14 1.53 0.20 0.30 -0.04 -0.10 0.0019

∆/V 250 -0.0628 0.08 -0.8 28.9 -2.57 1.95 0.30 0.43 -0.07 -0.15 0.0017

∆/V 1000 -0.1145 0.08 -1.6 19.8 -2.27 1.48 0.33 0.43 -0.12 -0.27 0.0019

∆+ 250 -0.0110 0.10 -0.1 17.2 -2.49 2.17 0.29 0.41 -0.02 -0.05 0.0016

∆+ 1000 -0.0120 0.08 -0.5 16.6 -1.49 1.66 0.24 0.33 -0.02 -0.04 0.0019

∆/V+ 250 -0.0272 0.10 -0.2 16.7 -2.66 1.99 0.31 0.43 -0.03 -0.08 0.0025

∆/V+ 1000 -0.0291 0.08 -0.6 16.6 -1.79 1.55 0.25 0.34 -0.03 -0.07 0.0027

Robust 250 -0.0297 0.32 1.0 2.8 -0.45 1.99 0.35 0.36 -0.08 -0.25 0.0014

Robust 1000 -0.0297 0.32 1.0 2.8 -0.38 1.94 0.32 0.33 -0.08 -0.25 0.0015

Robust Exact -0.0297 0.32 1.0 2.8 -0.30 1.94 0.30 0.30 -0.08 -0.25 0.0015

BS LV model; p = 0.3896; Robust Strategy: HI
DT , K1 = 1.1525, K2 = 0.7385

No Hedging -0.2437 0.35 2.0 5.1 -0.39 0.61 0.39 0.39 -0.34 -0.90 0.0012

∆ 250 -0.2664 0.14 -1.9 11.1 -1.84 0.81 0.77 0.96 -0.32 -0.79 0.0013

∆ 1000 -0.2859 0.14 -1.8 10.1 -2.06 0.82 0.78 0.95 -0.35 -0.87 0.0013

∆/V 250 -0.0964 0.13 -2.3 14.4 -1.63 1.01 0.58 0.78 -0.11 -0.27 0.0005

∆/V 1000 -0.1303 0.14 -2.1 12.3 -1.90 0.98 0.62 0.79 -0.15 -0.36 0.0005

∆+ 250 -0.2529 0.16 -1.6 8.7 -1.77 0.79 0.79 0.97 -0.30 -0.76 0.0013

∆+ 1000 -0.2536 0.15 -1.6 8.8 -1.82 0.85 0.76 0.93 -0.30 -0.75 0.0012

∆/V+ 250 -0.0720 0.14 -1.8 10.1 -1.58 0.98 0.58 0.76 -0.09 -0.21 0.0019

∆/V+ 1000 -0.0728 0.14 -1.8 10.5 -1.77 1.07 0.55 0.72 -0.09 -0.21 0.0020

Robust 250 -0.1299 0.26 1.7 5.3 -0.40 0.79 0.33 0.34 -0.17 -0.43 0.0011

Robust 1000 -0.1299 0.26 1.7 5.3 -0.35 0.74 0.31 0.32 -0.17 -0.43 0.0011

Robust Exact -0.1299 0.26 1.7 5.3 -0.30 0.70 0.30 0.30 -0.17 -0.43 0.0011

Bates model; p = 0.4083; Robust Strategy: HI
DT , K1 = 1.153, K2 = 0.689

No Hedging -0.0820 0.47 0.7 1.5 -0.41 0.59 0.41 0.41 -0.19 -0.62 0.0000

∆ 250 -0.1007 0.29 0.8 14.2 -3.87 8.60 0.79 1.02 -0.15 -0.47 -0.0000

