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Preliminaries

We list here some conventions and notation.

Throughout increasing and decreasing are understood in a weak sense of

non-decreasing and non-increasing respectively. We sometimes use the latter

descriptives to stress this convention.

For a set ∆ we denote its complement by ∆c.

For a random variable X, L(X) denotes its distribution and X ∼ µ, or

L(X) = µ, means “X has the distribution µ.” For two random variables X and

Y , X ∼ Y and X
L
= Y signify both that X and Y have the same distribution.

The Dirac point mass at a is denoted δa, or δ{a} when the former might cause

confusion. The Normal (Gaussian) distribution with mean m and variance σ2 is

denoted N (m,σ2). We sometimes write N = N (0, 1). Finally, µn ⇒ µ signifies

weak convergence of probability measures.

For any probability measure µ, we define its distribution function µ(x) :=

µ((−∞, x]) and its tail function µ(x) := µ([x,∞)).

We will use · ◦ θτ to denote “a shift by a stopping time τ”. Note that this is

just a notation and is different from the classical shift operator in the theory of

Markov processes. Specifically if H∆(X) is the first time the process enters the

set ∆ and τ is a stopping time then H∆ ◦ θτ denotes the first time after time τ

that the process enters the set ∆.
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Chapter 1

From Classical to Robust

framework for valuation

and hedging

1.1 The Classical modelling framework

Contemporary Mathematical Finance gained momentum with the seminal con-

tributions of Black and Scholes [BS73] on option pricing and Merton [Mer69,

Mer71] on optimal investment. At its heart was the classical modelling setup

which had its roots in Louis Bachelier’s 1900 thesis and Samuelson (1965).

The ideal mathematical tools it required were ready to use: the theory of

(semi)martingales and stochastic integration going back to Kyioshi Itô and the

Strasbourg school of Paul-André Meyer. A rapid growth of the field ensued

together with beautiful mathematics: works on no-arbitrage and the Funda-

mental Theorem of Asset Pricing from Harrison and Kreps [HK79] to Delbaen

and Schachermayer [DS94], the mean-variance theory of Schweizer [Sch92] or

the optional decomposition of El Karoui and Quenez [EKQ95] and Kramkov

[Kra96], the duality theory in portfolio optimisation – to mention a few among

many important developments, see e.g. Karatzas and Shreve [KS98]. It also

stimulated a dynamic growth of the financial industry. Its importance was un-

derlined with two Nobel Prizes for Harry Markowitz and William Sharpe in

1990 and for Robert Merton and Myron Scholes in 1997.

The dominant “classical” modelling setup in Mathematical Finance consists

of specifying a filtered probability space (Ω,F , (Ft),P) and an adapted stochas-

tic process (St), which models the dynamics of the price process of a risky asset.

S0 is the current market price but the future prices are random and exoge-
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nous1. S is often refereed to as the underlying since derivative products will

have payoffs contingent on paths of S. The market also features another asset

S0, often called the money market account or the bond, which is a “riskless”

asset. It represents the cash value of investment confined to a savings account.

In particular, as long as interest rates are non-negative, (S0
t ) is non-decreasing.

Agents are then allowed to trade. A simple trading strategy consists in

rebalancing (changing) the holdings in the risky assets at finite number of times

ti, 0 = t0 < t1 < . . . < tn−1. Say φti−1
, which is F ti−1

measurable, corresponds

to number of units of risky asset S held between ti−1 and ti. The trading is said

to be self-financing if the capital needed to carry out the above strategy was

borrowed (or invested) from the money market account, i.e. the agents holds φ0
t

units of the bond at time t with

φti−1
Sti + φ0

ti−1
S0
ti = φtiSti + φ0

tiS
0
ti , i = 1, 2, . . . , n− 1.

It is convenient to work in discounted units, i.e. to express all prices in units of

S0: S̃t := St/S
0
t . Assuming the agent starts with no initial capital, the final

payoff from the trading, in units of S0, is given as

φtn−1 S̃tn + φ0
tn−1

= φtn−1

(
S̃tn − S̃tn−1

)
+ φtn−2 S̃tn−1 + φ0

tn−2
= . . .

=

n∑
i=1

φti−1

(
S̃ti − S̃ti−1

)
.

Taking the limit to continuous trading we obtain the stochastic (Itô) integral∫
φudSu, which hints at the intimate link between mathematical finance and

stochastic calculus.

The fundamental idea of Black and Scholes [BS73] is that pricing is done

through hedging. The unique fair price for a payoff ξ at some future date T

is equal to v0, the capital needed to replicate its cashflow through trading:

ξ̃ = v0 +
∫ T

0
φudS̃u. To compute v0 we look for an equivalent probability mea-

sure Q under which (S̃t) is a martingale, which yields the risk-neutral pricing :

v0 = EQ[ξ/S0
T ]. It turns out that existence of Q, possibly in some weaker in-

carnation, is equivalent to absence of arbitrage opportunities. The latter is a

fundamental economic postulate: the principle of market efficiency. The men-

tioned equivalence, asserted by the first Fundamental Theorem of Asset Pricing

(FTAP), was subject of a groundbreaking stream of research, cf. Delbaen and

Schachermayer [DS06]. In particular, it shows that the principle of market effi-

ciency implies S has to be a semimartingale2. Again, we see a natural deep link

between modern mathematical finance and stochastic analysis.

1This is a very important point which was rather revolutionary in 1960ties and to which

we will come back later.
2Bichteler-Meyer theorem stats that this is necessary for the theory of stochastic (Itô)

integration to be well defined, see [DM80].
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The insights of Black and Scholes, Merton and others have been hugely influ-

ential and instigated a whole industry trading financial derivatives. A derivative,

also called an option or a contingent claim, gives the holder a right to an agreed

cashflow at a future date T , the maturity. The cashflow is expressed as a func-

tion of the path (St : t ≤ T ) of the underlying. Ideas of Black and Scholes show

that assuming a particular stochastic model holds true a seller can perfectly

hedge the risk associated with selling a derivative. Starting from the appropri-

ate initial capital, which the buyer pays, and following the appropriate trading

(hedging) strategy the seller can perfectly replicate the pre-agreed payoff.

In [BS73], the risky asset S is assumed to follow the geometric Brownian

motion model postulated by Samuelson [Sam65]:

dSt = µStdt+ σStdWt, t ≥ 0, (1.1)

where µ, σ are two constants and W is a standard Brownian motion. This

is a complete market model and every FT -measurable non-negative payoff is

replicable by an admissible trading strategy3. This model, even if appealing in

its simplicity, is known to be inadequate for modelling purposes4. Many much

more complex models have been introduced since. They were often incomplete

– some risk was inherent in the dynamics and could not be hedged away by

trading in the underlying. However this risk could again be well understood and

strategies minimising (some measure of) the residual risk have been developed,

e.g. the mean-variance hedging mentioned previously. Again, these methods

yield a description of “optimal behaviour” assuming a given model holds.

1.2 Critique of the classical framework

Both from a theoretical and a practical standpoint, the classical modelling setup

is a simplification vulnerable to important critique on at least three grounds.

Firstly, it ignores the information present in the market such as the prices of

liquidly traded options5 or time series of data. Secondly, it makes very specific

modelling assumptions, in particular it specifies a unique probabilistic descrip-

tion of dynamics of the price process (St). Thirdly, it is concerned with an

3When we consider continuous trading we have to exclude strategies requiring infinite credit

line since they can produce arbitrage. This is easily done by requiring that the wealth process

associated to a trading strategy remains above a certain constant a ≤ 0.
4Its simplest default is probably that it prescribes a flat volatility surface while in prac-

tice market prices exhibit a implied volatility (σ) which is different for different strikes and

maturities.
5 Market prices are available not only for assets but also for many derivative products

written on them and should be treated as inputs and not outputs. The industry deals with

it through model calibration (reverse-engineering): tweak model parameters so as to match

today’s prices. This has to be then repeated on daily basis effectively changing the model and

introducing theoretical inconsistency.

9



1.2. CRITIQUE OF THE CLASSICAL FRAMEWORK J. Ob lój

idealised frictionless market which can be quite different from a realistic mar-

ket where participants pay transaction costs, liquidity is limited, counterparties

may default, etc.

As we saw above, the powerful martingale methods were tailored suited to

the classical modelling framework and in a way what was a blessing became

a curse. The models could get arbitrary complex but they largely shared the

underlying framework with its weaknesses: inflexibility due to a choice of a

particular probabilistic setup and failure to incorporate market information in

a consistent manner. This coupled with inaccuracy resulting from ignoring

market frictions.

However, in practice, the classical framework was being widely used with

its important limitations being overlooked. The 2008 financial crisis played out

possible negative consequences in a rather spectacular fashion. It should be

highlighted that there is nothing “wrong” with the classical modelling frame-

work. As any modelling approach, it has its advantages and its limitations. The

problem was that it provided appealing and relatively simple answers which were

often applied without thinking about the standing assumptions made in the first

place.

Naturally, to understand how violations of fundamental assumptions of the

classical approach impact its answers we need to abandon the classical frame-

work and consider a more general, alternative approach. An alternative does

not mean a replacement. Indeed, the classical framework is not easily replaced

for its scope of applications or for its clear outputs: unique prices and hedging

strategies or explicit optimal investment policies. Industry practitioners will

most likely continue to apply it. Crucially however, they need tools to under-

stand the risks taken and a new framework to apply when the classical one fails.

In the words of Steven Shreve6 : For banks, the only way to avoid a repetition

of the current crisis is to measure and control all their risks, including the risk

that their models give incorrect results. Given both the theoretical importance

of the topic and its dramatic practical illustrations, it is not surprising that it

has fuelled an impressive stream of research.

We stressed above that the classical framework starts by postulating a prob-

ability space (Ω,F , (Ft),P). As we describe it here, this is a courageous leap of

faith. It was also a rather shocking departure from economics practice which

tried to model the prices as arising in an equilibrium between supply and de-

mand, see the foreword by Samuelson in [DE06]. It looks more natural if we

consider the actual goal of Black, Scholes and Merton. The assumption was that

the stock was liquid and its price random and given by the market. The interest

was in pricing (and hedging) a warrant, a call option, on this stock. The an-

6Don’t Blame The Quants, Forbes, Aug 2008; available at:

http://www.forbes.com/2008/10/07/securities-quants-models-oped-cx ss 1008shreve.html.
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swers were clear and, as one would expect from a good model, quite robust with

respect to departures from the specific modelling assumptions in (1.1). More

specifically, if we are hedging a European option with convex payoff and the true

volatility is a random process σt which is however close to the assumed constant

value σ then our hedging error is not too large. If σt ≤ σ then we are guar-

anteed to superreplicate, see El Karoui, Jeanblanc and Shreve [EKJPS98] and

Hobson [Hob11]. However this is not necessarily true when one considers com-

plex derivatives or more involved stochastic dynamics for the underlying. This

motivates the idea to relax the assumption of a uniquely specified probability

measure and introduce the inherent model uncertainty or model ambiguity.

Knight [Kni21] was possibly the first one to distinguish risk and uncertainty.

The former comes from the randomness within a given probabilistic universe

(our classical model), or the known unknown, and is quantified in the model.

The latter corresponds to the possibility that our given classical model is an

inadequate description of reality, or the unknown unknown. To try to describe

it, understand it and quantify it, we need to consider setups without a single

specified probability measure. The first stream of research concentrates on drift

uncertainty in assuming that a specific model is unknown but comes from a

set of probability measures, all equivalent to a reference measure P. For the

purposes of valuation of derivatives this is largely irrelevant – different models

will induce the same dynamics of S̃ under the martingale measure. In contrast,

for optimal investment problems this extended setup presents new considerable

difficulties. Nevertheless, such a setting for model ambiguity essentially relies on

classical methods. It would be hard to give justice here to these developments;

see for example Maccheroni et al. [MMR06] and Schied [Sch07]. Significantly,

the economics literature on Robustness and the Knightian uncertainty includes

a number of papers by the 2011 and 2013 Nobel Laureates Thomas Sargent and

Lars Peter Hansen, e.g. [HS10].

Generalising the form of model uncertainty, researchers considered so-called

non-dominated setups where the measures may be mutually singular. This al-

lows for uncertain volatility, as pioneered by Lyons [Lyo95] and Avellaneda et

al. [ALP95]. Notable recent developments here are linked to the G-expectation

of Peng [Pen07] and the quasi-sure stochastic integration based on capacity

theory in Denis and Martini [DM06] and on the aggregation method in Soner,

Touzi and Zhang [STZ11]. In discrete time a corresponding generalisation of the

FTAP was obtained by Bouchard and Nutz [BN]. There have been some more

radical departures, e.g. Bick and Willinger [BW94], Cassese [Cas08] and Vovk

[Vov09], proposing a modelling framework without a pre-specified probability

measure. These contributions largely come from outside of mainstream finan-

cial mathematics. They involve non-standard tools such as analysis of finitely

additive measures in [Cas08] and a game theoretical approach to probability in
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[Vov09]. We will come back to these developments later in the text.

Let us now move towards the second critique of the classical framework. The

motivating observation here is that the market prices of liquidly traded deriva-

tive instruments ought to be treated as inputs rather than outputs of modelling.

To accommodate it within the classical framework, one could dramatically in-

crease the dimensionality and model simultaneously the asset S and options

written on it. This results in a highly dimensional (or infinite dimensional)

universe of underlyings with added difficulty of singular constraints on their

dynamics: some assets have to be equal to given functions of other assets at

some future dates. Such modeling efforts go by name of market models and in-

clude e.g. Schönbucher [Sch99], Schweizer and Wissel [SW08], Jacod and Protter

[JP10], Carmona and Nadtochiy [CN09]. Mathematically these are often very

involved precisely due to the embedded consistency conditions and are typically

specialised to a particular choice of the market input. More importantly for us

however, these works do not offer any answer to the first fundamental critique

of the classical framework. They fail to incorporate any model uncertainty.

To the contrary: if specifying a unique probabilistic setup for asset prices was

questionable it is even more so in the case of market models.

Finally, we should mention that there is a large body of literature which in-

corporates various market imperfections into the classical framework. System-

atic efforts have centred mainly around the questions of liquidity and transaction

costs. This is a fascinating and often mathematically very involved research area

which we do not discuss here.

1.3 What is a model?

To built a suitable relaxation of the classical modelling framework in mathe-

matical finance we need to first reflect on how models are built. The motivating

need for models is practical: to obtain answers to concrete questions in real

world applications. These could include

• prices and hedges for derivatives,

• optimal portfolios for investment,

• risk quantification for risk management.

We will refer to these as model outputs. They are obtained starting from model

inputs and applying reasoning principles. It is convenient to distinguish three

types of inputs:

• Beliefs: describe possible future evolution of risky assets. This could be

very specific as in the classical framework or very general, e.g. believing

that risky asset could follow any continuous path.

12
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• Information: the subset of existing market data we trust and need our

model to treat consistently as input. Our model will need to be consistent

with this information. The information here is understood broadly: these

could be given specific market quotes as well as bounds obtained using

statistical analysis of time series of past data.

• Rules: who can trade what and how. In particular we need to specify

which, if any, of market frictions we want to account for.

These inputs are of a very different type and together they yield our starting

point. The classical framework corresponds to very strong beliefs, no use of

information and simple rules. More precisely, in the classical framework beliefs

are a leap of faith: we specify a fixed probability space (Ω,F , (Ft),P) together

with adapted processes S which represent the dynamics of risky assets. We

usually do this by fixing a Stochastic Different Equation (SDE) which governs

the dynamics of S. This allows us to use a single piece of market information:

today’s price S0. Any other information is, for a moment, discarded. Rules are

supposed to reflect both the actual market practice and our choice of simplifying

assumptions. The idea is to capture these restrictions and frictions which, we

think, have a first order effect. Others are neglected for simplicity. For example,

we could assume there are no transaction costs and interest rates for landing

and borrowing are the same but if there is a ban on short-selling we could decide

to incorporate this as an important trading restriction.

The underlying Reasoning Principle which allows to deduce outputs from

inputs is the principle of market efficiency. This translates into absence of arbi-

trage opportunities and hence into, e.g. pricing through the cost of replication.

As highlighted above, this is made operational thanks to the Fundamental The-

orem of Asset Pricing (FTAP) and the link to martingale tools it brings, see

Delbaen and Schachermayer [DS06] for a detailed account.

In the classical approach, only once the outputs are specified we can come

back to the question of market Information. The outputs depend on Beliefs,

e.g. parameters in the SDE for dynamics of S. One can try to manipulate the

parameters in such a way that outputs match, or are not far from, a given set

of market prices of options we want to reproduce. This is called calibration. We

stress that calibration is a reverse engineering procedure. It is not a consistent

way of treating the information. Typically, on the next day new information is

available which is inconsistent with the previously calibrated parameters and the

model is re-calibrated, i.e. the model is changed, losing theoretical consistency

underpinning hedging.