∆ 1000 -0.1156 0.28 0.8 17.3 -3.54 9.33 0.80 1.03 -0.17 -0.49 -0.0001

∆/V 250 -0.1320 0.26 0.4 17.6 -3.96 7.97 0.85 1.09 -0.18 -0.54 -0.0973

∆/V 1000 -0.1682 0.25 0.2 21.1 -3.88 8.52 0.89 1.12 -0.22 -0.64 -0.0975

∆+ 250 -0.0915 0.29 0.9 13.7 -3.96 8.62 0.78 0.99 -0.14 -0.44 -0.0000

∆+ 1000 -0.0926 0.28 0.8 10.7 -3.38 5.50 0.77 0.98 -0.14 -0.42 -0.0001

∆/V+ 250 -0.1070 0.26 0.6 16.8 -4.02 8.06 0.80 1.02 -0.15 -0.47 -0.0908

∆/V+ 1000 -0.1087 0.25 0.4 12.9 -3.97 5.28 0.79 1.00 -0.15 -0.44 -0.0916

Robust 250 -0.1108 0.32 1.2 4.2 -1.31 3.61 0.61 0.70 -0.17 -0.46 -0.0051

Robust 1000 -0.1108 0.31 1.2 4.2 -1.31 3.61 0.61 0.70 -0.17 -0.46 -0.0051

Robust Exact -0.1108 0.31 1.2 4.2 -1.31 3.63 0.61 0.69 -0.17 -0.46 -0.0051

VGSV model; p = 0.4145; Robust Strategy: HI
DT , K1 = 1.149, K2 = 0.693

No Hedging -0.1540 0.44 1.1 2.2 -0.41 0.59 0.41 0.41 -0.26 -0.77 0.0000

∆ 250 -0.1667 0.27 0.2 11.9 -5.88 3.63 0.91 1.17 -0.23 -1.42 0.0091

∆ 1000 -0.1685 0.27 0.5 28.8 -6.00 10.97 0.91 1.17 -0.23 -1.91 0.0093

∆/V 250 -0.1928 0.24 -0.1 17.4 -5.98 3.43 0.89 1.16 -0.25 -1.60 -0.0258

∆/V 1000 -0.1982 0.23 0.3 48.8 -6.11 10.89 0.89 1.16 -0.26 -2.17 -0.0257

∆+ 250 -0.1625 0.27 0.4 10.5 -4.84 3.87 0.89 1.11 -0.22 -0.78 0.0048

∆+ 1000 -0.1629 0.27 0.7 27.6 -5.13 11.23 0.89 1.11 -0.22 -0.89 0.0049

∆/V+ 250 -0.1783 0.24 0.1 13.9 -4.81 3.61 0.86 1.09 -0.23 -0.78 -0.0296

∆/V+ 1000 -0.1790 0.23 0.6 43.4 -4.96 11.08 0.85 1.08 -0.23 -0.86 -0.0307

Robust 250 -0.1828 0.28 1.4 4.8 -1.10 3.17 0.56 0.62 -0.24 -0.63 -0.0158

Robust 1000 -0.1828 0.28 1.4 4.8 -1.11 3.17 0.55 0.61 -0.24 -0.63 -0.0157

Robust Exact -0.1828 0.28 1.4 4.8 -1.11 3.17 0.55 0.61 -0.24 -0.63 -0.0158
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Table 4: Simulation results (cf. Section 2.4) for the long position in the considered

digital double no-touch barrier option.