The works on model uncertainty mentioned above start with weaker beliefs:

(Ω,F , (Ft), {Pα : α ∈ Λ}) where instead of a single probability measure we have

a family of probability measures. S still represents the risky assets but it has

different dynamics for different α. We could treat all Pα equally seriously and

13
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require the outputs, e.g. hedging strategies, to work Pα-a.s. for all α ∈ Λ. Or

we could also have specify a prior describing our belief of likelihood of various

Pα. This is the point of view often taken for optimal investment under model

uncertainty, see Föllmer, Schied and Weber [FSW09].

We note that having a family of probability measures instead of a single

measure may have far reaching consequences. Consider for example trading

strategies. There is no ambiguity in defining (frictionless) trading at discrete

times. We saw however that continuous time trading corresponds to stochas-

tic integrals. These are well defined a.s., in particular if all Pα are absolutely

continuous with respect to one reference measure P we have a way to define

stochastic integrals for all α ∈ Λ simultaneously. However in the case of un-

certain volatility this is no longer true. Mathematically, this is a challenging

issue, which was solved in number of different ways, see e.g. Lyons [Lyo95], Peng

[Pen07], Denis and Martini [DM06], Soner, Touzi and Zhang [STZ11] or Nutz

[Nut12].

The essential point we want to stress here is that all these works relax the

classical framework. Necessarily, they obtain less precise results. It seems more

natural to try to consider two weaknesses of the classical framework simulta-

neously: allow for model uncertainty and introduce a coherent use of market

information. On one hand we relax strong assumptions and on the other hand

we compensate by adding new features and making use of information. This is

what the robust approach aims to do.

1.4 Robust framework for valuation and hedg-

ing

We develop here a general robust framework for valuation and hedging which is

based on pathwise arguments, following [CO11b, DOR14]. The essential idea is

to encode beliefs through a choice of space of possible paths of the risky asset.

The motivation is that in reality we only see one path so we should be able to

formulate our beliefs in terms of this path. As we will see below, this is actually

a rather flexible framework which allows us in particular to recover the classical

Black-Scholes (1.1) model.

1.4.1 Introducing the framework

For simplicity assume we have only one risky asset S which does not pay divi-

dends. This can be easily incorporated but would make notation more laborious.

We also fix (the last) maturity T . The Beliefs are given by a set P which is

a Borel subset of càdlàg functions on [0, T ]. These are the paths we think S

14
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may follow. We agree to disregard any paths outside of P. Simple examples are

given by

• D([0, T ],R) – all càdlàg functions on [0, T ];

• C([0, T ],R+) – all non-negative continuous functions on [0, T ];

• functions in C([0, T ],R+) which admit quadratic variation and for which
d〈S〉t

dt exists and is equal to σ2S2
t .

The first example corresponds to “no beliefs” and the second one to mild beliefs

about lack of jumps. The last example is essentially equivalent to assuming

Black-Scholes model. Note that already at this stage we will use at least one

piece of information – typically we will know S0 and hence we will supplement

the above specifications and assume all paths in P have the same common

starting point S0. We have the natural filtration F t = σ(Su : u ≤ t) i.e. the σ-

field generated by one-dimensional projections, which we take right-continuous.

This allows us to talk about stopping times. In particular hitting times of closed

and open sets are stopping times, see Section 2.1.

More specifically, we also need to specify paths for S0, the riskless asset.

We could either prescribe one possible path (deterministic interest rates) or

allow for a range of paths typically non-decreasing or with bounded variation.

So in fact P corresponds to two dimensional paths. However, for simplicity of

notation, we write both (S0, S) ∈ P and S ∈ P and hope this should not cause

any confusion.

The market Information we want to consider comes in form of market prices

for a set of (liquidly) traded options. More specifically, we let X be the set of

payoffs of options traded today. X may be finite or infinite. ξ ∈ X is simply

a measurable function from P to R. On X we can define a pricing operator

P which encodes the market prices available today. We do not assume that

options in X are traded at any future dates so any position in options is held

until maturity.

It remains to specify the Rules. We assume a frictionless market setting.

This implies that P is linear when defined and hence we can assume X is a

vector space. Further, we assume that trading is discrete. Note that continuous

trading would require a pathwise notion of stochastic integration. Any trading

strategy X is semi-static: static in options and dynamic (discrete) in the stock.

Its payoff is given by, with the notation S̃t := St/S
0
t ,

XT =

n∑
i=1

ai(ξi(St : t ≤ T )−S0
TPξi)+S0

T

m∑
j=1

φτj−1(S̃τj−S̃τj−1), ξi ∈ X , (1.2)

where 0 ≤ τ0 < τ1 < . . . < τm−1 < τm = T are stopping times, ai ∈ R and

φτj are Fτj measurable. The initial cost of the above is zero, X0 = PXT = 0.
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However we also need to impose some admissibility condition to avoid arbitrage

opportunities. For the moment being we simply assume that all φτj are bounded

on P. We will come back to this issue. Finally, the above features a finite

portfolio of traded options. In principle we could, and sometimes will, allow

for an infinite portfolio as long as its initial price, here
∑n
i=1 ai, is finite. We

denote A the set of admissible trading strategies. Finally note that while we

might speak of Xt which is a certain portfolio in options maturing at T , in

stock and in bond, we can not speak of price of Xt as this is not necessarily well

defined.

1.4.2 Market models, arbitrage and FTAP

By a classical model we mean a filtered probability space (Ω,F , (Ft),Q) with

adapted processes S0 and S. We are interested in pricing so Q plays the role of

the risk neutral measure.

Definition 1.4.1. We say that a classical model is a (P,X ,P)–market model

if S̃t is a Q-martingale, ((S0
t , St) : t ≤ T ) ∈ P) a.s. and EQ[ξ/S0

T ] = Pξ for all

ξ ∈ X .

A market model is thus a fully specified classical framework model which

admits no arbitrage and agrees with our beliefs and with the given market

information. Once we know a market model exists we can use it to define,

through conditional expectation, joint arbitrage-free dynamics for all t ≤ T , of

S and all ξ ∈ X .

Hence existence of a market model is the equivalent of “existence of a risk

neutral measure” in the classical context. A Robust FTAP should thus establish

an equivalence between existence of a market model and market efficiency, i.e.

absence of arbitrage opportunities. Note however that it is not clear at all how

to even define the latter. The usual notions of arbitrage depend on Q. Here we

need a notion of arbitrage which only uses beliefs and market information. A

natural candidate is given by

Definition 1.4.2. We say that there is a strong arbitrage if there exists a

portfolio X ∈ A with XT (St : t ≤ T ) > 0 for all S ∈ P.

In the case of “no-beliefs”, when P corresponds to all càdlàg (or all contin-

uous) paths, the above is known as model-independent arbitrage. Existence of a

(P,X ,P)-market model implies absence of a strong arbitrage. Indeed, since φτj
are assumed bounded, we have EQ[XT /S

0
T ] = 0 and thenXT ≥ 0 impliesXT = 0

Q-a.s. The converse, giving a version of a Robust FTAP, may be true under

suitably strong additional assumptions, see Acciaio et al. [ABPS13]. However

in general, the converse is not true as seen from the following simple example

of Davis and Hobson [DH07]. Assume zero interest rates, let P = C([0, T ],R),
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J. Ob lój CHAPTER 1. FROM CLASSIC TO ROBUST FRAMEWORK

X = {(ST −K1)+, (ST −K2)+} and S0 > P(ST −K1)+ = P(ST −K2)+ > 0

where 0 < K1 < K2. In words, we have a simple market where two call options

trade at the same non-zero price. If we combine this with a classical model then

it would seem that there is an obvious arbitrage opportunity. However a more

careful look reveals that the arbitrage strategy depends on the zero sets of the

model. More precisely, if we have a classical model where ST ≤ K2 a.s. then we

simply sell the call with strike K2 making profit of P(ST −K2)+. Otherwise,

we also buy the other call and obtain, at zero initial cost, a non-negative payoff

which is strictly positive with positive probability. This situation was termed

weak arbitrage, see [DH07] and [DOR14]. A notion of weak free lunch with van-

ishing risk was introduced in Cox and Ob lój [CO11b] which turned out to be

suitable for the case of infinite X .

The fundamental observation we want to stress is that presence of arbitrage

is a feature of a given modelling setup and may not correspond to a single

trading strategy. Thinking that an arbitrage opportunity should be given be a

(single) trading strategy is a legacy of the classical approach. Implicit in clas-

sical definition of an arbitrage was the fact that the arbitrage opportunity was

relative to modelling inputs: beliefs, information and rules. Changing inputs

affects arbitrage opportunities. As a well-known example, recall that consid-

ering fractional Brownian motion within the classical framework leads to an

arbitrage (in the sense of WFLVR of Delbaen and Schachermayer [DS94]) but

when arbitrarily small transaction costs are added the arbitrage opportunities

disappear, as shown by Guasoni [Gua06]. We say that one modelling framework

– a triplet of beliefs, information and rules – is a refinement of another one if it

leads to sharper outputs. This may be due to stronger beliefs, more information

or a richer set of admissible trading strategies. A modelling framework admits

arbitrage if all of its refinements admit arbitrage.

A particularly interesting case is when information and rules are fixed but

we keep strengthening beliefs. For simplicity assume X is finite. Then, it may

be shown that absence of a (P,X ,P)–market model is essentially equivalent to

existence of

∅ = P0 ⊂ P1 ⊂ . . . ⊂ Pn = P

and a family of trading strategies Xi such that Xi is non-negative on Pi and

strictly positive on Pi \Pi−1. We refer to this as Robust (Sequential) Arbitrage.

If an agent is willing to accept Pi as beliefs, but is not willing to restrict to

paths in Pi−1 only, then she will see Xi as an arbitrage opportunity. And each

agent who accepts (P,X ,P) as possible modelling setup will be in this position

for some i = 1, . . . , n. It is not hard to see that in the special case of Acciaio el

al. [ABPS13] one can take n = 1 thanks to a dominating derivative outside of

a compact set and possibility to aggregate the strategies on a compact set. In

particular Robust Arbitrage then reduces to model–independent arbitrage.
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In these notes we will largely avoid the above fine questions of no-arbitrage.

In particular, we do not give a precise statement of the above general version of a

Robust FTAP. We should highlight however that, to the best of our knowledge,

the quest for the most general version of a Robust FTAP with continuous trading

is still ongoing. This is an exciting and challenging topic for future research.

Finally, let us point out the difference between the above analysis and the

quasi-sure setting mentioned before. In the classical framework, absence of

arbitrage essentially means that if a payoff from trading, with zero initial capital,

is nonegative XT ≥ 0 then XT = 0 a.s. Introducing model-uncertainty by

considering a family of measures Λ = {Pα : α ∈ ...} it is natural to say that

absence of arbitrage opportunities means that XT ≥ 0 implies XT = 0 Pα–a.s.

for all α, often denoted Λ–q.s. This is a strong requirement and a version of

FTAP then asserts that it is equivalent to existence of an equivalent martingale

measure Qα for each Pα, see Bouchard and Nutz [BN]. Such approach has a

conceptually different starting point to the one proposed here and it arrives at

different notions of arbitrage and its duality in FTAP.

1.4.3 Outputs: pricing and hedging duality

The motivating financial question, or pair of questions, we want to consider is:

Given our modelling setup (Beliefs, Information and Rules), what is the range

of prices for an option with payoff OT = O(St : t ≤ T ) which do not introduce

strong arbitrage? And if the option trades at a price outside this range, what is

the arbitrage strategy?

It is easy to see that the range of prices constitutes an interval. Indeed if

there exists a strong arbitrage when POT = p then, depending if the arbitrage

strategy goes long or short in O, there is also a strong arbitrage for all POT <
p or all POT > p respectively. Let us denote its lower and upper bounds

LB(P,X ,P) and UB(P,X ,P) respectively. Absence of strong arbitrage implies

that a superhedging strategy for OT will be at least as expensive as OT . This

implies that infimum over prices of all superhedging strategies will be greater

or equal to UB(P,X ,P):

UB(P,X ,P)(O) ≤ UB(P,X ,P)(O)

:= inf {p : ∃X ∈ A ∀S ∈ P O(St : t ≤ T ) ≤ p+XT (St : t ≤ T )} .
(1.3)

Note that we require the superhedging property to hold on all paths but only

in P and recall that by definition X requires no initial capital: PXT = 0. On

the other hand, if we have a (P,X ,P)–market model then we obtain a possible

price for our exotic derivative and hence

UB(P,X ,P)(O) := sup
(P,X ,P)-market models

EQ[OT /S
0
T ] ≤ UB(P,X ,P)(O). (1.4)
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Naturally, analogous statements hold for the lower bound with LB(P,X ,P)(O)

denoting supremum of prices of subhedging strategies and LB(P,X ,P)(O) denot-

ing the infimum over market model prices. One may expect that a no-duality

gap result holds true and UB(P,X ,P)(O) = UB(P,X ,P)(O). In [DOR14] a par-

ticular setup of X consisting of n put options and OT = λ(ST ) a European

option with a convex payoff is considered. Then no-duality gap is deduced from

classical semi-infinite linear programming results. More recently, in a general

discrete time setting, Beiglböck, Henry-Labordère and Penkner [BHLP11] es-

tablished the desired equality using (and developing) optimal transport theory.

Dolinsky and Soner [DS14] obtained results in continuous time, for continuous

paths, and under strong continuity assumptions on the payoff. The general case

is still an open problem. There are also cases when duality fails to hold, ei-

ther due to singularities or to market setup, e.g. trading restrictions, see Cox,

Hou and Ob lój [CHO14]. Finally, we note that instead of pathwise one can

consider superhedging in quasi-sure sense. Pricing-hedging duality can be then

obtained in considerable generality, see Bouchard and Nutz [BN], Neufeld and

Nutz [NN13] and Possamäı, Royer and Touzi[PRT13].

Example 1.4.3. Note that sometimes it is trivial to establish no duality gap

by showing that in fact LB(P,X ,P)(O) = UB(P,X ,P)(O) and hence we have

a unique price. Consider for example P given by continuous non-negative

functions starting at S0, no interest rates (i.e. S0 constant equal to 1) and

X = {(ST − K)+ : K ∈ K} for some set K ⊂ (0,∞). We assume the given

prices P do not admit arbitrage in the sense that a (P,X ,P)–market model

exists. Fix K ∈ K and consider an up and in put with strike and barrier at K:

OT = O(St : t ≤ T ) = (K − ST )+1supu≤T Su≥K .

Then the following strategy: buy call with strike K and when K is reached

enter a forward:

XT = (ST −K)+ + (K − ST )1ρ≤T , ρ = inf{t ≥ 0 : St ≥ K},

where we use the assumption of continuity of paths to write Sρ = K. It is

immediate that XT = OT for any S ∈ P and XT −P(ST −K)+ ∈ A. Since we

have a perfect replication strategy we see that LB(P,X ,P)(O) = UB(P,X ,P)(O) =

PXT = P(ST −K)+.

Existing literature on Robust Pricing and Hedging has been focusing on

particular examples of P,X and O, establishing the equality UB(P,X ,P)(O) =

UB(P,X ,P)(O) and identifying the cheapest superhedge and the market model

which achieves the supremum. The methodology, based of Skorokhod embed-

dings and pathwise inequalities, was pioneered by Hobson [Hob98a] for lookback

options. It was continued in Brown et al. [BHR01] for barrier options. More

recent developments include [CW13, CO11a, CO11b, CHO08]. We describe this

methodology in the next section.
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1.4.4 Robust Pricing and Hedging via Skorokhod embed-

dings

We outline now, briefly and in a schematic way, the underlying methodology

which links the Skorkohod embedding problem with Robust Pricing and Hedg-

ing. Assume that the interest rates are zero. Alternatively we can think of S as

the forward price as long as it makes sense to consider options written on the

forward. Assume further that P = C([0, T ],R+) and that X = {(ST −K)+ :

K ≥ 0}. Suppose that given prices P do not admit arbitrage themselves and

there exists a (P,X ,P)-market model. In this model we have

C(K) := P(ST −K)+ =

∫ ∞
K

(s−K)µ(ds), µ ∼Q ST .

Direct arguments show that C(K) is a non-increasing convex function. Differ-

entiating we obtain the so-called Breeden-Litzenberger [BL78] formula

C ′(K−) = −µ([K,∞)), C ′(K+) = −µ((K,∞)), C ′′(dK) = µ(dK). (1.5)

In particular, the knowledge of call prices determines uniquely the risk neutral

distribution of ST . We often refer to µ as the distribution of ST implied by the

call prices.