Strategy Mean SD Skew Kurt Min Max VaR CVaR EUM EUH Adj

BS model; p = 0.6722; Robust Strategy: HII
DNT , K1 = 0.7615, K2 = 0.997

No Hedging -0.0000 0.47 -0.7 1.5 -0.67 0.33 0.67 0.67 -0.13 -0.61 0.0002

∆ 250 -0.0277 0.08 -1.6 46.1 -3.02 1.64 0.27 0.43 -0.03 -0.07 -0.0008

∆ 1000 -0.0533 0.05 -3.1 122.3 -2.05 2.60 0.22 0.34 -0.06 -0.12 -0.0007

∆/V 250 -0.0761 0.08 -2.3 45.0 -3.06 1.60 0.34 0.51 -0.08 -0.19 -0.0008

∆/V 1000 -0.1412 0.08 -2.5 30.3 -2.31 2.42 0.43 0.55 -0.16 -0.35 -0.0007

∆+ 250 -0.0133 0.10 -0.8 19.1 -3.04 1.64 0.31 0.46 -0.02 -0.05 -0.0009

∆+ 1000 -0.0151 0.08 -1.0 17.0 -1.75 1.54 0.24 0.36 -0.02 -0.05 -0.0008

∆/V+ 250 -0.0662 0.10 -1.5 25.5 -3.02 1.55 0.36 0.53 -0.07 -0.17 -0.0009

∆/V+ 1000 -0.1120 0.09 -1.7 14.2 -1.85 1.21 0.41 0.54 -0.12 -0.28 -0.0008

Robust 250 -0.0070 0.23 5.0 44.7 -0.58 5.55 0.23 0.27 -0.03 -0.08 -0.0009

Robust 1000 -0.0070 0.23 5.2 46.8 -0.31 5.67 0.16 0.18 -0.03 -0.08 -0.0009

Robust Exact -0.0070 0.23 5.2 47.5 -0.09 5.62 0.09 0.09 -0.03 -0.08 -0.0008

BS HV model; p = 0.6722; Robust Strategy: HII
DNT , K1 = 0.7615, K2 = 0.997

No Hedging -0.6660 0.08 12.3 151.5 -0.67 0.33 0.67 0.67 -0.95 -2.82 -0.0003

∆ 250 -0.6857 0.66 -1.9 8.0 -7.66 0.52 3.16 3.66 -1.88 -55.33 -0.0001

∆ 1000 -0.7027 0.68 -2.0 8.1 -7.64 0.25 3.26 3.75 -2.01 -68.52 0.0003

∆/V 250 0.7148 0.61 -1.2 5.3 -5.57 1.99 1.29 1.68 0.37 -0.15 -0.0003

∆/V 1000 0.6123 0.68 -1.5 6.1 -5.45 1.71 1.72 2.16 0.24 -1.50 -0.0002

∆+ 250 -0.6824 0.66 -1.9 8.1 -7.66 0.54 3.14 3.66 -1.87 -57.69 -0.0002

∆+ 1000 -0.6871 0.67 -2.0 8.2 -7.64 0.24 3.18 3.69 -1.91 -62.45 0.0001

∆/V+ 250 0.7163 0.61 -1.2 5.3 -5.77 2.01 1.26 1.67 0.37 -0.19 -0.0004

∆/V+ 1000 0.6219 0.67 -1.4 6.0 -5.13 1.69 1.65 2.11 0.26 -1.22 -0.0003

Robust 250 1.8606 3.97 3.7 26.1 -1.70 87.92 0.62 0.76 0.28 0.20 0.0109

Robust 1000 1.8606 3.97 3.7 26.1 -0.92 88.21 0.35 0.42 0.29 0.27 0.0109

Robust Exact 1.8606 3.97 3.7 26.1 -0.09 88.21 0.08 0.08 0.29 0.28 0.0112

Bates model; p = 0.6466; Robust Strategy: HII
DNT , K1 = 0.809, K2 = 1.0065

No Hedging 0.0057 0.48 -0.6 1.4 -0.65 0.35 0.65 0.65 -0.12 -0.59 0.0000

∆ 250 -0.0169 0.39 -1.1 9.2 -5.53 5.69 1.28 1.67 -0.12 -1.59 -0.0001

∆ 1000 -0.0366 0.39 -1.1 10.5 -6.03 7.53 1.30 1.71 -0.15 -2.88 -0.0003

∆/V 250 -0.0575 0.35 -1.0 11.7 -5.61 5.72 1.19 1.59 -0.14 -1.43 0.1116

∆/V 1000 -0.1052 0.35 -1.1 13.6 -6.17 7.49 1.28 1.67 -0.20 -2.98 0.1118

∆+ 250 -0.0063 0.39 -1.1 8.8 -5.56 5.68 1.27 1.67 -0.11 -1.34 -0.0001

∆+ 1000 -0.0082 0.39 -1.0 9.9 -5.89 7.60 1.26 1.66 -0.11 -1.63 -0.0003

∆/V+ 250 -0.0502 0.35 -1.0 11.5 -5.60 5.65 1.19 1.58 -0.13 -1.25 0.1118

∆/V+ 1000 -0.0837 0.35 -1.0 12.9 -6.02 7.15 1.23 1.63 -0.17 -1.88 0.1119

Robust 250 -0.0019 0.46 9.0 145.1 -2.08 17.03 0.32 0.40 -0.05 -0.16 -0.0057

Robust 1000 -0.0019 0.45 9.1 147.6 -1.06 17.03 0.24 0.27 -0.05 -0.16 -0.0057

Robust Exact -0.0019 0.45 9.1 147.9 -0.16 16.88 0.16 0.16 -0.05 -0.16 -0.0058

VGSV model; p = 0.6377; Robust Strategy: HII
DNT , K1 = 0.806, K2 = 1.0075

No Hedging 0.0428 0.47 -0.8 1.6 -0.64 0.36 0.64 0.64 -0.08 -0.47 0.0000

∆ 250 0.0280 0.35 -0.6 10.4 -5.75 6.39 1.04 1.40 -0.05 -1.22 -0.0484

∆ 1000 0.0250 0.35 -0.6 11.2 -5.65 5.91 1.04 1.40 -0.05 -1.03 -0.0487

∆/V 250 -0.0049 0.30 -0.5 15.1 -5.89 6.26 0.92 1.27 -0.06 -1.34 -0.0155

∆/V 1000 -0.0120 0.30 -0.5 16.5 -5.80 5.76 0.93 1.28 -0.07 -1.14 -0.0157

∆+ 250 0.0326 0.35 -0.7 9.4 -5.02 6.10 1.04 1.39 -0.04 -0.52 -0.0432

∆+ 1000 0.0319 0.34 -0.6 10.3 -4.44 7.65 1.03 1.37 -0.04 -0.44 -0.0433

∆/V+ 250 -0.0016 0.29 -0.5 13.6 -4.40 6.14 0.91 1.25 -0.05 -0.38 -0.0093

∆/V+ 1000 -0.0068 0.29 -0.5 16.1 -4.56 7.80 0.92 1.25 -0.06 -0.45 -0.0094

Robust 250 0.0354 0.43 8.2 112.1 -1.74 11.39 0.21 0.35 -0.01 -0.08 -0.0048

Robust 1000 0.0354 0.43 8.3 113.9 -1.03 11.39 0.14 0.21 -0.01 -0.07 -0.0047

Robust Exact 0.0354 0.43 8.3 114.6 -0.14 11.39 0.14 0.14 -0.01 -0.07 -0.0047
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Table 5: Additional simulation results (cf. Section 2.4) for all the position in the

considered digital double touch barrier options under BS HV/LV models.

Strategy Mean SD Skew Kurt Min Max VaR CVaR EUM EUH Adj

Short DT; BS LV model; p = 0.1644; Robust Strategy: HIII
DT , K1 = 1.0425, K2 = 0.9805, K3 = 0.8795, K4 = 0.819