In the market model, (St) is a continuous Q-martingale and hence, by the

Dambis-Dubins-Schwarz theorem 2.3.6, it is a time-changed Brownian motion:

St = Wτt . Further (Ws∧τT : s ≥ 0) = (SCs∧T : s ≥ 0) is a uniformly integrable

martingale. We call such stopping time τT UI, see Section 2.2. Finally, suppose

that the payoff of the exotic derivative we are interested in is invariant under

time changes: O(St : t ≤ T ) = O(Wu : u ≤ τT ). An example is given by a

one-touch (digital barrier) option O(St : t ≤ T ) = 1supt≤T St≥b. Then we have

EQ[O(St : t ≤ T )] = EQ[O(Wu : u ≤ τT )].

We conclude that

inf
τ :Wτ∼µ, τ is UI

EQ[O(Wt : t ≤ τ)] = LB(P,X ,P)(O) ≤ POT , and

POT ≤ UB(P,X ,P)(O) = sup
τ :Wτ∼µ, τ is UI

EQ[O(Wt : t ≤ τ)].
(1.6)

As we will see the stopping times appearing in the above display constitute solu-

tions to the Skorokhod embedding problem of µ in W . For some exotic options

previous probabilistic works give us immediate answers identifying the above

bounds and the optimal stopping times. In other cases we have to construct

new extremal embeddings. There is however a rich methodology at our disposal

which we will study in detail in these notes.
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Finally, if we find the stopping time τ∗ which, say, maximises EQ[O(Wt : t ≤
τ)] then we can define a (P,X ,P)-market model which attains UB(P,X ,P)(O).

Analysing the hedging strategy in this extremal model we hope to guess the

cheapest superhedging strategy. More precisely, if we can construct a super-

hedge of OT at the initial price UB(P,X ,P)(O) then in one go we show that

there is no duality gap and identify the strong arbitrage strategy available when

OT trades above the upper bound.

Note that if we have any superreplication strategy we can take it as our

starting point. It obviously induces an upper bound on UB(P,X ,P)(O) and if

we can construct a (P,X ,P)–market model in which this superhedge is a perfect

hedge then we know it is the cheapest superhedge, we deduce no-duality gap as

well as optimality properties of the embedding which we use to construct the

market model. We continue this reasoning in Chapter 5.
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Chapter 2

On some aspects of time

changing

This chapter provides an overview of useful results concerning stopping times

and time changing. We assume that a filtered probability space is given (Ω,F , (Ft),P).

Throughout, with the exception of Section 2.1 where a more general discussion

is presented, we assume the usual hypothesis (the filtration is right continuous

and all F t and F are complete). All processes are assumed to be càdlàg and in

particular progressively measurable.

2.1 Stopping times and their properties

We assume now that a filtered probability space is given (Ω,F , (Ft),P). We let

F∞ := σ
(∑

t≥0 F t
)

.

Definition 2.1.1. A measurable function τ : (Ω,F) → [0,∞] is called a stop-

ping time if {τ ≤ t} ∈ F t, for all t ≥ 0. The class of sets A ∈ F∞ such that

A ∩ {τ ≤ t} ∈ F t for all t ≥ 0 is a σ-algebra denoted Fτ .

Note that under the usual assumptions (F t) is right-continuous and com-

pleted with P null sets and then τ is a stopping time if and only if {τ < t} ∈ F t
for all t ≥ 0 or equivalently when the left-continuous process 1(0,τ ](t) is adapted.

A deterministic time is a stopping time. Minimum and maximum of two

stopping times are also stopping times. Finally, if ρ ≤ τ are two stopping times

then Fρ ⊂ Fτ . For many other basic properties of stopping times we refer to

Revuz and Yor [RY01, Sec I.4].

Consider now a stochastic process X taking values in a metric space (E, E)

endowed with its Borel σ-field. We assume X is progressively measurable which
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ensures that the random variable Xτ(ω)(ω) is Fτ measurable. We write Xτ =

(Xt∧τ : t ≥ 0) for the stopped process. Note that progressive measurability is

not a stringent assumption and is implied by X being adapted and left- or right-

continuous.

We are interested in hitting times of X. Consider a Borel set ∆ and let

H∆(X) := inf{t ≥ 0 : Xt ∈ ∆}, where inf{∅} =∞, (2.1)

which is called the hitting time of, or the entry time to, ∆. We write H∆(X) =

H∆ when there is no ambiguity about the process we consider. In all generality

it is not true that H∆ is a stopping time. But if paths of X and the set ∆

are regular enough than H∆ is indeed a stopping time. First, if ∆ is closed

and X has continuous paths then H∆ is in fact a stopping time relative to

natural filtration of X: FXt := σ(Xs : s ≤ t). If X is only assumed to have

right-continuous paths and ∆ is open then H∆ is a stopping time relative to the

right-continuous version of the natural filtration: (FXt+).

The hitting time of ∆ is a particular example of a more general stopping

time called the debut of a progressively measurable set. Let Γ ⊂ R+×Ω and

define

DΓ(ω) := inf{t ≥ 0 : (t, ω) ∈ Γ)}, where inf{∅} =∞. (2.2)

We have the following important result

Theorem 2.1.2. If (F t) is right-continuous and complete then the debut DΓ

of a progressively measurable set Γ is a stopping time.

Proof. The set Γt := Γ∩ ([0, t)× Ω) belongs to B([0, t])⊗F t since Γ is progres-

sively measurable. On the other hand we see that {DΓ < t} is the projection

of Γt onto Ω. By the projection theorem in measure theory we conclude that

{DΓ < t} ∈ F t which is sufficient since (F t) is right-continuous.

We note that the projection theorem invoked above is a difficult result and

it requires that F t is complete. We note also that if τ is a stopping time

then τ = DΓ where Γ = {(t, ω) : T (ω) ≤ t}. Note that 1Γ(t) = 1[τ,∞)(t) is

an adapted right-continuous process and hence progressively measurable. We

see therefore that the above Theorem in fact covers all stopping times. As

an important consequence, under the usual hypothesis if X is a progressively

measurable process and ∆ ∈ E then H∆ is a stopping time. For a much more

detailed discussion of fundamental properties and notions related to filtrations

and stopping times we refer the reader to Dellacherie and Meyer [DM75, Chp

IV].
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2.2 Small stopping times

For number of reasons we are interested in stopping times which are “small”.

For example, the original motivation for considering embedding problems was

to iterate the construction and obtain a representation of a random walk as

Brownian motion stopped at a sequence of stopping times. In financial appli-

cations it is important that the stopped process on [0, τ ] be a martingale. If

we are interested only in the law of Xτ and if we have ρ ≤ τ with Xρ ∼ Xτ

then ρ seems better than τ . As an example, consider the first hitting time of

one H{1}(X). We could also consider inf{t ≥ 1 : Xt = 1} but this seems rather

artificial. Likewise, if ρ is a stopping time we could apply it to paths shifted

by T = inf{t ≥ 1 : Xt = X0} but for the purposes considered in these notes

such a modification would not be desirable. We are interested in stopping times

which are “naturally small” and in this section we explores ways of making this

mathematically precise.

Definition 2.2.1. We say that a stopping time τ is minimal for X if for any

other stopping time ρ ≤ τ , Xρ ∼ Xτ implies ρ = τ a.s.

We say that a stopping time τ is uniformly integrable (UI) for X if the stopped

process Xτ is uniformly integrable.

Note that both notions are relative to a process X and τ may be minimal

for one process but not for another. For example, if Xt = X0 is constant then

only τ ≡ 0 is minimal while all stopping times are UI. However when X is fixed

we simply say that τ is minimal or is UI without mentioning X explicitly.

Proposition 2.2.2 (Monroe [Mon72a]). Let τ be a stopping time and X a

continuous martingale with X0 a constant. We assume that paths of X do not

have intervals of constancy a.s.. If L(Xτ ) has finite first moment and EXτ =

X0 then τ is minimal if and only if τ is UI. If further L(Xτ ) has bounded support

with bounds a < X0 < b then minimality of τ is equivalent to τ ≤ H[a,b]c(X).

Proof of Proposition 2.2.2. The original proof goes back to Monroe [Mon72a],

who made an extensive use of the theory of barriers. It was then argued in a

much simpler way by Chacon and Ghoussoub [CG79].

Suppose first that τ is minimal and ρ ≤ τ with Xρ ∼ Xτ . It follows that

E[Xτ − x;Xτ ≥ x] = E[Xρ − x;Xρ ≥ x] = E[Xτ − x;Xρ ≥ x], ∀x ∈ R,

where the second equality follows from E[Xτ | Fρ] = Xρ. However E[Xτ−x;A] ≤
E[Xτ − x;Xτ ≥ x] for any other A with P(A) = P(Xτ ≥ x). It follows that

{Xτ > x} ⊂ {Xρ ≥ x} ⊂ {Xτ ≥ x}, ∀x ∈ R,

and hence Xτ = Xρ a.s. By the UI of τ , for any stopping time σ, ρ ≤ σ ≤ τ we

have

Xσ = E[Xτ | Fσ] = E[Xρ| Fσ] = Xρ,
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and therefore X is constant on [ρ, τ ]. We conclude that τ = ρ since X has no

intervals of constancy.

If X has intervals of constancy which are known, e.g. X is constant for

t ∈ [1, 2] and if P(τ = 1) > 0 then we can change τ on this event to take value 1.5

without affecting UI but destroying minimality. We note however that this is a

rather artificial example. Naturally, if L(Xτ ) does not have a finite first moment

or the means of X0 and Xτ do not match then τ can not be UI so the notion of

minimality is more general than that of UI. Nevertheless, in the cases which are

most often studied the two notions coincide. The following proposition gives

some tools to verify if a stopping time is minimal or UI. Equivalent conditions

for minimality when L(Xτ ) has a different mean than X0 were described in Cox

and Hobson [CH06].

Proposition 2.2.3 (Azéma, Gundy and Yor [AGY80], Takaoka [Tak99]). Let

X be continuous local martingale with X0 a constant. We assume X is not

identically equal to X0 and consider a stopping time τ such that L(Xτ ) has

finite first moment. Then

• If EXτ = X0 and L(Xτ ) has bounded support with bounds a < X0 < b

then UI of τ is equivalent to τ ≤ H[a,b]c(X).

• UI of τ is equivalent to limλ→∞ λP(supt≥0 |Xt∧τ | > λ) = 0.

• UI of τ is equivalent to limλ→∞ λP(〈X〉1/2τ > λ) = 0.

• In particular, if E supt≥0 |Xτ
t | <∞ or if E 〈X〉1/2τ <∞ then τ is minimal.

We note that it is easy to show that E 〈X〉τ < ∞ implies minimality of τ .

Indeed, localising, applying the optional stopping theorem to X2 − 〈X〉, and

taking limits, we see that then E 〈X〉τ = EX2
τ . It follows that if ρ ≤ τ embeds

the same measure then 〈X〉ρ ≤ 〈X〉τ but they have the same expectation and

hence are equal a.s. However for a continuous local martingale the intervals of

constancy of X and of 〈X〉 coincide so if X has not intervals of constancy then

ρ = τ a.s. and τ is minimal and hence also UI by Proposition 2.2.2 above. We

can actually prove a stronger result (see Root [Roo69] and Sawyer [Saw74]):

Proposition 2.2.4. Let τ be a stopping time such that (Xt∧τ )t≥0 is a uniformly

integrable martingale. Then there exist universal constants cp, Cp such that

cp E
[
〈X〉p/2τ

]
≤ E

[
|Xτ |p

]
≤ Cp E

[
〈X〉p/2τ

]
for p > 1. (2.3)

Proof. The Burkholder-Davis-Gundy inequalities (see Revuz and Yor [RY99] p.

160) guarantee existence of universal constants kp andKp such that kp E 〈X〉p/2τ ≤
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E[(supu≤τ |Xu|)p] < Kp E 〈X〉p/2τ , for any p > 0. As (Xt∧τ : t ≥ 0) is a uni-

formly integrable martingale we have supt E |Xt∧τ |p = E |Xτ |p, and Doob’s Lp

inequalities yield E |Xτ |p ≤ E[(supu≤τ |Xu|)p] ≤
(

p
p−1

)p
E |Xτ |p for any p > 1.

The proof is thus completed taking cp = kp

(
p
p−1

)p
and Cp = Kp.

We note that the above Proposition is not true for p = 1. Indeed we can

build a stopping time τ such that (Wt∧τ : t ≥ 0) is a uniformly integrable

martingale, E |Wτ | <∞, and E
√
τ =∞ (see Exercise II.3.15 in Revuz and Yor

[RY99]).

Finally, we mention one more notion. A stopping time τ is called standard

for X if there exists a sequence of bounded stopping times τn, with lim τn = τ

a.s. and limUL(Xτn)(x) = UL(Xτ )(x) > −∞ for all x ∈ R (cf. Chacon

[Cha77a], Chacon and Ghoussoub [CG79], Falkner [Fal80]). However this is yet

equivalent to minimality in the interesting case covered by Proposition 2.2.2 and

in general minimality appears to us as the most natural property to consider.

2.3 Changes of time

We start with deterministic considerations following [RY01, Sec 0.4]. Let At be

a non–decreasing, non-negative, possibly infinite, right–continuous function on

[0,∞). We write At− for its left-limit limu↗tAu. Define

Cs := inf{t ≥ 0 : At > s}, s ≥ 0, with inf{∅} =∞. (2.4)

We have the following result

Lemma 2.3.1. The function C is non-decreasing and right-continuous. We

have

Cs− = inf{t ≥ 0 : At ≥ s}, At = inf{s ≥ 0 : Cs > t}, At− = inf{s ≥ 0 : Cs ≥ t}.

A has a constant stretch at level s if and only if C jumps in s and then Cs−
and Cs correspond to the endpoints of the interval on which A is equal to s. In

particular, C is continuous if and only if A is strictly increasing.

We have A(Cs) ≥ s with strict inequality if and only if s belongs to the interior

of an interval of constancy of C.

It is clear that A and C play exactly symmetrical roles, in particular constant

stretches of C correspond to jumps of A. The above properties are easy to

established and are best seen with a drawing.

Consider a continuous non-decreasing function T (u) on [a, b]. The function

AT (u) is again a right-continuous non-decreasing function which thus induces a
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measure which can be used for integration. We have∫
[a,b]

f(T (u))dAT (u) =

∫
[T (a),T (b)]

f(t)dAt, ∀f ≥ 0. (2.5)

Applying this with T (s) = Cs and letting b↗ A∞ yields a change of variables

formula for Stieltjes integrals:∫
[0,∞)

f(t)dAt =

∫ ∞
0

f(Cs)1Cs<∞ds, ∀f ≥ 0. (2.6)

With this preparations, let us go back to the stochastic setup. From this point

onwards we assume the usual hypothesis and that all processes considered have

càdlàg paths.

Definition 2.3.2. A family of stopping times (τt : t ≥ 0) is called a time-change

is the maps t→ τt are increasing and right-continuous a.s.

A time-change defines F̂s := Fτs an increasing sequence of σ-fields, i.e.

a filtration. If (Xt) is a processes adapted to the original filtration then X̂,

X̂s := Xτs , is adapted to (F̂s). It is called the time-changed process of X.

We propose to study now in some more detail examples of time-changes, the

properties of Y and how to recover X from Y . The exposition follows [RY01,

Sec V.1].

Consider an adapted, increasing, right–continuous process A with A0 = 0.

Lemma 2.3.3. The family (Cs) defined in (2.4) is an increasing right-continuous

family of (F t) stopping times. Moreover, for any t ≥ 0, At is an (FCs) stopping

time.

Proof. By (2.4), Cs = H(s,∞)(A) which is a stopping time since the filtration is

right continuous, A is right continuous and (s,∞) is an open set. By Lemma

2.3.1, an analogous reasoning holds with A and C exchanged.

Given a process X, we can time-change X using C: X̂s = XCs . Note that

Cs and hence X̂s are defined for s < A∞. Observe also that if Cs = τ ∧ s, for

some stopping time τ , then X̂s = Xτ
s is the stopped process.

The fundamental property for our considerations is that the class of semi-

martingales is stable under time-changing. Note that this is not true for martin-

gales or local martingales. Consider for a example a one dimensional Brownian

motion (Wt) and its supremum process W t = supu≤tWu. Then taking At = W t

we have Ŵs = WCs = ACs = s. This motivates the following notion

Definition 2.3.4. Let (Cs) be a time-change. We say that a process X is

C-continuous if X is constant on any interval of time of the form [Cs−, Cs].
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If X is C-continuous then the time-change and stochastic integration (and

local martingale property) commute. We write H ·X for the stochastic integral

process H ·Xt =
∫ t

0
HudXu. For these notes we limit ourselves to the continuous

case. We also assume A∞ = ∞ so that Cs is finite for all s ≥ 0. The results

may be generalised to the case A∞ <∞ as long as the objects make sense. We

will come back to this when considering an important example.

Proposition 2.3.5. Let A,C be as above and X a continuous semimartingale

which is C-continuous. Assume further that A∞ = ∞. We have 〈X̂〉 = 〈̂X〉
and if X is an (F t)-local martingale then (X̂s) is an (F̂s)-continuous local mar-

tingale.

If H is an (F t)-progressively measurable process then Ĥ is (F̂s)-progressively

measurable. Moreover if
∫ t

0
H2
ud 〈X〉u <∞ a.s. for all t then

∫ s
0
Ĥvd〈X̂〉v <∞

a.s. for all s. In this case we have Ĥ · X̂ = Ĥ ·X.

In particular a suitably time-changed Brownian motion is a local martingale.

Crucially, it turns out that the converse is true.

Theorem 2.3.6 (Dambis, Dubins, Schwarz). Let (Xt) be an (F t)–continuous

local martingale vanishing at 0 with 〈X〉∞ =∞ a.s. If we set

Cs := inf{t ≥ 0 : 〈X〉t > s},

then Ws := X̂s = XCs is an (FCs) standard Brownian motion. Furthermore,

Xt = W〈X〉t .

Proof. First note that X is C-continuous because intervals of constancy of X

are equal to the intervals of constancy of 〈X〉. Proposition 2.3.5 shows that W

is a continuous local martingale with 〈W 〉s = 〈X〉Cs = s, s ≥ 0, and Lévy’s

charaterisation of Brownian motion implies that W is a Brownian motion. Fi-

nally, W〈X〉t = XC〈X〉t
and although we might have C〈X〉t > t we have Xu being

constant for u ∈ [t, C〈X〉t ].

A multi-dimensional analogue of the above result is due to Knight. It allows

to represent a d-dimensional continuous local martingale with zero quadratic

variation between its components, as a time changed d-dimensional Brownian

motion. Further, an important refinement states that when 〈X〉∞ < ∞ then,

possibly on an extended probability space, we can define a Brownian motion

(Bs) such that Ws = Bs∧〈M〉∞ . This follows since for a continuous local mar-

tingale X the sets {〈X〉∞ < ∞} and {limt→∞Xt exists} are equal a.s. In

particular, if 〈X〉∞ < ∞ then W〈X〉∞ = X∞ is well defined and W is contin-

uous at 〈X〉∞. Proposition 2.3.5 shows that W is a martingale when stopped

at a bounded stopping time and we conclude easily that it is a continuous lo-

cal martingale. Brownian motion B is obtained by “glueing” an independent

Brownian motion at W〈M〉∞ .
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Finally, let us comment on measurability of X wrt to W and vice-versa. It

follows from the construction that W is measurable w.r.t. FX∞, where (FXt ) is

the natural filtration of X taken right-continuous and complete. The converse

is not necessarily true, i.e. X need not be measurable w.r.t. to FW∞ . However

it is true if X is a solution to a Stochastic Differential Equation (SDE).

In fact time-change ideas arise naturally when solving SDEs. These ideas

were essential for the work of Wolfgang Doeblin, see [BY02], and offer an alter-

native perspective to the Itô-McKean approach. Suppose we are interested in a

process X solving

Xt =

∫ t

0

σ(Xu)dBu,

where B is a Brownian motion and σ is non-zero function. Dambis-Dubins-

Schwarz theorem shows that Ws := XCs is a Brownian motion. Further, since

σ(Xu)2 > 0, 〈X〉t is continuous and strictly increasing and we have

s = 〈X〉Cs =

∫ Cs

0

σ2(Xu)du =

∫ s

0

σ2(XCv )dCv =

∫ s

0

σ2(Wv)dCv, s ≥ 0.

It follows that Cs =
∫ s

0
σ(Wv)

−2dv. If we take this as the definition of Cs and

define At to be its inverse. We have At = 〈X〉t and Xt = WAt . This provides

a constructive strong solution of our SDE if we can find W . However starting

with a Brownian motion W , we can given a pathwise construction of a weak

solution to the original SDE.

A time-changed Brownian motion is always a semimartingale. We close this

section with a converse result of Monroe [Mon78].

Theorem 2.3.7. Any real-valued semimartingale X may be represented, on a

suitably enlarged probability space, as a time change of Brownian motion.

In many ways time-changing has the same good properties as changing mea-

sure. Both preserve the semimartingale character and both preserve stochastic

integrals. However time-change is able to perturb X to a much greater degree

than (an equivalent) change of measure. The latter will add a drift to a contin-

uous local martingale. The former can change both the drift and the volatility.

If we consider time-change C such that X is C-continuous then X̂ is still a local

martingale but we are free to affect its quadratic variation process. In particular

we can turn it into a Brownian motion. If we abandon the requirement of X

being C-continuous then we can also add a drift to X. In return, change of time

is in general harder to design and understand than a change of measure whose

consequences are rather well understood through the Girsanov theorem.
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Chapter 3

Elements of potential
theory1
(mainly for real valued processes)

Potential theory has played a crucial role in a number of works about the Sko-

rokhod embedding problem and we will also make a substantial use of it, espe-

cially in its one-dimensional context. We introduce here some potential theo-

retic objects which will be important for us. As this is not an introduction to

Markovian theory we will omit certain details and assumptions. We refer to the

classical work of Blumenthal and Getoor [BG68] for precise statements.

3.1 General theory

On a filtered probability space (Ω,F , (Ft),P) satisfying the usual conditions

consider a strong right-continuous Markov process X = (Xt : t ≥ 0) taking

values in a locally compact space (E, E) with a denumerable basis and a Borel σ-

field. Associated with X is (PXt : t ≥ 0), a standard semigroup of submarkovian

kernels. A natural interpretation is that PXt ν represents the law of Xt under

the starting distribution X0 ∼ ν. Define the potential kernel UX through UX =∫∞
0
PXt dt. This can be seen as a linear operator on the space of measures on

E. The intuitive meaning is that UX ν represents the occupation measure for

X along its trajectories, where X0 ∼ ν.

If the potential operator is finite2 it is not hard to see that for two bounded

stopping times, ρ ≤ τ , we have UX(PXρ − PXτ ) ≥ 0. This explains how the

potential can be used to keep track of the relative stage of the development of the

process (see Chacon [Cha77a]). In fact, Rost established that it gives a necessary

and sufficient condition for existence (of any and of minimal) embedding. We

1Large parts of this chapter are taken from Ob lój [Ob l04].
2That is, for any finite starting measure, it provides a finite measure.
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state it here for a transient Markov process on a compact space since then

things are (a little) easier. Transience of X is encoded in the requirement that

the potential UX ν is σ-finite. The theorem remains true when E is not compact

but the potentials are σ-finite.

Theorem 3.1.1 (Rost [Ros76a]). Assume that E is compact and that F sup-

ports an atomfree random variable independent of X. Let ν be a probability

measure with a σ–finite potential UX ν. For a measure µ on E there exists a

minimal stopping time τ such that Xτ ∼ µ if and only if UX µ ≤ UX ν.

3.2 One-dimensional potential theory

For X = B, a real-valued Brownian motion, as the process is recurrent, the

potential UB ν is infinite for positive measures ν. However, if the measure ν is a

signed measure with ν(R) = 0, and
∫
|x|ν(dx) <∞, then the potential UB ν is

not only finite but also absolutely continuous with respect to Lebesgue measure.

In order to compute it let us first recall that∫ ∞
0

1√
2πt

(
e−

ξ2

2t − 1

)
dt = −|ξ|, ξ ∈ R .

Write ν = ν+−ν− for two positive measures ν−, ν+ with ν+(R) = ν−(R). Then,

using Fubini-Tonelli theorem, we obtain

UB ν(dx)

dx
=

∫ ∞
0

∫
R

1√
2πt

e−
(y−x)2

2t ν(dy)dt

=

∫ ∞
0

∫
R

1√
2πt

(
e−

(y−x)2
2t − 1

)
ν+(dy)dt

−
∫ ∞

0

∫
R

1√
2πt

(
e−

(y−x)2
2t − 1

)
ν−(dy)dt

= −
∫
|x− y|ν(dy).

(3.1)

The right hand side is well defined for any probability measure µ on R (instead of

ν) with
∫
|x|µ(dx) <∞ and, with a certain abuse of terminology, this quantity

is called the one-dimensional potential of the measure µ:

Definition 3.2.1. Denote by M1 the set of probability measures on R with

finite first moment, µ ∈ M iff
∫
|x|µ(dx) < ∞. Let M1

m denote the subset

of measures with expectation equal to m, µ ∈ M1
m iff

∫
|x|µ(dx) < ∞ and∫

xµ(dx) = m. Naturally M1 =
⋃
m∈RM1

m. The one-dimensional potential

operator U acting fromM1 into the space of continuous, non-positive functions,

U :M1 → C(R,R−), is defined through Uµ(x) := U
(
µ
)

(x) = −
∫
R |x−y|µ(dy).

We refer to Uµ as to the potential of µ.
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We adopt the notation Uµ to differentiate this case from the general case

of a potential kernel UX when UX µ is a measure and not a function. This

simple operator enjoys some remarkable properties, which will be crucial for the

Chacon-Walsh methodology (see Section 4.2), which in turn is our main tool in

these notes. The following can be found in Chacon [Cha77a] and Chacon and

Walsh [CW76a]:

Proposition 3.2.2. Let m ∈ R and µ ∈M1
m. Then

(i) Uµ is concave and Lipschitz-continuous with parameter 1, Uµ′(x−) =

2µ([x,∞)) − 1, Uµ′(x+) = 2µ((x,∞)) − 1 and Uµ′′(dx) = −2µ(dx). In

particular Uµ has a kink at x if and only if µ({x}) > 0 and Uµ is linear

on [a, b] if and only if µ((a, b)) = 0;

(ii) Uµ(x) ≤ Uδ{m}(x) = −|x − m| and if ν ∈ M1 and Uν ≤ Uµ then

ν ∈M1
m;

(iii) for µ1, µ2 ∈M1
m lim|x|→∞ |Uµ1(x)−Uµ2(x)| = 0, in particular |x−m|+

Uµ(x)↗ 0 as either x→∞ or x→ −∞;

(iv) for µn ∈ M1
m, Uµn(x)−−−−→

n→∞
Uµ(x) for all x ∈ R if and only if µn ⇒ µ

and Uµn(x0)−−−−→
n→∞

Uµ(x0) for some x0 ∈ R.

If Xn ∼ µn, X ∼ µ are random variables Xn → X a.s. and Uµn → Uµ

pointwise then Xn → X in L1;

(v) for ν ∈M1
0, if

∫
R x

2ν(dx) <∞, then
∫
R x

2ν(dx) =
∫
R

∣∣∣|x|+ Uν(x)
∣∣∣dx;

(vi) for ν ∈M1
m, Uν|[b,∞) = Uµ|[b,∞) if and only if µ|(b,∞) ≡ ν|(b,∞), likewise

Uν|(−∞,a]) = Uµ|(−∞,a] if and only if µ|(−∞,a) ≡ ν|(−∞,a).

Proof. For x, z ∈ R and λ ∈ (0, 1) we have

λUµ(x) + (1− λ)Uµ(z) = −
∫

(λ|x− y|+ (1− λ)|z − y|)µ(dy)

≤ −
∫
|λx+ (1− λ)z − y|µ(dy) = Uµ(λx+ (1− λz)),

which shows that Uµ is concave and hence continuous. We rewrite the potential

as:

Uµ(x) = −
∫
R
|x− y|dµ(y) = −

∫
(−∞,x)

(x− y)dµ(y)−
∫

[x,∞)

(y − x)dµ(y)

= x
(

2µ([x,∞))− 1
)

+m− 2

∫
[x,∞)

ydµ(y), (3.2)

where, to obtain the third equality, we use the fact that µ ∈ M1
m and so∫

[x,∞)
ydµ(y) = m −

∫
(−∞,x)

ydµ(y). The above immediately shows that the
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left- and right- derivatives of Uµ exist everywhere and are as in (i). This gives

us another proof of concavity of Uµ and also shows that Uµ′′(dx) = −2µ(dx).

We also see that Uµ′(x) ∈ [−1, 1] and in particular Uµ is 1–Lipschitz continuous.

Other assertions in (i) are clear.

The first assertion in (ii) follows from Jensen’s inequality as

Uµ(x) = −
∫ ∞
−∞
|x− y|dµ(y) ≤ −

∣∣∣ ∫ ∞
−∞

(x− y)dµ(y)
∣∣∣ = −|x−m| = Uδm(x).

Further, for ν ∈ M1 with Uν ≤ Uµ we have Uν(x) ≤ −|x −m|. Using (3.2)

above and letting x→ −∞ we see that
∫
R xdν(x) ≥ m and, analogously, letting

x→∞ we see that the reverse holds.

The formula displayed in (3.2) shows that the potential is linear on intervals

[a, b] such that µ((a, b)) = 0. Furthermore, it shows that for ν ∈M1
m, Uν|[b,∞) =

Uµ|[b,∞) if and only if µ|(b,∞) ≡ ν|(b,∞). Note that the same is true with [b,∞)

replaced by (−∞, a] and that in particular Uν ≡ Uµ if and only if ν ≡ µ. Points

(i),(ii),(vi) are now established.

From (3.2) we have

Uµ1(x)− Uµ2(x) = 2x
(
µ1([x,∞))− µ2([x,∞))

)
− 2

∫
[x,∞)

y(µ1(dy)− µ2(dy))

and (iii) follows since µ1, µ2 have the same (well defined) mean.

Finally, (v) follows by integration by parts and it remains to argue (iv). In

fact, we will show a slightly stronger statement than in (iv). Consider µn ⇒ µ,

where µ is some non-negative measure on R, and suppose Uµn(x0) converge.

Take g continuous bounded with −|x0 − y| ≤ g(y) ≤ 0. Then Uµn(x0) ≤∫
g(y)µn(dy) ≤ 0 and Fatou Lemma gives that

lim sup
n→∞

Uµn(x0) ≤
∫
g(y)µ(dy).

Letting g ↘ −|x0 − y| we conclude that Uµ(x) ≥ limn→∞ Uµn(x0) and in

particular is finite. Finally note that by (3.2) for x < x0 we have

Uµn(x)− Uµn(x0) = (x− x0)(2µn(x)− 1)− 2

∫
[x,x0)

(y − x0)µn(dy)

and we see that the right hand side converges for a.e. x to Uµ(x)− Uµ(x0). A

similar argument holds for x > x0 and we obtain that Uµn converge pointwise

and that Uµ = limUµn −K for positive constant K = limUµn(x0)− Uµ(x0).

In particular, by above, if µ ∈ M1 then µ ∈ M1
m. Likewise if Uµn ≥ Uν for

some ν ∈M1
m then also Uµ ≥ Uν and hence µ ∈M1

m.

Conversely, suppose Uµn(x) → Uµ(x) for all x ∈ R and some µn, µ ∈
M1

m. Then, writing a C2 function f with compact support as f(y) = 1
2

∫
|y −
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x|f ′′(x)dx we obtain∫
f(y)µn(dy) =

1

2

∫ ∫
|x− y|µn(dy)f ′′(x)dx =

1

2

∫
Uµn(x)f ′′(x)dx.

As Uµn converge to Uµ uniformly on compacts, the right hand side converges

to 1
2

∫
Uµ(x)f ′′(x)dx =

∫
f(y)µ(dy). Weak convergence of measures follows.

For the final statement note that E |Xn| = −Uµn(0) → −Uµ(0) = E |X| and

the result follows from Scheffe’s lemma.

Remark 3.2.3. Observe that in (iv) in Proposition 3.2.2 it is not true3 that

Uµn(x)−−−−→
n→∞

Uµ(x) for all x ∈ R if and only if µn ⇒ µ. Consider for example

µn = 1
n (δ{−n2} + δ{n2}) + n−2

n δ{0} so that µn ∈ M1
0 and µn ⇒ δ{0}. We see

however that Uµn(x)→ −∞ for all x ∈ R.

In financial applications it is often natural to consider

Cµ(x) :=

∫ ∞
x

(y − x)µ(dy) =

∫
R

(y − x)+µ(dy), (3.3)

which we refer to as call prices implied by µ, see also (1.5) above. A direct

computation shows that

Uµ(x) = −2Cµ(x)− x. (3.4)

Similarly to the general theory, both the potential and the call function allow

us to keep track of ordering of stopping times.