No Hedging 0.1447 0.14 -7.0 49.4 -0.84 0.16 0.84 0.84 0.12 0.19 -0.0002

∆ 250 0.1319 0.08 3.8 28.5 -0.49 1.60 -0.05 -0.03 0.12 0.22 -0.0002

∆ 1000 0.1204 0.07 3.7 27.4 -0.16 1.57 -0.05 -0.04 0.11 0.21 -0.0002

∆/V 250 -0.0714 0.07 4.2 35.6 -0.69 1.40 0.14 0.15 -0.08 -0.16 0.0011

∆/V 1000 -0.0930 0.07 3.8 32.7 -0.41 1.34 0.16 0.17 -0.10 -0.21 0.0010

∆+ 250 0.1404 0.09 3.2 21.6 -0.48 1.53 -0.02 0.01 0.13 0.23 -0.0002

∆+ 1000 0.1402 0.09 3.1 21.1 -0.46 1.56 -0.03 -0.01 0.13 0.23 -0.0002

∆/V+ 250 -0.0562 0.11 1.5 11.0 -0.87 1.37 0.27 0.29 -0.06 -0.14 -0.0015

∆/V+ 1000 -0.0566 0.11 1.2 9.3 -0.69 1.35 0.27 0.29 -0.06 -0.14 -0.0012

Robust 250 -0.0261 0.17 2.0 6.7 -0.33 0.91 0.18 0.20 -0.04 -0.10 0.0000

Robust 1000 -0.0261 0.17 2.0 6.8 -0.26 0.88 0.16 0.17 -0.04 -0.10 0.0000

Robust Exact -0.0261 0.17 2.0 6.8 -0.14 0.86 0.14 0.14 -0.04 -0.10 0.0000

Short DNT; BS HV model; p = 0.0295; Robust Strategy: HI
DNT

No Hedging 0.0295 0.00 1.0 1.0 0.03 0.03 -0.03 -0.03 0.03 0.06 0.0000

∆ 250 0.0286 0.03 2.3 13.7 -0.13 0.64 0.01 0.02 0.03 0.05 0.0001

∆ 1000 0.0278 0.03 2.7 17.8 -0.11 0.77 0.00 0.01 0.03 0.05 0.0001

∆/V 250 -0.4240 0.03 0.3 3.8 -0.59 -0.06 0.48 0.48 -0.53 -1.34 0.0000

∆/V 1000 -0.4372 0.02 -0.2 2.4 -0.60 -0.23 0.49 0.50 -0.55 -1.40 0.0000

∆+ 250 0.0289 0.03 2.5 14.8 -0.06 0.68 0.01 0.02 0.03 0.05 0.0000

∆+ 1000 0.0287 0.03 2.8 18.0 -0.03 0.78 0.00 0.01 0.03 0.05 0.0001

∆/V+ 250 -0.4239 0.03 0.4 3.7 -0.56 -0.07 0.48 0.49 -0.53 -1.34 0.0000

∆/V+ 1000 -0.4367 0.03 -0.2 2.7 -0.63 -0.24 0.50 0.51 -0.55 -1.40 0.0000

Robust 250 -0.2650 0.35 2.0 4.9 -0.41 0.59 0.41 0.41 -0.37 -0.99 0.0002

Robust 1000 -0.2650 0.35 2.0 4.9 -0.41 0.59 0.41 0.41 -0.37 -0.99 0.0002

Robust Exact -0.2650 0.35 2.0 4.9 -0.41 0.59 0.41 0.41 -0.37 -0.99 0.0002

Long DT; BS HV model; p = 0.3896; Robust Strategy: HI
DT , K1 = 1.1525, K2 = 0.7385

No Hedging 0.4003 0.41 -1.4 3.0 -0.39 0.61 0.39 0.39 0.26 0.31 0.0021

∆ 250 0.3867 0.41 2.0 9.5 -2.26 5.98 0.17 0.24 0.27 0.42 0.0036

∆ 1000 0.3761 0.39 2.1 9.9 -1.44 5.12 0.06 0.10 0.27 0.42 0.0037

∆/V 250 -0.8327 0.38 1.7 8.2 -3.04 4.51 1.39 1.46 -1.44 -5.52 0.0020

∆/V 1000 -0.9272 0.31 2.1 9.8 -2.30 3.30 1.29 1.33 -1.63 -6.33 0.0021

∆+ 250 0.3899 0.42 2.0 9.6 -2.48 5.81 0.17 0.23 0.27 0.42 0.0037

∆+ 1000 0.3877 0.41 2.2 10.0 -1.22 5.72 0.06 0.09 0.28 0.43 0.0037

∆/V+ 250 -0.7829 0.41 1.5 7.0 -3.16 4.60 1.37 1.44 -1.35 -5.10 0.0020

∆/V+ 1000 -0.7925 0.39 1.6 7.0 -2.28 3.58 1.25 1.28 -1.35 -5.06 0.0021

Robust 250 0.0816 0.72 4.8 45.4 -0.90 21.23 0.51 0.56 -0.06 -0.27 0.0023

Robust 1000 0.0816 0.71 4.9 46.2 -0.59 21.23 0.41 0.43 -0.05 -0.25 0.0024

Robust Exact 0.0816 0.71 4.9 46.5 -0.32 21.23 0.31 0.31 -0.05 -0.25 0.0024

Long DNT; BS LV model; p = 0.6722; Robust Strategy: HII
DNT , K1 = 0.7615, K2 = 0.997

No Hedging 0.2330 0.29 -2.8 8.6 -0.67 0.33 0.67 0.67 0.16 0.17 0.0000

∆ 250 0.2131 0.10 2.8 18.7 -0.72 1.96 -0.04 -0.01 0.19 0.34 0.0001

∆ 1000 0.1946 0.09 2.6 16.4 -1.20 2.00 -0.05 -0.03 0.17 0.31 0.0000

∆/V 250 -0.0718 0.11 3.1 19.3 -1.06 1.69 0.23 0.26 -0.08 -0.18 0.0001

∆/V 1000 -0.1091 0.09 2.7 17.6 -1.57 1.65 0.28 0.31 -0.12 -0.26 0.0000

∆+ 250 0.2256 0.12 2.3 13.7 -0.66 1.92 -0.02 0.01 0.20 0.35 -0.0001

∆+ 1000 0.2250 0.11 2.2 12.5 -0.71 1.68 -0.03 -0.01 0.20 0.35 0.0000

∆/V+ 250 -0.0633 0.12 2.9 17.3 -0.98 1.41 0.24 0.27 -0.07 -0.16 -0.0001

∆/V+ 1000 -0.0872 0.11 2.6 16.3 -1.04 1.60 0.27 0.30 -0.10 -0.21 -0.0000

Robust 250 -0.0237 0.16 3.2 13.2 -0.33 1.93 0.14 0.17 -0.03 -0.09 0.0001

Robust 1000 -0.0237 0.16 3.2 13.4 -0.22 2.05 0.11 0.13 -0.03 -0.09 0.0001

Robust Exact -0.0237 0.16 3.2 13.4 -0.09 2.07 0.09 0.09 -0.03 -0.09 0.0001
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Fig. 1: Cumulative distribution function of hedging errors achieved on the short

position in the digital double touch barrier option under each one of the considered

models for the underlying process.
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Fig. 2: Cumulative distribution function of hedging errors achieved on the short po-

sition in the digital double no-touch barrier option under each one of the considered

models for the underlying process.
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Fig. 3: Cumulative distribution function of hedging errors achieved on the long

position in the digital double touch barrier option under each one of the considered

models for the underlying process.
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Fig. 4: Cumulative distribution function of hedging errors achieved on the long po-

sition in the digital double no-touch barrier option under each one of the considered

models for the underlying process.
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Appendix B. Summary of numerical methods

B.1. Calibration

As mentioned in Section 2.1, the parameters of the considered models were based on real-life global spot foreign exchange
interbank market data observed on 14 January 2010 for the AUD/USD foreign exchange spot rate. We calibrated the
models to bid and ask implied volatility quotes on standard European options on AUD/USD for different maturities
and spot delta points, without premium adjustment. We excluded from the data set the market quotes for options with
maturity of one day as their prices are potentially subject to microstructure effects that would only create unwanted
noise in our calibration procedure.

The calibration was performed by minimising the weighted sum of squared pricing errors. The pricing error was
taken to equal the difference between the model option price and the market ask price if the model option price was
higher than the market ask price, to the difference between the model option price and the market bid price if the model
option price was lower than the market bid price, and to zero if the model option price was within the market bid and ask
prices. For each maturity considered, we used market call option prices for strikes higher than the at-the-money strike
and market put option prices for strikes lower than or equal to the at-the-money strike.

To avoid putting excessive weight on near-the-money options relative to out-of-the-money ones and on long-term
options relative to short-term ones, we used the weighting scheme suggested by [23], whereby an optimal weighting matrix
is estimated using the variance of the normalized option prices. The normalized option price is defined as being equal
to the option price divided by the spot price in percentage points. The variance of the normalized option prices at each
level of moneyness and maturity is estimated using a nonparametric regression and the weight for the pricing error at
that moneyness and maturity is given by the reciprocal of that estimated variance. As both the VGSV and Bates models
may be regarded as time-changed Lévy processes (see [8]) and the stochastic time parameters have little influence on
short-dated option prices relative to the Lévy parameters, we split the overall calibration procedure into two steps: we
first ran the calibration routine on all model parameters against the short-dated maturities in order to arrive at better
estimates for the Lévy process parameters; we then ran the calibration routine again against all the maturities in the
data set, only this time we set the Lévy process parameters to the values estimated in the first calibration run.

The Black-Scholes model is calibrated to the ATM mid implied volatilities derived from the bid and ask market
quotes for options of maturity equal to that of the digital double barrier option (one year).