Lemma 3.2.4. If µ, ν ∈ M1 then Uµ ≤ Uν is equivalent to
∫
f(x)µ(dx) ≥∫

f(x)ν(dx) for any positive convex function.

If X is a local martingale and ρ ≤ τ < ∞ a.s. are two UI stopping times then

UL(Xτ ) ≤ UL(Xρ) with a reversed inequality for the call functions.

Proposition 2.2.2 holds if X0 is not a constant but L(X0) ∈M1 and UL(X0) ≥
UL(Xτ ).

Proof. The first statement follows by (3.4) and by writing a positive convex

function as a f(x) = f(0) +
∫ x

0
(x − a)+f ′′(da). The second statement is an

immediate consequence of Jensens inequality. The final assertion follows by

inspection of the proof of Proposition 2.2.2.

When τ is a first exit time after ρ then we can provide a precise description

of UL(Xτ ). This is the crucial link which we will exploit in Section 4.2 to build

stopping times embedding a given distribution.

3Contrary to what is stated in [Ob l04]. We became aware of this while reading a recent

paper of Hobson and Klimmek [HK13].
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Proposition 3.2.5. Let X be a continuous local martingale, ρ an a.s. finite

stopping time and let ν = L(Xρ) ∈ M1. Consider two numbers a < b, let

τ := inf{t ≥ ρ : Xt /∈ (a, b)} and assume τ < ∞ a.s. A sufficient condition

for this is that 〈X〉∞ = ∞ a.s. Write µ = L(Xτ ). Then Uν|(−∞,a]∪[b,∞) =

Uµ|(−∞,a]∪[b,∞) and Uµ is linear on [a, b].

Proof. The assertions follows from the fact that Xτ = Xρ on {Xρ /∈ [a, b]} =

{Xτ /∈ [a, b]} and hence µ = ν on R \[a, b] and the fact that µ does not charge

the interval (a, b).

To illustrate some of the results established above let us compute the atom

of µ in a in two ways. First of all, conditionally on Xρ ∈ [a, b], the process on

[ρ, τ ] is bounded and hence a martingale. It follows that

µ({a}) = ν({a}) +

∫
(a,b)

b− x
b− a

ν(dx).

On the other hand from (i) in Proposition 3.2.2 and relation between Uν and

Uµ in Proposition 3.2.5 we obtain

µ({a}) =
1

2
(Uµ′(a−)− Uµ′(a+)) =

1

2
Uν(a−)− 1

2

Uν(b)− Uν(a)

b− a

= ν([a,∞))− 1

2
− 1

2

2bν([b,∞))− 2aν([a,∞)) + a− b+ 2
∫

[a,b)
yν(dy)

b− a

= ν([a,∞)) +
1

2

2bν([a, b)) + 2(a− b)ν([a,∞))− 2
∫

[a,b)
yν(dy)

b− a

= ν({a}) +

∫
(a,b)

b− x
b− a

ν(dx),

as required.
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Chapter 4

The Skorokhod embedding

problem

4.1 Introduction

The so called Skorokhod embedding problem or Skorokhod stopping problem was

first formulated and solved by Skorokhod in 1961 [Sko61] (English translation

in 1965 [Sko65]). For a given centered probability measure µ with finite second

moment and a Brownian motion B, one looks for an integrable stopping time

T such that the distribution of BT is µ. This original formulation has been

changed, generalised or narrowed a great number of times. The problem has

stimulated research in probability theory for over 50 years now. Here we will

focus only on some aspects and we refer to Ob lój [Ob l04] for a survey. An excel-

lent account of the domain with emphasis on the applications in mathematical

finance is given in Hobson [Hob11].

Let us start with some history of the problem. Skorokhod’s solution required

a randomization external to B. Three years later another solution was proposed

by Dubins [Dub68], which did not require any external randomization. Around

the same time, a third solution was proposed by Root. It was part of his Ph.D.

thesis and was then published in an article [Roo69].

Soon after, another doctoral dissertation was written on the subject by Mon-

roe who developed a new approach using additive functionals. His results were

published in 1972 [Mon72b]. Although he did not have any explicit formulae

for the stopping times, his ideas proved fruitful as can be seen from the elegant

solutions by Vallois [Val83a] and Bertoin and Le Jan [BLJ92a], which also use

additive functionals.

The next landmark was set in 1971 with the work of Rost [Ros71b]. He

generalised the problem by looking at any Markov process and not just Brownian
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motion. He gave an elegant necessary and sufficient condition for the existence

of a solution to the embedding problem. Rost made extensive use of potential

theory. This approach was also used a few years later by Chacon and Walsh

[CW76a], who proposed a new solution to the original problem which included

Dubins’ solution as a special case.

By that time, Skorokhod embedding, also called the Skorokhod represen-

tation, had been successfully used to prove various invariance principles for

random walks (Sawyer [Saw74]). It was the basic tool used to realize a discrete

process as a stopped Brownian motion. This ended however with the Komlós,

Major and Tusnády [KMT75] construction, which proved far better for this pur-

pose. Still, the Skorokhod embedding problem continued to inspire researchers

and found numerous new applications. In particular, starting with the crucial

insight of Hobson [Hob98a], it has been applied to obtain robust pricing and

hedging in mathematical finance, see our earlier discussion in Section 1.4.4.

The next development of the theory came in 1979 with a solution proposed

by Azéma and Yor [AY79b]. Unlike Rost, they made use of martingale theory,

rather than Markov and potential theory, and their solution was formulated for

any recurrent, real-valued diffusion. We will see below that their solution can

be obtained as a limit case of Chacon and Walsh’s solution. Azéma and Yor’s

solution has interesting properties which are discussed as well. In particular

the solution maximizes stochastically the law of the supremum up to the stop-

ping time. This direction was continued by Perkins [Per86], who proposed his

own solution in 1985, which in turn minimizes the law of the supremum and

maximizes the law of the infimum.

Finally, yet another solution was proposed in 1983 by Bass [Bas83]. He

used the stochastic calculus apparatus and defined the stopping time through

a time-change procedure. His solution is also reported in Stroock ([Str03], p.

213–217).

Further developments can be classified broadly into two categories: works

trying to extend older results or develop new solutions, and works investigating

properties of particular solutions. The former category is well represented by

papers following Monroe’s approach: solution with local times by Vallois (1983)

[Val83b] and the paper by Bertoin and Le Jan (1992) [BLJ92b], where they

develop explicit formulae for a wide class of Markov processes. Azéma and Yor’s

construction was taken as a starting point by Grandits and Falkner [GF00] and

then by Pedersen and Peskir [PP01] who worked with non-singular diffusions.

Roynette, Vallois and Yor [RVY02] used Rost criteria to investigate Brownian

motion and its local time [RVY02]. There were also some older works on n-

dimensional Brownian motion (Falkner [Fal80]) and right processes (Falkner

and Fitzsimmons [FF91]).

The number of works in the second category is greater and we will not try to
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describe it here. We only mention that the emphasis was placed on the one hand

on the solution of Azéma and Yor and its accurate description and, on the other

hand, following Perkins’ work, on the control of the maximum and the minimum

of the stopped martingale (Kertz and Rösler [KR90], Hobson [Hob98b], Cox and

Hobson [CH04b]).

We finish this introduction by stating formally the problem we consider. It

is not the original formulation (which featured Brownian motion) nor the most

general formulation as is clear from the discussion above, in particular from

Theorem 3.1.1. Instead we give a formulation which will be most relevant in

the sequel.

Problem 4.1.1 (The Skorokhod embedding problem (SEP)). Given a contin-

uous local martingale X and a probability measure µ on R find a stopping time

τ such that Xτ ∼ µ and τ is minimal.

We will be mostly interested in the case when X0 is a constant,
∫
R |x|µ(dx) <

∞ and
∫
R xµ(dx) = E[X0]. We will also consider the situation when X0 is not

constant but UL(X0) ≥ Uµ. In both cases, by Proposition 2.2.2 minimality of

τ is equivalent to Xτ being uniformly integrable.

The requirement that τ is “small” (made precise by the notion of minimality)

is essential. Without it, there is a trivial solution to the above problem which,

we believe, was first observed by Doob. Consider X = B a standard Brownian

motion and let τ = inf{t ≥ 1 : Bt = µ−1(N (B1))}, where µ−1 is the right-

continuous inverse of the cumulative distribution function µ of µ. Trivially τ

embeds µ in Brownian motion, Bτ ∼ µ. However, unless µ = N (0, 1), we have

E τ =∞.

In general, there are many solutions to the SEP for a given X and µ. We do

not intend to discuss all of them in these notes. Our aim is to showcase main

ideas and techniques. We organise the discussion in the following three sections.

4.2 Solutions to SEP via first exit times of an

interval

We start by discussing how potential theory can be used to construct solutions

to the embedding problem. This methods is due to Chacon and Walsh [CW76b]

and Chacon [Cha77b].

Let X be a continuous local martingale with 〈X〉∞ =∞ a.s. For simplicity

we assume that X0 = 0 a.s. It will be clear that the problem and methods are

invariant under a shift by a constant. Recall that H∆(X) is the first hitting

time of a set ∆ by X. Since X is fixed we write simply H∆. We write Ha,b for

H(a,b)c the first exit from the interval (a, b), as in Figure 4.1.
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�

�
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Figure 4.1: The first exit time from an interval (a, b).

Consider µ = 1
2 (δ{−1}+δ{1}). It follows from Proposition 2.2.2 that the only

minimal stopping time embedding µ is H−1,1. Likewise, any centred distribution

supported on two points: µr,s = s
s−r δ{r} + −r

s−r δ{s}, r < 0 < s, is (uniquely in a

minimal way) embedded by the first hitting time Hr,s. Note that we are using

here the fact that a bounded local martingale is a true martingale and hence

EXHa,b = X0 and that X has continuous paths so that XHa,b ∈ {a, b}.

The following idea appears naturally: express any measure µ as random mix

of two-atomic measures µr,s and then use the first hitting time HR,S , where

R,S are independent are represent the mixing. Explicitly, following Breiman

[Bre68] and Hall [Hal68], given µ ∈M1
0, define a distribution on R2 through

ρHallµ (dr, ds) =
(s− r)∫∞

0
xµ(dx)

1r≤0≤sµ(dr)µ(ds). (4.1)

Then HR,S , where (R,S) ∼ ρHallµ independent of B, embeds µ in B, i.e.
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BHR,S ∼ µ. Indeed, for f ≥ 0 we have

E[f(XHR,S )] = E
[
f(S)

−R
S −R

+ f(R)
S

S −R

]
=

∫ 0

−∞

∫ ∞
0

−rf(s)
µ(dr)µ(ds)∫∞

0
xµ(dx)

+

∫ 0

−∞

∫ ∞
0

sf(r)
µ(dr)µ(ds)∫∞

0
xµ(dx)

=

∫ ∞
−∞

f(x)µ(dx),

where we used µ ∈M1
0 so that

∫∞
0
xµ(dx) = −

∫ 0

−∞ xµ(dx).

We note that the same idea was in fact used in Skorokhod’s original work

with the difference that in Skorokhod’s construction S is a deterministic function

of R.

4.2.1 Measures with finite support

Suppose however that the filtration does not allow for a pair of variables indepen-

dent of X. Can we still construct an embedding? We will start by discussing the

case of µ with finite support. In fact, consider first µ = 1
4 (δ{−1}+ δ{1}) + 1

2δ{0}.

We write · ◦ θρ for a shift by a stopping time ρ, i.e.

H∆ ◦ θρ = inf{t ≥ ρ : Xt ∈ ∆}.

This is a useful notation in the current setup, we note however that it is different

from the standard shift operator used in Markovian context.

Let τ = H0,1 ◦ θH−1,1/3
and note that we have

P(XH−1, 1
3

= −1) =
1/3

1/3 + 1
=

1

4
, P(Xτ = 1|XH−1, 1

3

=
1

3
) =

1

4

and it follows that Xτ ∼ µ. Using Proposition 3.2.5, let us draw the potentials

Uδ{0} ≥ UL(XH−1,1/3
) ≥ UL(Xτ ):

Figure Here

It is clear now why we took 1/3 in the first place: it is the intersect of Uδ{0} with

the tangent to Uµ at points (−1, 0). Naturally by symmetry H−1,0◦θH−1/3,1
also

embeds µ. The general approach should now be clear: we can build a sequence

of stopping times, in each step considering a first exit from an interval, which

correspond to taking linear sections of the potential. If we design them well,

e.g. taking tangents to the target potential, we build an embedding. This way

it is not hard to show that any measure µ with support greater than two points

can be embedded in an (uncountably) infinite number of minimal ways.

Proposition 4.2.1. If support of µ ∈M1
0 is not equal to one or two points then

there exists uncountably many different minimal stopping times τ which embed

µ: Xτ ∼ µ.

41



4.2. SEP VIA FIRST EXIST TIMES OF AN INTERVAL J. Ob lój

Proof. We consider the case of µ with three atoms in x1 < x2 < x3. Note that

Uµ is equal to −|x| on R \(x1, x3), is piece-wise linear with kinks in x1, x2, x3.

The reasoning is easiest explained with a series of drawings:
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3. The second step 4. The last step

Note that x1 = a2, x2 = a3 and x3 = b3. It follows that with such choice

Xτ ∼ µ where

τi = Hai,bi ◦ θτi−1 , i = 1, 2, 3, τ0 = 0 and τ := τ3.

Consider the set of paths ω which are stopped in a2 = x1: {ω : X(ω)τ(ω) =

x1}. It can be described as the set of paths that hit a1 before b1 and then a2

before b2. It is clear from our construction that we can choose these points

in an infinite number of ways and each of them yields a different embedding

(paths stopped at x1 differ). Indeed as for any a1 ≤ a1 < 0 < b2 < b2 < b1,

P(H{a1} < H{b2} < H{a1} < H{b1}) > 0, the result follows from the fact that if

P(Xρ1 6= Xρ2) > 0 then P(ρ1 = ρ2) < 1 for two stopping times ρ1, ρ2.

Each of the stopping times in the poof above is minimal. However only two of

them are a composition of two exit times: for a1 = a2 = x1 or for b1 = b3 = x3,

the rest requires considering three exit times. The former correspond to reducing

the potential by taking tangents to the target potential and is the procedure

suggested in the original work of Chacon and Walsh. In the case of µ with n

atoms, the potential Uµ has (n− 1) linear segments and we have to order them

which can be done in (n − 1)! ways. Several of them are known as particular

solutions. For example, taking tangents from left to right corresponds to Azéma-

Yor [AY79b] solution to the SEP.
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4.2.2 Arbitrary measures

Making use of potential theory on the real line, Chacon and Walsh [CW76a]

gave an elegant and simple description of a general method to obtain a solution

to SEP. Their work was based on an earlier paper of Chacon and Baxter [BC74],

who worked with a more general setup and obtained results, for example, for

n-dimensional Brownian motion. This approach proves very fruitful in one

dimension as we saw already above in the case of measures with finite support.

We now describe the solution for an arbitrary µ ∈ M1
0 and a continuous local

martingale X, 〈X〉∞ =∞ a.s.

We start by assuming X0 = 0 and write µ0 = δ0. Choose a point x such

that Uµ0(x) > Uµ(x) and draw a tangent to Uµ through (x, Uµ(x)). This line

cuts the potential Uδ0 in two points a1 < 0 < b1. Naturally x1 ∈ [a1, b1]. We

consider the new potential Uµ1 given by Uµ0 on (−∞, a1]∪[b1,∞) and linear on

[a1, b1]. We iterate the procedure taking tangents at xn. The particular choice

of tangents which we use to produce potentials Uµn is not important. It suffices

to see that we can indeed choose tangents1 in such a way that Uµn → Uµ (and

therefore µn ⇒ µ). This is true, as µU is a concave function and it can be repre-

sented as the infimum of a countable number of affine functions2. The stopping

time is obtained therefore through a limit procedure. We have τ1 = Ha1,b1 ,

τ2 = Ha2,b2 ◦ θτ1 , ..., τn = Han,bn ◦ θτn−1
. Note that τn ≤ Han,bn

< ∞ a.s.,

where an := min{ai : i ≤ n}, bn := max{bi : i ≤ n}. The sequence (τn) is

increasing and hence τ := lim τn is well defined. The solution is easily explained

with a series of drawings:
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1. The initial situation 2. The first step

1It is convenient to consider tangents but in fact the construction works if, at nth step, we

consider an arbitrary line ln which stays above Uµ, has gradient in (−1, 1), and Uµn → Uµ.
2To be more specific observe that if we take tangents to Uµ in x1 and x2 then for any

x ∈ (x1, x2) the distance of larger of the tangent lines at x to Uµ(x) is less than the change in

gradient of Uµ, which is less than 2, times the width (x2−x1). Recall also that |Uµ(x)+|x|| →
0 as |x| → ∞. Say in the nth step we reduce Uµn−1 by taking its minimum with the tangent

to Uµ at xn. Points x1, . . . , xn provide a partition of [mini≤n xi,maxi≤n xi]. It follows that

if the mesh of this partition goes to zero and mini≤n xi → −∞ and maxi≤n xi → ∞ then

Uµn(x)→ Uµ(x) for any x ∈ R and hence, by Proposition 3.2.2, µn ⇒ µ.
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3. After the first step 4. After the second step

We observe that now that the assumption X0 = 0 played no role. The same

method works if X0 ∼ ν ∈M1
0 as long as Uν ≥ Uµ.

Theorem 4.2.2 (Chacon and Walsh [CW76a]). Suppose X is a continuous local

martingale, 〈X〉∞ =∞ a.s. and X0 ∼ ν ∈ M1
m. Consider µ ∈M1

m with Uµ ≤
Uν. Let Uµn be a sequence of potentials µ0 = ν and Uµn = min{Uµn−1, `n},
where `n is a tangent to Uµ chosen so that Uµn ↘ Uµ. Let τn correspond to the

composition of first exit times which embeds µn: Xτn ∼ µn. Then τn ↗ τ <∞
a.s., Xτ ∼ µ and τ is minimal.

Proof. We first show that τ < ∞ a.s. Let xn = min{xi : i ≤ n} and xn =

max{xi : i ≤ n} be the smallest and the largest tangential points chosen in the

first n steps. Note that by construction, τ ≤ Han,bn
on the set {Xτn ∈ [xn, xn]}.

Since Uµn is tangential to Uµ in xn and xn it follows from (i) in Proposition

3.2.2 that

µ([xn, xn]) ≥ µn([xn, xn]) ≥ µ((xn, xn)).

Putting the two facts together we obtain

P(τ ≤ Han,bn
) ≥ µn([xn, xn]) ≥ µ((xn, xn))↗ 1,

by the convergence of potentials. We thus have

P(τ <∞) = P
(
∪n{τ ≤ Han,bn

}
)

= 1.

By continuity of paths of X we also have Xτn → Xτ a.s. and Xτ ∼ µ since

UL(Xτ ) = Uµ. Each τn is UI and hence (Xτn : n ≥ 0) is a martingale.

Using (iv) in Proposition 3.2.2 we conclude that Xτn → Xτ in L1 and hence

E[Xτ | Fτn ] = Xτn . It follows that

E[Xτ | Fτ∧t] = lim
n→∞

E[Xτ | Fτn∧t] = lim
n→∞

E[Xτn | Fτn∧t] = lim
n→∞

Xτn∧t = Xτ∧t

and hence τ is UI and also minimal by Proposition 2.2.2. We note that if µ

has second moment it follows directly from the convergence of potentials that

E 〈X〉τ =
∫
x2µ(dx) (via (v) in Proposition 3.2.2) and hence τ is UI.

Dubins [Dub68] solution is a special case of this procedure. What Dubins

proposes is actually a simple method of choosing the tangents. To obtain the
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potential Uµ1 draw tangent at (0, Uµ(0)), which will intersect the potential Uδ0
in two points a < 0 < b. Taking minimum of Uδ{0} and the tangents gives Uµ1.

Then draw tangents in (a, Uµ(a)) and (b, Uµ(b)). The lines will intersect the

potential Uµ1 in (at most) four points yielding the potential Uµ2. Draw the

tangents in those four points obtaining (at most) 8 intersections with Uµ2 which

give new coordinates for drawing tangents. Iterate.

4.3 Solutions to SEP via first entry times

We started the previous section with the example of H−1,1 or Ha,b in general,

as the first simplest example of stopping time where we can easily describe the

embedded distribution. We then generalised this to obtain a method which uses

iteration of first exit times of intervals to embed an arbitrary distribution. In

this section we take a different approach: we want to stick to the first exit/entry

time but we consider more involved domains than just an interval.

In fact a very fruitful idea is to consider a two-dimensional process (Xt, At),

where A is an auxiliary process which provides a natural clock for X and to

look at first entry times for (X,A) to a domain. It may be natural to expect

such a solution to “optimaise”, in some way, the distribution of the stopped

auxiliary process. We consider here three examples of the auxiliary process:

At = t the usual time which leads to Root’s and Rost’s solutions to the SEP,

At = Xt := supu≤tXu the running supremum process which leads to Azéma

and Yor solution, and At = Lt the local time in zero of X which corresponds to

Vallois’ solution. We will see that indeed in all of these cases the distribution

of Aτ is extremal in an appropriate sense.

4.3.1 Azéma-Yor solution via potential theory

Let us go back to the case of a measure µ with n atoms, µ =
∑n
i=1 piδ{xi},

x1 ≤ . . . ≤ xn. Consider Chacon-Walsh potential picture and consider the

stopping time resulting from taking tangents to Uµ from left to right. This

corresponds to composition of consecutive first exit times from some intervals

(ai, bi) where ai, bi are increasing sequences. In fact ai = xi are subsequent

atoms of µ and bi = ψµ(xi) are given in function of xi. In the ith step, if the

process reaches xi then it is stopped there. If it reaches bi then it continues until

it either hits xi+1 (stopped) or bi+1 (continues). We further have bn = xn so

that the final stopping time τ satisfies τ ≤ Hx1,xn . Observe that a convenient

way of keeping track of which step we are currently running is simply to look

at the maximum of the process:

τ = inf{t ≥ 0 : ψµ(Xt) ≤ Xt}, (4.2)
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where ψµ(x) is defined as the point in which the tangent to Uµ at x, which we

denote lx, intersects Uδ{0}. Note that at xi we mean the left-tangent, i.e. the

tangent which continues the linear segment of Uµ between xi−1 and xi. We go

on to compute ψµ(x) in points of differentiability of Uµ where the tangent is

unique. It follows that we obtain ψµ for all x by making it left-continuous. The

following drawing summarises these quantities:
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The slope of lx is given by Uµ′(x) = 2µ(x) − 1 by (3.2), where we recall

µ(x) = µ([x,∞)). This gives the equation for ψµ(x), the intersection of lx and

−|t|:

−ψµ(x) = Uµ(x) + (ψµ(x)− x)Uµ′(x),

−ψµ(x) = x(2µ(x)− 1)− 2

∫
[x,∞)

yµ(dy) + (ψµ(x)− x)(2µ(x)− 1),

ψµ(x) =
1

µ(x)

∫
[x,∞)

yµ(dy), (4.3)

which is called the barycentre function defined by Azéma and Yor, and also

called the Hardy-Littlewood (maximal) function. It is easy to see from the

construction of ψµ(x) that it is a non-decreasing function which we took left-

continuous above. The formula holds for x with µ(x) ∈ (0, 1). Note that if

ξ ∼ µ then

ψµ(x) = E[ξ|ξ ≥ x],

which explains the name barycentre. We assumed above X0 = 0 but it is easy to

verify that if X0 6= 0 and µ ∈M1
X0

then the intersection of tangent at x to Uµ

with −|t−X0| is still given by (4.3). To complete the description of ψµ consider

x with µ(x) = 1. Then we simply have Uµ(x) = x −X0 and so the tangent is

just the line {(t, t−X0) : t ∈ R}, which intersects the line {(t,X0 − t) : t ∈ R}
in (X0, 0), so we put ψµ(x) = X0. In fact for such x, (4.3) is well defined and

gives the same answer. For x with µ(x) = 0, we have µU(x) = −x + X0 and

so the very point (x, µU(x)) lies on the line {(t,−t + X0) : t ∈ R} and we put

ψµ(x) = x. This completes the definition of the function ψµ, which coincides

with the one given in [AY79b].
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Theorem 4.3.1 (Azéma-Yor [AY79b]). Let X be a continuous local martingale,

X0 = 0 and 〈X〉∞ = ∞ a.s. Given µ ∈ M1
0 define ψµ(x) via (4.3) for x <

inf{x : µ(x) = 0} and ψµ(x) = x otherwise. Let

τµAY := inf{t ≥ 0 : ψµ(Xt) ≤ Xt} = inf{t ≥ 0 : Xt ≤ bµ(Xt)}, (4.4)

where bµ is the right-continuous inverse of ψµ. Then XτµAY
∼ µ and τµAY is

minimal or, equivalently, XτµAY is a UI martingale.

It is possible to give a rigurous proof of the result relying only on potential

theoretic arguments. However this requires a rather tedious construction of

Uµn → Uµ such that barycentre functions converge. Instead, in the subsequent

section, we give a proof which uses martingale arguments.

Sometimes it is convenient to reason in terms of bµ the right-continuous

inverse of ψµ. If we draw a tangent line to Uµ which goes through (y,−y)

then bµ(y) is the point at which the tangent first touches Uµ. Recall that the

tangent has the smallest possible gradient among lines joining (y,−y) and Uµ

which gives

bµ(y) = max argmin
Uµ(x) + y

y − x
,

where max corresponds to the fact that we take bµ right continuous so that if

we have an interval of tangent points than we take the largest of them. Using

(3.4) we can rewrite the above as

bµ(y) = max argmin
Uµ(x) + x

y − x
= max argmin

Cµ(x)

y − x
,

which shows that a tangent to Cµ in bµ(y) goes through (y, 0). Suppose that

µ({bµ(y)}) = 0 so that the tangent has slope given uniquely by C ′µ(bµ(y)) =

−µ(bµ(y)). We conclude that

µ(bµ(y)) = inf
x<y

Cµ(x)

y − x
(4.5)

which we will use later when showing that Azéma-Yor solution maximises the

law of Xτ . Note also that a tangent to Cµ in (x,Cµ(x)) crosses the x-axis in

ψµ(x). Naturally (4.3) may be equally well derived from this description. This

is sometime used in financial context.

Finally, similarly to Theorem 4.2.2, it is clear how to extend the Azéma-Yor

embedding to the case of X0 ∼ ν. It suffices to replace ψµ with ψνµ(x) — the

point of intersection of the tangent to Uµ at x with Uν.

4.3.2 Azéma-Yor solution via martingale arguments

The original proof of the embedding property in Azéma-Yor did not use the

potential theoretic arguments. Instead it relied on martingale arguments. It is
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important to stress that above, in the potential theoretic picture, it was natural

to approximate µ with atomic measures. Such measures have easy to describe

embeddings and potential. In contrast, from martingale point of view, smooth

measures are more natural. We will hence approximate arbitrary µ with µn
such that ψµn are continuous and strictly increasing. This would correspond to

taking Uµn ↘ Uµ with Uµn strictly concave and continuously differentiable.

The main protagonists of this section are the so-called Azéma-Yor martin-

gales, see Carraro, El Karoui and Ob lój [CEKO12] for a full account. For a C2

function F , using Itô’s formula and the that (Xt − Xt) ≡ 0 dXt a.e. a.s., we

obtain

MF (X)t := F (Xt)− F ′(Xt)(Xt −Xt) = F (X0) +

∫ t

0

F ′(Xs)dXs.

In particular MF (X) is a local martingale. Monotone class argument shows the

above holds for any locally bounded F ′. Let τ be a stopping time such that Xτ

is UI. Taking F with compact support, F (0) = 0 = X0, we see that MF (X)τ is

also UI and optional stopping theorem gives

E
[
F (Xτ )− F ′(Xτ )(Xτ −Xτ )

]
= 0.

Now consider τ = inf{t ≥ 0 : Xt ≤ b(Xt)} so that Xτ = b(Xτ ), where b is a

right-continuous functions, b(y) < y for y < y ≤ ∞ and b(y) = y) for y ≥ y.

The above becomes

E
[
F (Xτ )− F ′(Xτ )(Xτ − b(Xτ ))

]
= 0.

Let ν := L(Xτ ) which is a probability measure on [X0, y]. Integrating by parts

we obtain ∫
R

((b(y)− y)ν(dy)− ν(y)dy) = 0,

for all continuous F ′ with bounded support. We deduce that

(b(y)− y)ν(dy)− ν(y)dy = 0, y ≥ 0, ν(0) = 1.

which yields

ν(y) = exp

(
−
∫ y

0

ds

s− b(s)

)
, 0 ≤ y ≤ y, ν(y+) = 0. (4.6)

In particular, ν admits a density with respect to the Lebesque measure on [0, y)

and may have an atom at y. The above expression is essentially an excursion

theoretic result. We think of X as either attaining a new maximum or running

an excursion away from its current maximum. We let X diffuse and each time

it attains a new maximum m we setup a lower barrier, b(m), such that if the

next excursion away from the maximum reaches the barrier we stop. This way

of thinking brings us back to our starting point: τ is the first entry time for

(Xt, Xt) into a domain D = {(x,m) : x ≤ b(m), m ≥ 0}, see Figure 4.2.
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J. Ob lój CHAPTER 4. THE SKOROKHOD EMBEDDING PROBLEM

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �

�������
	�����

�

��

���

Figure 4.2: The Azéma-Yor stopping time, here Ψµ = ψ−1
µ = bµ.

Proof of Theorem 4.3.1. Write b = bµ, ψ = ψµ and τ = τµAY . Note that ψ = b−1

the left-continuous inverse of b and, using Lemma 2.3.1, we have {y : b(y) ≥
x} = {y : y ≥ b−1(x)}. The equality between the two stopping times in (4.4)

follows given continuity of paths of X. Note that, by (4.6), we could also

take b to be left-continuous since Xτ does not charge points on [0, y), where

y = x := inf{x : µ(x) = 0}. Suppose first that µ has compact support. Then

τ ≤ Hx,x, where x = sup{x : µ(x) = 1}, and hence τ is UI.

Using the relation between ψ and b and (4.6) we obtain

P(Xτ ≥ x) = P(b(Xτ ) ≥ x) = P(Xτ ≥ ψ(x))

= ν(ψ(x))) = exp

(
−
∫ ψ(x)

0

ds

s− b(s)

)
, x ≤ y.

(4.7)

We need to show that this is equal to µ(x). Note that we have equality for

x = x since ψ(x) = 0. We compute directly for x ≤ z < x ≤ x, using the fact
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that b(ψ(u)) = u dψ(u) a.e.:∫ ψ(x)

ψ(z)

ds

s− b(s)
=

∫ x

z

dψ(u)

ψ(u)− u
=

∫ x

z

d(ψ(u)− u)

ψ(u)− u
+

∫ x

z

du

ψ(u)− u

= log
ψ(x)− x
ψ(z)− z

−
∫ x

z

−µ(u)du∫
[u,∞)

(s− u)µ(ds)

= log
µ(z)

µ(x)

∫
[x,∞)

(s− x)µ(ds)∫
[z,∞)

(s− z)µ(ds)
− log

∫
[x,∞)

(s− x)µ(ds)∫
[z,∞)

(s− z)µ(ds)

= log
µ(z)

µ(x)

and the result follows.

Finally suppose µ has unbounded support. Note that for any x > 0 we have

τµAY ≤ inf{t > H{x} : Xt ≤ bµ(x)}

which is finite a.s. since 〈X〉∞ =∞ (the latter implies lim supt→∞Xt =∞ and

lim inft→∞Xt = −∞). Let Un be the potential which is equal to Uµ on (−n, n)

and is piece-wise linear otherwise. To have a unique definition let us take Un
with no kink in −n and n and µn the corresponding measure Uµn = Un. Since

µn has bounded support we have τµnAY is UI and embeds µn. We also have ψµ is

equal to ψµn on (−n, n) and it follows that the sets {τµnAY 6= τµAY } are decreasing

and P(τµnAY < τµAY ) ≤ µn((−n, n)c) → 0 and P(τµnAY > τµAY ) ≤ P(XH−n,ψ(−n)
=

−n)→ 0 so that τµnAY → τµAY a.s. Weak convergence µn ⇒ µ implies XτµAY
∼ µ.

Finally, let us verify that τ = τµAY is UI. Following Hobson [Hob11], we

compute

P(sup
t≥0
|Xt∧τ | ≥ λ) =P(H{−λ} < H{ψµ(−λ)})

+ P(H{−λ} > H{ψµ(−λ)})P
(

sup
t≥0

Xt∧τ ≥ λ
∣∣∣H{−λ} < H{ψµ(−λ)}

)
=

ψµ(−λ)

λ+ ψµ(−λ)
+

λ

λ+ ψµ(−λ)

P(Xτ ≥ bµ(λ))

P(Xτ ≥ −λ)
.