B.2. Computing prices and Greeks

In our simulations we needed to compute the prices, deltas and vegas of the digital double barrier options under the
BS model. To this end we implemented a Crank-Nicolson finite difference scheme (see [13]). We used a finite difference
grid with 1,000 uniform time steps and restricted the grid in the spatial dimension to the region S ∈ [b, b] where
we concentrated via coordinate transformation the number of spatial points towards the barrier levels (see [34] for
a description on how well chosen coordinate transformations can generally improve the stability, accuracy and solver
convergence rate of finite difference calculations) and where the number of spatial steps was chosen so that the spatial
step size in the original coordinate be 5E-5 × S0. Restricting the spatial region was motivated by the observation that
in the region S ∈ (0, b] a digital double touch option is equivalent to a digital up-and-in single barrier option with
barrier at b and a digital no-touch option is knocked out, and in the region S ∈ [b, ∞) a digital double touch option is
equivalent to a digital down-and-in single barrier option with barrier at b and a digital no-touch option is knocked out.
Analytical formulae for the pricing of digital single barrier options are known (see [32]) and we derived the formulae for
the delta and vega of those options by direct differentiation of the price with respect to the relevant variable. In solving
the Black Scholes PDE, we may thus apply the finite difference scheme to the region S ∈ [b, b] and use the aforementioned
equivalences and analytical formulae to compute the relevant values on the boundaries S = b and S = b of the finite
difference grid as well as the price, delta and vega of the digital double barrier option outside the region S ∈ [b, b]. In
order to concentrate the spatial grid towards the barriers, we used the one-dimensional and time-independent coordinate
transformation suggested in [34] summarised as follows. Denote ξ the new spatial coordinate and write S = S(ξ) as
the equation defining the original space coordinate in terms of the new one. We used a uniformly spaced grid in the
coordinate ξ such that ξn+1 − ξn = ∆ξ is constant. We then have that ∆S(ξ) = J(ξ)∆ξ where J(ξ) = dS(ξ)/dξ is the

global Jacobian of the transformation. As suggested in [34], we defined J(ξ) as follows:

J(ξ) = A

2

4

n
X

k=1

(α
2
k + (S(ξ) − Bk)

2
)
−1

3

5

−1/2

,

where we set α1 = α2 = (b − b)/50. We used a standard ODE integrator to integrate J(ξ) numerically to yield the
transformation S(ξ) by setting S(ξ = 0) = b as an initial condition. The normalization constant A was found by
adjusting A iteratively until the second boundary condition S(ξ = 1) = b was met (this is guaranteed to happen because
S(ξ = 1) is monotically increasing with A). This finite difference scheme generates option values on the entire grid and
we computed the deltas at each grid node by direct discretisation at negligible additional computational cost. In order
to avoid accuracy and computational speed issues, we did not use the same type of direct discretisation for the vegas
and instead we computed them by solving the PDE governing the vega dynamics using the same type of finite difference
scheme used to solve the PDE governing the price dynamics.

In order to compute the prices of market call and put options under the Bates and VGSV models, we used the COS
pricing method (see [16]), which is based on Fourier-cosine series expansions and is computationally fast and accurate.
We applied the COS pricing method with 5,000 grid points and used the truncation ranges suggested in [16] with L = 30
(using the notation in [16]).

With respect to the simulation of sample price paths followed by the underlying asset under the Bates model, we used
the quadratic exponential (QE) scheme proposed by [1] to simulate a process driven by the Heston stochastic volatility
model ([19]) and added a jump term and an additional jump-related martingale correction (the jumps are independent
from all other stochastic variables). Our scheme under the Bates model may then be expressed as follows:

log S(t + ∆t) = log S(t) + K
∗
0 + K1v(t) + K2v(t + ∆t) +

q

K3v(t) + K4v(t + ∆t)Z

+ L

„

log(1 + µj) −
1

2
σ
2
j

«

+ σj
√

LZj − µjλ∆t, (B.1)

where the first line of (B.1) is the expression of a QE scheme for a Heston process and the second line is what is added
to that scheme to simulate the jumps. Z and Zj are standard Gaussian random variables and L is a Poisson random

variable with mean parameter λ∆t. Z, L and Zj are independent of each other and of all other random variables in the

model. The term −µj λ∆t in (B.1) is the martingale correction related to the presence of jumps. The expressions for K∗
0 ,

K1, K2, K3 and K4 are lengthy and we refer the reader to [1] for their definitions in the case of the QE scheme for
martingale processes.

In order to simulate sample paths of the underlying asset price under the VGSV model, we first need to simulate the
rate of time change y(t) in (2.5). We did so by sampling from the exact transition law of the CIR process, as described in
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[18]. The distribution of y(t) given y(s), for s < t, is a noncentral chi-square distribution (see [12]), up to a scale factor,
and is given by

P(y(t) ≤ x|y(s)) = F
χ
′2

 

xη(s, t)

e−κ(t−s)
; d, y(s)η(s, t)

!