Using ψµ(y)→ 0 and µ(y)→ 1 as y → −∞ we obtain

lim
λ→∞

P(sup
t≥0
|Xt∧τ | ≥ λ) = lim

λ→∞
λµ(bµ(λ))

= lim
x→∞

ψµ(x)µ(x) = lim
x→∞

∫
[x,∞)

uµ(du) = 0.

Proposition 2.2.3 allows to conclude.

Azéma-Yor stopping time compares the evolution of X and X and, as men-

tioned earlier, we would expect it to have optimal properties with respect to

50
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stopped maximum process. Indeed, it turns out τµAY maximises stochastically

Xτ among solutions to the SEP of µ in X. Azéma-Yor martingales provide a

simple proof of this optimal property of τAY .

Proposition 4.3.2 (Azéma-Yor [AY79a]). Let τ be a UI stopping time such

that Xτ ∼ µ ∈M1
0. Suppose µ has a positive density on its support. Then

P(Xτ ≥ y) ≤ P(XτµAY
≥ y) = µ(bµ(y)), y ≥ 0.

Proof. We follow the arguments in Ob lój and Yor [OY06]. Taking F (x) =

(x− y)+ we see that (Xt − y)1Xt≥y is a local martingale. Stopped at τ it is a

UI martingale and yields Doob’s maximal equality

y P(Xτ ≥ y) = E
[
Xτ1Xτ≥y

]
.

Let p := P(Xτ ≥ y) and continue the above

yp ≤ E
[
Xτ1Xτ≥µ−1(p)

]
= pψµ(µ−1(p)), and hence

P(Xτ ≥ y) = p ≤ µ (bµ(y)) = P(XτµAY
≥ y),

(4.8)

where we used that µ is decreasing and that the last equality follows by con-

struction since {XτµAY
≥ y} = {XτµAY

≥ bµ(y)}. Note that here we use the fact

that ψµ is strictly increasing and continuous on the support of µ.

The above extends to arbitrary measures µ ∈M1
0. The distribution of XτµAY

is denoted µHL, the Hardy-Littlewood transform of µ. If µ has positive density

than µHL(y) = µ(bµ(y)) as above. In general we have

µHL(y) =
Cµ(bµ(y))

y − bµ(y)
= inf
K<y

Cµ(K)

y −K
. (4.9)

To see this recall the relation between the call prices and the potential Uµ

given in (3.4). As discussed above, bµ(y) is the point such that the tangent to

Uµ at bµ(y) intersects the line (x,−x) in (y,−y). It follows that bµ(y) may

be described as the point in which the tangent to Cµ intersects the x−axis in

(y, 0). If µ({bµ(y)}) = 0 then Cµ is differentiable in bµ(y) and the slope of

the tangent −Cµ(bµ(y))
y−bµ(y) is equal to the derivative given by −µ(bµ(y)) which is

equal to −µHL(y) as shown above. The last equality in (4.9) follows from the

elementary properties of the tangent. Consider now an interval of constancy:

bµ(y) = x for y ∈ [y−, y+) = [ψµ(x), ψµ(x+)) which corresponds to µ({x}) > 0.

Note that the arguments given above extend to y = y−. For y ∈ (y−, y+) we

compute using (4.6)

P(XτµAY
≥ y) = exp

(
−
∫ y

0

ds

s− bµ(s)

)
= µHL(y−) exp

(
−
∫ y

y−

ds

s− bµ(s)

)
= µHL(y−) exp

(
−
∫ y

y−

ds

s− x

)
= µHL(y−)

y− − x
y − x

=
Cµ(x)

y − x
(4.10)
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Figure 4.3: The Vallois stopping time for a Brownian motion X = B. The left

pane presents the evolution as seen form an excursion theoretical perspective.

Here gt = sup{s ≤ t : Bs = 0} and dt = inf{s ≥ t : Bs = 0}.

and again the last equality in (4.9) follows from the properties of a tangent.

For a different derivation of (4.9), many properties of µHL and a different proof

of Proposition 4.3.2 for a general measure µ ∈ M1
0 see Carraro, El Karoui

and Ob lój [CEKO12]. We do not continue this discussion here since we will

see establish a generalisation of Proposition 4.3.2 in Chapter 5 with a proof

exploiting pathwise inequalities.

4.3.3 Vallois’ solution(s)

Vallois [Val83a] considered the first entry times for (Xt, Lt), where Lt is the local

time in zero of X. We recall that Lt is increasing, supported by {t : Xt = 0} and

that |Xt|−Lt is a local martingale. The essential difference with the Azéma-Yor

construction is that X has excursions both below and above zero, while X has

only excursions away (below) from its running maximum. We need to consider

stopping times of the form

inf{t : Xt /∈ (−ϕ−(Lt), ϕ+(Lt))}.

Figure 4.3 presents an embedding of this type. In fact, Vallois showed that one

can obtain closed form formulae taking ϕ± both increasing or both decreasing.

These solutions respectively maximise and minimise the stopped local time Lτ
in convex order, among all UI embeddings which solve the SEP for µ in X.
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Figure 4.4: A first hitting time of a barrier by a Brownian motion B.

Similar ideas, in a much more general setup which includes both Vallois

[Val83a] and Ob lój and Yor [OY04] as special cases, were developed in Ob lój

[Ob l07]. We refer to Ob lój [Ob l04] or to the original papers for details.

4.3.4 Root’s solution

We close this short overview of solutions to the embedding problem with a

pair of very natural, indeed possibly the most natural, solutions. The idea is

simple: draw a region in time-space and stop when the process enters the region.

For some special target measures this shape, assuming minimality of τ , will be

essentially unique (in the sense that the the induced stopping time will be a.s.

unique). This is true for µ ∈ M1
0 supported on two points. However for more

complex target measures there may be infinitely many different regions which

yield different first entry times but embed the same distribution. Solutions

of Root, and of Rost discussed below in Section 4.3.5, focus on two classes of

regions such that, in essence, for any µ ∈ M1
0 there is a unique region which

embeds µ.

The key notion is that of a barrier, see Figure 4.4.

Definition 4.3.3. A closed subset R of [0,+∞]× [−∞,+∞] is a barrier if

• (+∞, x) ∈ R for all x ∈ [−∞,+∞],

• (t,±∞) ∈ R for all t ∈ [0,+∞],

• if (t, x) ∈ R then (s, x) ∈ R whenever s > t.
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We made the last point stand out as it is the crucial defining property: if

a point in time-space is in R then all the points to the right of it are also in

R. We state now the original result due to Root, which is formulated for a

Brownian motion and µ which admits a second moment. We will discuss below

generalisations where X is a diffusion and µ ∈M1
0.

Theorem 4.3.4 (Root [Roo69]). Let X be a standard real valued Brownian

motion. For any probability measure µ ∈ M2
0 there exists a barrier Rµ such

that the first hitting time of the barrier

τRµ = HRµ((t,Xt)) = inf{t ≥ 0 : (t,Xt) ∈ Rµ}, (4.11)

solves the Skorokhod problem for µ, i.e. XτRµ
∼ µ and τRµ is minimal.

Proof. We start with an atomic µ =
∑n+1
i=0 piδ{xi} ∈ M

2
0. Given a vector

b = (b1, . . . , bn) ∈ Rn+ we amend it with b0 = bn+1 = 0 and consider

Rb :=

n+1⋃
i=0

[bi,∞)× {xi}.

Note that τRb ≤ Hx0,xn+1
and hence is a UI stopping time. We need to show

that for some b we have XτRb
∼ µ. In fact it is then unique. Indeed if τRb

and τR′b embed the same law then let Γ := {xi : bi < b′i}. It follows that

P(XτRb
∈ Γ) > P(XτR′

b

∈ Γ) if Γ 6= ∅ and hence Γ is empty. By symmetry we

conclude b = b′.

Root [Roo69] used topological arguments: he shows that that a mapping

b→ L(XτRb
), from set of points b to set of atomic measures on {x0, . . . , xn+1}

endowed with suitable metrics, is continuous, maps boundary onto boundary

and is one to one on the interior. It then follows that the mapping is globally

onto and hence an embedding exists.

We present a different proof following Hobson [Hob11] and Cox, Hobson and

Ob lój [CHO10]. Let ∆µ = {b : P(XτRb
= xi) ≤ pi, 1 ≤ i ≤ n} be the set of

points which embed “less mass” in x1, . . . , xn than prescribed by µ. The excess

mass is embedded in the endpoints x0 and xn+1. We claim that if b, b′ ∈ ∆ then

b = b ∧ b′, i.e. bi = bi ∧ b′i, 1 ≤ i ≤ n also is an element of ∆µ. Indeed, suppose

b 6= b′ and fix an index i between 1 and n where they differ and, say, bi∧b′i = bi.

Note that τRb ≤ τRb – we only extended the barrier to the left making stopping

earlier more likely. However, if XτRb
= xi then, since bi = bi, we also stop

according to b: XτRb
= xi. This shows that P(XτRb

= xi) ≤ P(XτRb
= xi) ≤ pi

and since i was arbitrary it follows that b ∈ ∆µ.

In consequence ∆µ has a minimal element b∗. Further, this element em-

beds µ. Otherwise, if we had P(XτRb∗
= xi) < pi for some i then let b′ :=

(b∗1, . . . , b
∗
i−1, b

∗
i − ε, b∗i+1, . . . , b

∗
n). It follows that P(XτR

b′
= xj) ≤ P(XτRb∗

=
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xj) ≤ pj for j 6= i and for ε small enough, by continuity, we still have b′ ∈ ∆µ

contradicting the minimality of b∗ in ∆µ.

The rest of the proof is carried out through a limit procedure. Let H denote

the closed half plane, H = [0,+∞] × [−∞,∞]. Map H homeomorphically to

a bounded rectangle F by (t, x) → ( t
1+t ,

x
1+|x| ). Let F be endowed with the

ordinary Euclidean metric ρ and denote by r the induced metric on H. Define

the Hausdorff distance on C, the set of closed subsets of H, via

r(C,D) = max{sup
x∈C

r(x,D), sup
y∈D

r(y, C)}, C,D ∈ C. (4.12)

Equipped with r, C is a separable, compact metric space and the subspace of all

barriers is closed in C and hence compact. Furthermore, this metric allows us

to deal with convergence in probability of first hitting times of barriers. More

precisely, the application which associates with a barrier R its first hitting time,

i.e. R → τR, is uniformly continuous:

Lemma 4.3.5 (Root [Roo69], Loynes [Loy70]). Let R be a barrier with corre-

sponding stopping time τR. If P(τR < ∞) = 1, then for any ε > 0 there exists

δ > 0 such that if R1 is barrier with r(R,R1) < δ then P(|τR − τR1
| > ε) < ε.

If P(τR =∞) = 1 then for any K > 0 there exists δ > 0 such that r(R,R1) < δ

implies P(τR1
< K) < ε.

If a sequence of barriers converges, Rn
r−−−−→

n→∞
R with E〈X〉τRn < K < ∞,

then E〈X〉τR ≤ K and P(|τRn − τR| > ε)−−−−→
n→∞

0.

With this lemma the theorem is proven for µ with finite second moment by

taking a sequence µn of probability measures with finite supports converging to

µ, µn ⇒ µ. Let Rn be the barrier corresponding to µn. Then, since the set of

barriers is compact, we can extract a converging subsequence Rnk → R and by

the above lemma we conclude that τR embeds µ.

Remark 4.3.6. The above theorem and its proof were given for a Brownian

motion. However all arguments instantly extend to the case of X which solves

dXt = σ(Xt)dWt, t ≥ 0, where W is a standard Brownian motion and where σ

is uniformly bounded away from zero, σ(x) ≥ ε > 0, x ∈ R.

Since we look at embeddings which use At = t as the auxiliary process we

may expect them to be extremal in terms of the distribution of the stopping

time. Suppose X = W is a Brownian motion and τ is a solution to the SEP

embedding µ ∈M1
0 in W . Then E τ =

∫
x2µ(dx) is the same among all stopping

minimal stopping times so it makes little sense to mininise or maximise E τ . We

are naturally led to look at dispersion of the law of τ and try to minimise or

maximise the variance of τ . It turns out Root’s solution minimises the variance

of τ . More generally we have a stronger result, conjectured by Kiefer [Kie72]

and proved by Rost.
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Theorem 4.3.7 (Rost [Ros76b]). In the setting of Theorem 4.3.4, let µ ∈M2
0

and τ = τRµ the Root’s embedding of µ. For any minimal stopping time ρ with

Xρ ∼ µ we have

E
[∫ τ

t∧τ
h(Xs)ds

]
≤ E

[∫ ρ

t∧ρ
h(Xs)ds

]
, ∀t ≥ 0, h ≥ 0. (4.13)

In particular E τ2 ≤ E ρ2.

In fact it is enough to show the above with h = 1, i.e. to show that τ

minimises E(τ−τ∧t) = E(τ−t)+. Such times are said to be of minimal residual

expectation and Rost [Ros76a] shows that τ is of minimal residual expectation

(essentially) in and only if it is a hitting time of a barrier. From the proof

it then follows that the more general statement above is also true. In fact in

Theorem 3.1.1 we can take τ to be of minimal residual expectation.

Strictly speaking, Rost proved the above result for measures with bounded

support, since he considered transient processes. On the other hand, he ex-

tended the original results of Root to time-homogenuous Markov processes, see

[Ros70]. Some of his results have been recently reinterpreted, and shown using

entirely new techniques, via PDE methods. We come back to these develop-

ments below.

In financial terms the optimality of Root’s embedding translates into min-

imising prices of options on variance. Recall the setup of Section 1.4.4. However

instead of writing St as a time-change of a Brownian motion we will rather write

it as a time change of a geometric Brownian motion. More precisely, we have

that S is a strictly positive local martingale with ST ∼ µ. Let Cs be the

right-continuous inverse of ρt := 〈lnS〉t. One can verify that Xt := SCs is a

geometric Brownian motion (i.e. its stochastic logarithm is a Brownian motion)

and we have (XρT , ρT ) = (ST , 〈lnS〉T ). Conversely, if we start with a geometric

Brownian motion X, i.e. dXt = XtdWt for some Brownian motion W , and a

UI stopping time τ such that Xτ ∼ µ then St := Xτ∧t/(T−t) is a continuous

martingale with ST ∼ µ and 〈lnS〉T = τ .

In particular, if we have an option on the variance paying O(〈lnS〉T ) at

maturity, a convex bounded below payoff, e.g. (〈lnS〉T −K)+ a call option on

the variance, we obtain

E[O(〈lnS〉T )] = E[O(τT )] ≥ inf
UI τ :Xτ∼ST

E[O(ρ)] = E[O(τRµ)],

where X is a geometric Brownian motion, τRµ is the Root embedding of µ

in X, and since by Theorem 4.3.7 Root’s stopping time minimises E[O(ρ)] for

a convex O bounded below. We note that so far we established existence of

Root’s stopping times for a local martingale with 〈X〉∞ = ∞ a.s. In the case

of geometric Brownian motion additional arguments are needed, see Section 4.4

below.
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We have learned so far that Root’s stopping time exists and has very de-

sirable properties. The question is how to compute it? This has been first

suggested by Dupire3 and recently established in Cox and Wang [CW13]. We

explain the construction by going back, again, to the potential picture. Con-

sider a barrier R and τ = τR. As Xt∧τ diffuses the potential UL(Xt∧τ ) de-

creases. We want to control the diffusion of the potential so that it never

goes below Uµ and in the end is equal to Uµ to achieve the embedding. Let

t(x) := inf{t : (t, x) ∈ R} and consider x such that t(x) ∈ (0,∞). Observe that

from time t onwards the process can not cross the level x. In particular, if we

are to achieve an UI embedding we have that

P(Xτ∧t(x) < x) = µ((−∞, x)) and EXτ∧t(x)1Xτ∧t(x)<x =

∫
(−∞,x)

µ(dy).

Further, again as no mass will cross x after t(x), UI of Xτ implies that the

above remains true for all t ≥ t(x) in place of t(x). By (3.2) it follows that

UL(Xt∧τ )(x) = Uµ(x) for all t ≥ t(x). Finally, by the definition of t(x), the

stopped process is free to diffuse in the neighbourhood of x before time t(x) and

hence UL(Xτ∧t)(x) is decreasing and hence has to be strictly above Uµ(x). We

conclude that

t(x) = inf{t : UL(Xτ∧t)(x) = Uµ(x)}.

Put differently we run the process, observe the potential and stop the process

there and then when the current potential UL(Xτ∧t) touches Uµ. If X is a

diffusion then the evolution of the potential UL(Xt) is governed by a PDE.

This results in a free boundary problem for R.

Theorem 4.3.8 (Cox and Wang ). Let Xt be a solution to an SDE: dXt =

σ(Xt)dWt with X0 ∼ ν ∈ M1
m and a smooth, bounded and bounded away from

zero, Lipschitz function σ. Consider µ ∈ M1
m with Uµ ≤ Uν and let Rµ be

Root’s barrier such that τRµ embeds µ. Let u, u(0, x) = Uν(x), be a solution to

the following variational inequality

min

{
∂u

∂t
(t, x)− 1

2
σ2(x)

∂2u

∂x2
(t, x), u(t, x)− Uµ(x)

}
= 0,

taken in appropriate spaces. We then have that u(t, x) = −E |Xτ∧t − x| and

Rµ = {(t, x) : u(t, x) = Uµ(x)}.

The above result has been recently extended to more general, possible time–

inhomogenuous, diffusions by Oberhauser and dos Reis [OdR14] using tech-

niques of viscosity solutions to variational inequalities.

3Unpublished; see http://legacy.samsi.info/200506/fmse/transition/b.dupire.ppt
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This understanding of Root’s barrier allows us to deduce the optimal prop-

erties, at least informally. Observe that∫ τ

0

h(Xs)ds =

∫ τ

0

h(Xs)

σ2(Xs)
d 〈X〉s = G(Xτ ) +

∫ τ

0

G′(Xs)dXs,

for a suitable choice of G with G′′ = 2h/σ2. It follows that, at least for a large

class of h, minimising
∫ τ
t∧τ h(Xs)ds, as in (4.13), is the same as maximising∫ t∧τ

0
h(Xs)ds. Consider the latter for h(x) = 1(x−ε,x+ε). Intuitively, we want

to allow X to diffuse in a neighbourhood of x for as long as possible. This

is exactly what Root’s embedding does – we restrict the diffusion of X in the

neighbourhood of x only when we have to since the potential ofXτ∧t touches Uµ.

We refer to Hobson [Hob11] for a different intuitive argument and to Cox and

Wang [CW13] for a formal agument using pathwise inequalities as in Chapter

5.

Example. Consider µ = pδ{0} + 1−p
2

(
δ{−1} + δ{1}

)
, p ∈ (0, 1), and X = W a

Brownian motion. We know that

Rµ = Rb = [b,∞)× {0} ∪ [0,∞)× ((−∞, 1] ∪ [1,∞)).

The atom in zero of XτRb
is a continuous function of b, it is zero for b =∞ and

one for b = 0. Hence there is a unique value t(0) = b for which µ is embedded.

It follows from Theorem 4.3.8 that

b = inf{t : E |Wt∧H−1,1
| = 1− p},

but even this simple computation is not available in an explicit form (to the

best of our knowledge). However, Theorem 4.3.8 provides us with a powerful

tool to compute barriers numerically. Figure 4.3.4 gives an example uniform

target law.

4.3.5 Rost

Rost in his works [Ros71a, Ros71b, Ros76a] made a fundamental contribution

to the field of embedding problems. His main result establishes a necessary

and sufficient condition for existence of a minimal embedding of µ in a Markov

process X (taking values in some metric space). The result was based on the

so-called filling scheme which became well known independently, see Meyer

[Mey72].

The filling scheme implies the following reversed construction to Root. We

say that R is a reversed barrier if it is closed and the closure of R+×R \R is a

barrier. Essentially, a reversed barrier has the property that if (t, x) ∈ R then

(s, x) ∈ R for all 0 ≤ s ≤ t. Embedding of µ using a first hitting time of a

reversed barrier is minimal and it maximises the variance of the stopping time
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Figure 4.5: Root’s Barrier embedding uniform distribution on [0, 2] in a Brow-

nian motion starting in W0 = 1 (generated using code by Di Huang).

among solutions to SEP for µ in X. More generally it maximises E
∫ τ
t∧τ h(Xs)ds

which Root’s stopping time minimises.

Existence and uniqueness of Rost embeddings has been established using

purely probabilistic arguments (for Brownian motion) in a recent paper by Cox

and Peskir [CP13]. Similarly to Root’s barrier, Rost’s reversed barrier arises as

the free boundary in a suitable variational inequality (obstacle) problem.

4.4 Diffusions and the case 〈X〉∞ <∞
So far we have assumed that X was a continuous local martingale with 〈X〉∞ =

∞ a.s. Recall that

{〈X〉∞ <∞} = { lim
t→∞

Xt exists }

{〈X〉∞ =∞} = {lim sup
t→∞

Xt =∞ and lim inf
t→∞

Xt = −∞}

see e.g. Proposition V.1.8 in Revuz and Yor [RY01]. If we relax our setting and

allow P(〈X〉∞ <∞) > 0 then the fundamental property that Ha,b <∞ a.s. for

any a, b ∈ R, which we were using over and over again in this chapter, does not

hold anymore. In consequence it may not be possible to embed any measure

µ ∈ M1
0 in X. For a trivial example consider a UI stopping time τ and the

stopped process Xτ for which 〈Xτ 〉∞ = 〈X〉τ < ∞ a.s. Clearly we can not

embed in Xτ any measure ν with Uν ≤ Uµ.
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In all the generality it is hard to say much. However in an important special

case we can give a full characterisation of the embedding problem. Namely,

suppose that 〈X〉∞ < ∞ a.s. and that Xt → X∞ ∈ {x, x} with X being

constant for t ≥ Hx,x, for some −∞ ≤ x < X0 < x ≤ ∞. Put differently, X

stays between x and x, is stopped upon hitting either of them and converges to

one of the two as t→∞. Naturally if x or x is infinite that X has to converge

to the other a.s. A motivating example is given by geometric Brownian motion

for which x = 0 < 1 = X0 <∞ = x.

In such a setting we have Ha,b < ∞ a.s. for any x < a < b < x. Theorem

4.2.2 and its proof extend immediately to the case of µ with µ((x, x)) = 1.

However it is also possible to consider µ([x, x]) = 1. Upon inspection we see

that the results still extend to this case and we have P(τ = ∞) = µ({x, x}),
where naturally we still assume that µ((−∞,∞)) = 1. We conclude that any

probability measure µ on R with µ ∈M1
X0

with µ([x, x]) = 1 can be embedded

in X using a UI stopping time.

The above case allows one to deal with the situation when X is not a local

martingale but a continuous diffusion process (with good boundary behaviour).

Such a process admits a scale function s such that Yt = s(Xt), t ≥ 0, is a

continuous local martingale and falls into our discussion above. In particular

we can describe precisely which measures can be embedded in Y and measures

which can be embedded in X are simply the image by s−1. We refer to Cox and

Hobson [CH04a] for details.

4.5 Embedding processes

Suppose now that we want to construct a martingale X with given marginals

µt for all times t ≥ 0. A necessary a sufficient condition for existence of X,

established by Kellerer [Kel72] is that µtM1
m and Uµt ≤ Uµs for any t ≥ s ≥ 0

and for some m ∈ R. A natural constructive approach would be to solve the

SEP for µt and try to use the solutions to define a time change. More precisely,

let W be a standard Brownian motion and consider, for example, τt := τµtAY the

Azéma-Yor solution (4.4) to the SEP for µt in W . For simplicity assume m = 0

and µ0 = δ{0}. The family of stopping times (τt) is a time-change if and only if

τt ≥ τs a.s. for any t ≥ s. This in turn is equivalent to ψµt ≥ ψµs for any t ≥ s.
If this holds than Xt := Wτt is a martingale with Xt ∼ µt. Note however that

typically W is not (τt)–continuous (recall Definition 2.3.4) and hence X is not

a continuous martingale. This construction was first discussed by Madan and

Yor [MY02] who also showed that X is a strong Markov process. As an example

one can check that when µt are log-normal marginals of a Geometric Brownian

motion then the above construction is feasible. The resulting martingale X has

paths increasing along deterministic curves with downward jumps (random in
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size and position), see [Xu11]. However in general it may be hard to verify the

monotonicity of the barycentre functions ψµt .

Naturally, any other embedding, e.g. Vallois’ or Root’s, maybe be used in-

stead of Azéma-Yor construction above. Each embedding will lead to a possibly

different class of marginals which may be embedded. We give one more example.

Consider µt ∼ tcξ for some random variable ξ ∼ µ1 ∈M1
0 and 0 < c < 1. Recall

Hall’s solution to the SEP and let (R,S) independent of W with (R,S) ∼ ρHallµ1

as given in (4.1). Then it is easy to see that (tcR, tcS) ∼ ρHallµt for t ≥ 0. In

consequence

τt := HtcR,tcS = inf{s ≥ 0 : Ws /∈ (tcR, tcS)} satisfies Xt := Wτt ∼ µt.

We stress again that so generated X, as in any such procedure described

above, is typically a discontinuous martingale. To construct continuous mar-

tingales different tools are usually applied. These go back to Krylov [Kry85a,

Kry85b] and [Gyö86]. In the context of financial mathematics such construc-

tions were pioneered by Dupire [Dup94] and are referred to as local volatility

models.
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Chapter 5

Pathwise inequalities

5.1 From SEP to robust hedging

Robust pricing and hedging are dual to each other. We saw this in Section 1.4.3.

So far we have only discussed methods that lead to robust bounds on prices of

derivatives. However it is often the hedging strategies which are of more interest:

not only they allow to recover the price bounds but also to enforce them. In

practice the price bounds may be too wide to be of any use however the hedging

methods may often outperform classical in-model hedging when there is even

a small degree of model ambiguity and some market frictions, see Ob lój and

Ulmer [OU12].

So how one goes about constructing a robust hedge? How to guess the

cheapest superreplicating strategy of an exotic option which uses all traded

assets? The first answer is to go back to the embeddings. If we identify the

optimal embedding then we know that in the model it induces, e.g. St =

Wτ∧t/(T−t), our cheapest superhedge should be a perfect hedge. Hence to find

the best superhedge we study the extremal model, identify the hedging strategy

in this model and amend it adding positions with zero cost in the extremal

model so that the hedge becomes a superhedge in all models.

The answer above, even though it sounds straightforward, still requires a

certain level of craftmanship and good intuition. Recently, stochastic control

methods have been successfully applied to find robust hedging strategies in sev-

eral examples, see Galichon, Henry-Labordère and Touzi [GHLT14]. Crucially,

they proved successful in attacking problems with intermediate marginal con-

straints where guessing the right pathwise inequality directly seems very hard,

if not impossible, see Henry-Labordère et al. [HLOST14].

Here we only have time to discuss one simple example of robust hedging.

Recall the setup of Section 1.4. We take P to be all càdlàg functions with
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initial value of S0 and assume S0 ≡ 1 (no interest rates). We are given prices

of all call options with maturity T : X = {(ST −K)+ : K ≥ 0}. We consider

pricing and hedging of a one-touch option which pays 1 if a certain barrier is

breached before the maturity T : OT := 1ST≥y. Note that by Theorem 4.3.2,

and the discussion following it, we have supremum of possible model prices of

OT in (1.4) is equal to UB(P,X ,P)(O) = µHL(y) given by (4.9), where µ is given

by (1.5).

We are now interested in the cost of the cheapest superhedge, i.e. in UB(P,X ,P)(O)

in (1.3). We claim that for any 0 ≤ K < b the following holds for any càdlàg

path (St)t≤T

1ST≥y ≤
(ST −K)+

y −K
+

(y − ST )

y −K
1ST≥y. (5.1)

Indeed, this is easily seen by considering the two cases. If the indicator is zero

then the LHS is zero and the RHS is non-negative. If the indicator is one then

the RHS is greater than one (if ST < K) or equal to one (if ST ≥ K). The

terms of the RHS have a clear financial meaning of a trading strategy. We start

by buying 1/(y − K) call options with strike K. When the asset reaches the

barrier we sell 1/(y −K) forwards. This is done at zero cost and the payoff is

1

y −K
(SH[y,∞)(S) − ST )1H[y,∞)(S)≤T

where SH[y,∞)(S) ≥ y with equality, for example, if S has continuous paths. In

particular, the last term on the RHS of (5.1) is less than or equal to the payoff

from the forward transaction. We conclude that

UB(P,X ,P)(O) ≤ inf
0≤K<y

P(ST −K)+

y −K
= inf

0≤K<y

Cµ(K)

y −K

Comparing with (4.9) we deduce that

UB(P,X ,P)(O) ≤ inf
0≤K<y

Cµ(K)

y −K
= µHL(y) ≤ UB(P,X ,P)(O)

and hence we have equalities throughout. The bound is attained in the model

St = WτµAY ∧t/(T−t), where W is a standard Brownian motion starting from

W0 = S0 and τµAY is the Azéma-Yor stopping time (4.4), which in particular

provides a different proof of (a generalisation of) Proposition 4.3.2. Finally, in

this model the RHS of (5.1) is a hedging strategy for the one-touch option OT .

5.2 Martingale inequalities

We saw above that (pathwise) superhedging inequalities lead to robust hedging

strategies. However they also appear to be a very natural tool for constructing

64
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martingale inequalities. We explain here how to obtain Doob’s classical Lp–

inequality using (5.1). Let (Xt)t≤T be a non-negative càdlàg submartingale

defined on some filtered probability space (Ω,F , (Ft),P) satisfying the usual

assumptions. For simplicity assume X0 is a constant. Recall that the pathwise

inequality (5.1) holds with X in place of S. Let K = αy and take expectations

to see that

P(XT ≥ y) ≤ E[(XT − αy)+]

(1− α)y
, α ∈ (0, 1).

Integrating by parts and using Fubini we have, for p > 1,

E[X̄p
T ]−Xp

0 =

∫ ∞
X0

pyp−1 P(XT ≥ y)dy ≤ E
∫ ∞
X0

pyp−1 (XT − αy)+

y − αy
dy

= E
∫ XT

α ∨X0

X0

pyp−1XT − αy
y − αy

dy ≤ E
∫ XT

α

X0

pyp−1XT − αy
y − αy

dy

=
p

p− 1

1

1− α
E

[{(
XT

α

)p−1

−Xp−1
0

}
XT

]
− α

1− α
E
[(

XT

α

)p
−Xp

0

]
≤ 1

p− 1

1

(1− α)αp−1
E[Xp

T ]− p− α(p− 1)

(p− 1)(1− α)
Xp

0 , (5.2)

where we used the submartingale property of X in the last inequality. Note

that the function α 7→ 1
(1−α)αp−1 attains its minimum at α? = p−1

p . Plugging

α = α? into the above yields

E[X̄p
T ] ≤

(
p

p− 1

)p
E[Xp

T ]− p

p− 1
Xp

0 ,

which is the classical Doob’s Lp–inequality.

The above is a striking simple example. More generally, pathwise inequalities

obtained within the robust hedging framework can be used to obtain a verity

of known martingale inequalities as well as new ones. Combined with robust

pricing, they can also be shown to be tight. We refer to Ob lój, Spoida and Touzi

[OST14] for details.
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due, Publications de l’Institut de Mathématique de l’Université de
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[DOR14] M. H. A. Davis, J. Ob lój, and V. Raval. Arbitrage bounds for

prices of weighted variance swaps. Mathematical Finance, 24:821–

854, 2014.

[DS94] F. Delbaen and W. Schachermayer. A general version of the fun-

damental theorem of asset pricing. Math. Ann., 300(3):463–520,

1994.

[DS06] Freddy Delbaen and Walter Schachermayer. The mathematics of

arbitrage. Springer Finance. Springer-Verlag, Berlin, 2006.

[DS14] Y. Dolinsky and H. M. Soner. Martingale optimal transport and

robust hedging in continuous time. Probab. Theory Relat. Fields,

160(1-2):391–427, 2014.

[Dub68] L. E. Dubins. On a theorem of Skorohod. Ann. Math. Statist.,

39:2094–2097, 1968.

70
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[Gyö86] I. Gyöngy. Mimicking the one-dimensional marginal distributions
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J. Ob lój BIBLIOGRAPHY

[Kry85a] N V Krylov. On the relation between differential operators of sec-

ond order and the solutions of differential equations. In N V Krylov,

R S Lipster, and A A Novikov, editors, Steklov Seminar 1984, pages

214–229. Inc. Publications Division, New York, October 1985.

[Kry85b] N. V. Krylov. Once more about the connection between elliptic
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continuous martingales. In Séminaire de Probabilités, XXXIII,

volume 1709 of Lecture Notes in Math., pages 327–333. Springer,

Berlin, 1999.

[Val83a] P. Vallois. Le problème de Skorokhod sur R: une approche avec

le temps local. In Seminar on probability, XVII, volume 986 of

Lecture Notes in Math., pages 227–239. Springer, Berlin, 1983.

[Val83b] Pierre Vallois. Le problème de Skorokhod sur R: une approche avec
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