, (B.2)

where

d =
4κθ

ζ2
, η(s, t) =

4κe−κ(t−s)

ζ2(1 − e−κ(t−s))
, (B.3)

and F
χ
′2 (z, ν, λ) denotes the cumulative distribution function for a non-central chi-square distribution with ν degrees

of freedom and non-centrality parameter λ, which is given by

F
χ
′2 (z, ν, λ) = e

−λ/2
∞
X

j=0

(λ/2)j

j!2ν/2+jΓ(ν/2 + j)

Z

z

0
z

ν/2+j−1
e
−x/2

dx, (B.4)

where Γ(x) denotes the gamma function. (B.4) indicates that for any ν > 0 a noncentral chi-square random variable
may be represented as an ordinary chi-square random variable with a random number of degrees of freedom. Following a
scheme suggested by [33], we use this property to sample from a noncentral chi-square random variable by first generating
a Poisson random variable L and then, conditional on L, sampling a chi-square random variable with ν + 2L degrees of
freedom.
Now, to simulate the VGSV process from time t = 0 to time t = T for some T > 0, we considered the time discretizations
T1 = {ti = iT/n, i = 0, 1, . . . , n} for some n ∈ N

∗ and T2 = {tj = jT/nm, j = 0, 1, . . . , nm} for some m ∈ N
∗. In our

application, we chose n = 200, 000 and m=1. ti ∈ T1 is a time at which the VGSV process is computed, whilst tj ∈ T2
is a time at which the operational time is computed. We simulated the rate of time change y(t) at each time tj ∈ T2

following the method described above, starting from y(0) = 1. We then computed the operational time Y (t) =
R t
0 y(s)ds

at each time ti ∈ T1 by approximating the integration of the process y from 0 to ti as follows

Y (ti) =

Z

ti

0
y(s)ds ≈

im
X

j=0

ytj
. (B.5)

We then used the fact that the VG process X may be expressed as the difference between two independent gamma
processes (see [25]) to write the value of the VGSV process at time ti ∈ T1 is X(Y (ti) as follows:

X(Y (ti)) = γp(Y (ti); µp, νp) − γn(Y (ti); µn, νn), (B.6)

where µp = C/M, νp = C/M2, µn = C/G and νn = C/G2. We thus simulated the VG process at time Y (ti) by
simulating the two independent gamma processes γp and γn at time Y (ti) and by computing their difference. The
gamma process γ := {γ(t; µ, ν) : t ≥ 0} with mean rate µ and variance rate ν is a continuous-time process with
stationary, independent gamma increments such that for any h > 0

γ(t + h; µ, ν) − γ(t; µ, ν) ∼ G

0

@

µ2h

ν
,

ν

µ

1

A , (B.7)

where G(α, β) denotes the gamma distribution with density f(x) = xα−1e−x/β

βαΓ(α)
. Noting that µ2

p/νp = µ2
n/νn = C,

νp/µp = 1/M and νn/µn = 1/G, we have

γp(t + ∆t; µp, νp) − γp(t; µp, νp) ∼ G
„

C∆t,
1

M

«

, (B.8)

γn(t + ∆t; µn, νn) − γn(t; µn, νn) ∼ G
„

C∆t,
1

G

«

. (B.9)

By setting t = ti and ∆t = Y (ti+1) − Y (ti) in (B.8) and (B.9) one obtains the equations required to compute the
increments of the time-changed VG process.

B.3. Mean adjustment of the hedging errors

When analysing the performance of hedging strategies Hull and White [24] suggested to mean-adjust them i.e. to add a
constant to the whole vector of hedging errors of any given strategy so that the final mean is equal to the theoretical mean.
This control variate approach, subsequently used e.g. by Davis, Schachermayer and Tompkins [14], makes it possible to
decouple the object of interest (say influence of transaction costs) from the noise of Monte Carlo simulations. Since the
MC noise could affect differently each strategy and a priori impact fine relative comparison between them, we decided to
adopt this approach in this paper and proceeded as follows:

• For the BS, BSHV and BSLV models we computed the theoretical mean of each hedge using the finite dif-
ference scheme for the digital double barrier option and explicit formulae for European options and then
adjusted the empirical mean of the hedging strategy (without transaction costs) to that value.

• For Bates an VGSV models we only compute the digital double barrier option price using MC. Hence we
assumed that the no hedging strategy has the appropriate mean and adjusted all other strategies to this value.

For each strategy the size of the mean adjustment is reported in the column (Adj) in Tables 1–5. A posteriori, we observe

that these are very small numbers, mainly of order of 10−3. Our results and conclusions stay the same with or without
the mean adjustment. We link this to the fact that we are able to run 200000 MC paths as opposed to e.g. 1000 in [14].
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